
Chapter 5: CPU Scheduling

 Basic Concepts

 Scheduling Criteria

 Scheduling Algorithms

 Thread Scheduling

 Multiple-Processor Scheduling

 Operating Systems Examples

 Algorithm Evaluation

Objectives

 To introduce CPU scheduling, which is the basis for multiprogrammed

operating systems

 To describe various CPU-scheduling algorithms

 To discuss evaluation criteria for selecting a CPU-scheduling algorithm for a

particular system

Basic Concepts

 Maximum CPU utilization obtained with multiprogramming

 CPU–I/O Burst Cycle – Process execution consists of a cycle of

CPU execution and I/O wait

 CPU burst distribution

Histogram of CPU-burst Times

Alternating Sequence of CPU And I/O Bursts

CPU Scheduler

 Selects from among the processes in memory that are ready to execute,

and allocates the CPU to one of them

 CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

 Scheduling under 1 and 4 is nonpreemptive

 All other scheduling is preemptive

Dispatcher

 Dispatcher module gives control of the CPU to the process

selected by the short-term scheduler; this involves:

 switching context

 switching to user mode

 jumping to the proper location in the user program to restart

that program

 Dispatch latency – time it takes for the dispatcher to stop one

process and start another running

Scheduling Criteria

 CPU utilization – keep the CPU as busy as possible

 Throughput – # of processes that complete their execution per

time unit

 Turnaround time – amount of time to execute a particular process

 Waiting time – amount of time a process has been waiting in the

ready queue

 Response time – amount of time it takes from when a request was

submitted until the first response is produced, not output (for time-

sharing environment)

Scheduling Algorithm Optimization Criteria

 Max CPU utilization

 Max throughput

 Min turnaround time

 Min waiting time

 Min response time

First-Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

P2 3

P3 3

 Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 24; P3 = 27

 Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

FCFS Scheduling (Cont)

Suppose that the processes arrive in the order

P2 , P3 , P1

 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3

 Average waiting time: (6 + 0 + 3)/3 = 3

 Much better than previous case

 Convoy effect short process behind long process

P1P3P2

63 300

Shortest-Job-First (SJF) Scheduling

 Associate with each process the length of its next CPU burst. Use these

lengths to schedule the process with the shortest time

 SJF is optimal – gives minimum average waiting time for a given set of

processes

 The difficulty is knowing the length of the next CPU request

Example of SJF

Process Arrival Time Burst Time

P1 0.0 6

P2 2.0 8

P3 4.0 7

P4 5.0 3

 SJF scheduling chart

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P4
P3P1

3 160 9

P2

24

Determining Length of Next CPU Burst

 Can only estimate the length

 Can be done by using the length of previous CPU bursts, using exponential

averaging

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of length actual 1.











 1n

th
n nt

  .1
1 nnn

t  


Prediction of the Length of the Next CPU Burst

Examples of Exponential Averaging

  =0

 n+1 = n

 Recent history does not count

  =1

 n+1 =  tn

 Only the actual last CPU burst counts

 If we expand the formula, we get:

n+1 =  tn+(1 - ) tn -1 + …

+(1 - )j  tn -j + …

+(1 - )n +1 0

 Since both  and (1 - ) are less than or equal to 1, each successive term
has less weight than its predecessor

Priority Scheduling

 A priority number (integer) is associated with each process

 The CPU is allocated to the process with the highest priority (smallest

integer  highest priority)

 Preemptive

 nonpreemptive

 SJF is a priority scheduling where priority is the predicted next CPU burst

time

 Problem  Starvation – low priority processes may never execute

 Solution  Aging – as time progresses increase the priority of the process

Round Robin (RR)

 Each process gets a small unit of CPU time (time quantum),

usually 10-100 milliseconds. After this time has elapsed, the

process is preempted and added to the end of the ready queue.

 If there are n processes in the ready queue and the time

quantum is q, then each process gets 1/n of the CPU time in

chunks of at most q time units at once. No process waits more

than (n-1)q time units.

 Performance

 q large  FIFO

 q small  q must be large with respect to context switch,

otherwise overhead is too high

Example of RR with Time Quantum = 4

Process Burst Time

P1 24

P2 3

P3 3

 The Gantt chart is:

 Typically, higher average turnaround than SJF, but better response

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

Time Quantum and Context Switch Time

Turnaround Time Varies With The Time Quantum

Multilevel Queue

 Ready queue is partitioned into separate queues:

foreground (interactive)

background (batch)

 Each queue has its own scheduling algorithm

 foreground – RR

 background – FCFS

 Scheduling must be done between the queues

 Fixed priority scheduling; (i.e., serve all from foreground then from

background). Possibility of starvation.

