
Chapter 13: I/O Systems

 I/O Hardware

 Application I/O Interface

 Kernel I/O Subsystem

 Transforming I/O Requests to Hardware Operations

 Streams

 Performance

Objectives

 Explore the structure of an operating system’s I/O subsystem

 Discuss the principles of I/O hardware and its complexity

 Provide details of the performance aspects of I/O hardware and software

I/O Hardware

 Incredible variety of I/O devices

 Common concepts

 Port

 Bus (daisy chain or shared direct access)

 Controller (host adapter)

 I/O instructions control devices

 Devices have addresses, used by

 Direct I/O instructions

 Memory-mapped I/O

A Typical PC Bus Structure

Device I/O Port Locations on PCs (partial)

Polling

 Determines state of device

 command-ready

 busy

 Error

 Busy-wait cycle to wait for I/O from device

Interrupts

 CPU Interrupt-request line triggered by I/O device

 Interrupt handler receives interrupts

 Maskable to ignore or delay some interrupts

 Interrupt vector to dispatch interrupt to correct handler

 Based on priority

 Some nonmaskable

 Interrupt mechanism also used for exceptions

Interrupt-Driven I/O Cycle

Intel Pentium Processor Event-Vector Table

Direct Memory Access

 Used to avoid programmed I/O for large data movement

 Requires DMA controller

 Bypasses CPU to transfer data directly between I/O device and memory

Six Step Process to Perform DMA Transfer

Application I/O Interface

 I/O system calls encapsulate device behaviors in generic classes

 Device-driver layer hides differences among I/O controllers from kernel

 Devices vary in many dimensions

 Character-stream or block

 Sequential or random-access

 Sharable or dedicated

 Speed of operation

 read-write, read only, or write only

A Kernel I/O Structure

Characteristics of I/O Devices

Block and Character Devices

 Block devices include disk drives

 Commands include read, write, seek

 Raw I/O or file-system access

 Memory-mapped file access possible

 Character devices include keyboards, mice, serial ports

 Commands include get, put

 Libraries layered on top allow line editing

Network Devices

 Varying enough from block and character to have own interface

 Unix and Windows NT/9x/2000 include socket interface

 Separates network protocol from network operation

 Includes select functionality

 Approaches vary widely (pipes, FIFOs, streams, queues, mailboxes)

Clocks and Timers

 Provide current time, elapsed time, timer

 Programmable interval timer used for timings, periodic interrupts

 ioctl (on UNIX) covers odd aspects of I/O such as clocks and timers

Blocking and Nonblocking I/O

 Blocking - process suspended until I/O completed

 Easy to use and understand

 Insufficient for some needs

 Nonblocking - I/O call returns as much as available

 User interface, data copy (buffered I/O)

 Implemented via multi-threading

 Returns quickly with count of bytes read or written

 Asynchronous - process runs while I/O executes

 Difficult to use

 I/O subsystem signals process when I/O completed

Two I/O Methods

Synchronous Asynchronous

Kernel I/O Subsystem

 Scheduling

 Some I/O request ordering via per-device queue

 Some OSs try fairness

 Buffering - store data in memory while transferring between devices

 To cope with device speed mismatch

 To cope with device transfer size mismatch

 To maintain “copy semantics”

Device-status Table

Sun Enterprise 6000 Device-Transfer Rates

Kernel I/O Subsystem

 Caching - fast memory holding copy of data

 Always just a copy

 Key to performance

 Spooling - hold output for a device

 If device can serve only one request at a time

 i.e., Printing

 Device reservation - provides exclusive access to a device

 System calls for allocation and deallocation

 Watch out for deadlock

Error Handling

 OS can recover from disk read, device unavailable, transient write failures

 Most return an error number or code when I/O request fails

 System error logs hold problem reports

I/O Protection

 User process may accidentally or purposefully attempt to disrupt normal

operation via illegal I/O instructions

 All I/O instructions defined to be privileged

 I/O must be performed via system calls

Memory-mapped and I/O port memory locations must be protected

too

Use of a System Call to Perform I/O

Kernel Data Structures

 Kernel keeps state info for I/O components, including open file tables,

network connections, character device state

 Many, many complex data structures to track buffers, memory allocation,

“dirty” blocks

 Some use object-oriented methods and message passing to implement I/O

UNIX I/O Kernel Structure

I/O Requests to Hardware Operations

 Consider reading a file from disk for a process:

 Determine device holding file

 Translate name to device representation

 Physically read data from disk into buffer

 Make data available to requesting process

 Return control to process

Life Cycle of An I/O Request

STREAMS

 STREAM – a full-duplex communication channel between a user-level

process and a device in Unix System V and beyond

 A STREAM consists of:

- STREAM head interfaces with the user process

- driver end interfaces with the device

- zero or more STREAM modules between them.

 Each module contains a read queue and a write queue

 Message passing is used to communicate between queues

The STREAMS Structure

Performance

 I/O a major factor in system performance:

 Demands CPU to execute device driver, kernel I/O code

 Context switches due to interrupts

 Data copying

 Network traffic especially stressful

Intercomputer Communications

Improving Performance

 Reduce number of context switches

 Reduce data copying

 Reduce interrupts by using large transfers, smart controllers, polling

 Use DMA

 Balance CPU, memory, bus, and I/O performance for highest throughput

Device-Functionality Progression

End of Chapter 13