 Time slice – each queue gets a certain amount of CPU time which it can

schedule amongst its processes; i.e., 80% to foreground in RR

 20% to background in FCFS

Multilevel Queue Scheduling

Multilevel Feedback Queue

 A process can move between the various queues; aging can be

implemented this way

 Multilevel-feedback-queue scheduler defined by the following

parameters:

 number of queues

 scheduling algorithms for each queue

 method used to determine when to upgrade a process

 method used to determine when to demote a process

 method used to determine which queue a process will enter

when that process needs service

Example of Multilevel Feedback Queue

 Three queues:

 Q0 – RR with time quantum 8 milliseconds

 Q1 – RR time quantum 16 milliseconds

 Q2 – FCFS

 Scheduling

 A new job enters queue Q0 which is served FCFS. When it gains CPU,

job receives 8 milliseconds. If it does not finish in 8 milliseconds, job is

moved to queue Q1.

 At Q1 job is again served FCFS and receives 16 additional milliseconds.

If it still does not complete, it is preempted and moved to queue Q2.

Multilevel Feedback Queues

Thread Scheduling

 Distinction between user-level and kernel-level threads

 Many-to-one and many-to-many models, thread library schedules

user-level threads to run on LWP

 Known as process-contention scope (PCS) since scheduling

competition is within the process

 Kernel thread scheduled onto available CPU is system-contention

scope (SCS) – competition among all threads in system

Pthread Scheduling

 API allows specifying either PCS or SCS during thread creation

 PTHREAD SCOPE PROCESS schedules threads using PCS

scheduling

 PTHREAD SCOPE SYSTEM schedules threads using SCS

scheduling.

Pthread Scheduling API

#include <pthread.h>

#include <stdio.h>

#define NUM THREADS 5

int main(int argc, char *argv[])

{

int i;

pthread t tid[NUM THREADS];

pthread attr t attr;

/* get the default attributes */

pthread attr init(&attr);

/* set the scheduling algorithm to PROCESS or SYSTEM */

pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM);

/* set the scheduling policy - FIFO, RT, or OTHER */

pthread attr setschedpolicy(&attr, SCHED OTHER);

/* create the threads */

for (i = 0; i < NUM THREADS; i++)

pthread create(&tid[i],&attr,runner,NULL);

Pthread Scheduling API

/* now join on each thread */

for (i = 0; i < NUM THREADS; i++)

pthread join(tid[i], NULL);

}

/* Each thread will begin control in this function */

void *runner(void *param)

{

printf("I am a thread\n");

pthread exit(0);

}

Multiple-Processor Scheduling

 CPU scheduling more complex when multiple CPUs are

available

 Homogeneous processors within a multiprocessor

 Asymmetric multiprocessing – only one processor

accesses the system data structures, alleviating the need

for data sharing

 Symmetric multiprocessing (SMP) – each processor

is self-scheduling, all processes in common ready queue,

or each has its own private queue of ready processes

 Processor affinity – process has affinity for processor

on which it is currently running

 soft affinity

 hard affinity

NUMA and CPU Scheduling

Multicore Processors

 Recent trend to place multiple processor cores on same physical chip

 Faster and consume less power

 Multiple threads per core also growing

 Takes advantage of memory stall to make progress on another thread

while memory retrieve happens

Multithreaded Multicore System

Operating System Examples

 Solaris scheduling

 Windows XP scheduling

 Linux scheduling

Solaris Dispatch Table

Solaris Scheduling

Windows XP Priorities

Linux Scheduling

 Constant order O(1) scheduling time

 Two priority ranges: time-sharing and real-time

 Real-time range from 0 to 99 and nice value from 100 to 140

 (figure 5.15)

Priorities and Time-slice length

List of Tasks Indexed According to Priorities

Algorithm Evaluation

 Deterministic modeling – takes a particular

predetermined workload and defines the performance of

each algorithm for that workload

 Queueing models

 Implementation

Evaluation of CPU schedulers by Simulation

End of Chapter 5

5.08

In-5.7

In-5.8

In-5.9

Dispatch Latency

Java Thread Scheduling

 JVM Uses a Preemptive, Priority-Based Scheduling Algorithm

 FIFO Queue is Used if There Are Multiple Threads With the Same Priority

Java Thread Scheduling (cont)

JVM Schedules a Thread to Run When:

1. The Currently Running Thread Exits the Runnable State

2. A Higher Priority Thread Enters the Runnable State

* Note – the JVM Does Not Specify Whether Threads are Time-Sliced or Not

Time-Slicing

Since the JVM Doesn’t Ensure Time-Slicing, the yield() Method

May Be Used:

while (true) {

// perform CPU-intensive task

. . .

Thread.yield();

}

This Yields Control to Another Thread of Equal Priority

Thread Priorities

Priority Comment

Thread.MIN_PRIORITY Minimum Thread Priority

Thread.MAX_PRIORITY Maximum Thread Priority

Thread.NORM_PRIORITY Default Thread Priority

Priorities May Be Set Using setPriority() method:

setPriority(Thread.NORM_PRIORITY + 2);

Solaris 2 Scheduling

