
Chapter 5: CPU Scheduling

 Basic Concepts

 Scheduling Criteria

 Scheduling Algorithms

 Thread Scheduling

 Multiple-Processor Scheduling

 Operating Systems Examples

 Algorithm Evaluation

Objectives

 To introduce CPU scheduling, which is the basis for multiprogrammed

operating systems

 To describe various CPU-scheduling algorithms

 To discuss evaluation criteria for selecting a CPU-scheduling algorithm for a

particular system

Basic Concepts

 Maximum CPU utilization obtained with multiprogramming

 CPU–I/O Burst Cycle – Process execution consists of a cycle of

CPU execution and I/O wait

 CPU burst distribution

Histogram of CPU-burst Times

Alternating Sequence of CPU And I/O Bursts

CPU Scheduler

 Selects from among the processes in memory that are ready to execute,

and allocates the CPU to one of them

 CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

 Scheduling under 1 and 4 is nonpreemptive

 All other scheduling is preemptive

Dispatcher

 Dispatcher module gives control of the CPU to the process

selected by the short-term scheduler; this involves:

 switching context

 switching to user mode

 jumping to the proper location in the user program to restart

that program

 Dispatch latency – time it takes for the dispatcher to stop one

process and start another running

Scheduling Criteria

 CPU utilization – keep the CPU as busy as possible

 Throughput – # of processes that complete their execution per

time unit

 Turnaround time – amount of time to execute a particular process

 Waiting time – amount of time a process has been waiting in the

ready queue

 Response time – amount of time it takes from when a request was

submitted until the first response is produced, not output (for time-

sharing environment)

Scheduling Algorithm Optimization Criteria

 Max CPU utilization

 Max throughput

 Min turnaround time

 Min waiting time

 Min response time

First-Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

P2 3

P3 3

 Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 24; P3 = 27

 Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

FCFS Scheduling (Cont)

Suppose that the processes arrive in the order

P2 , P3 , P1

 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3

 Average waiting time: (6 + 0 + 3)/3 = 3

 Much better than previous case

 Convoy effect short process behind long process

P1P3P2

63 300

Shortest-Job-First (SJF) Scheduling

 Associate with each process the length of its next CPU burst. Use these

lengths to schedule the process with the shortest time

 SJF is optimal – gives minimum average waiting time for a given set of

processes

 The difficulty is knowing the length of the next CPU request

Example of SJF

Process Arrival Time Burst Time

P1 0.0 6

P2 2.0 8

P3 4.0 7

P4 5.0 3

 SJF scheduling chart

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P4
P3P1

3 160 9

P2

24

Determining Length of Next CPU Burst

 Can only estimate the length

 Can be done by using the length of previous CPU bursts, using exponential

averaging

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of length actual 1.

 1n

th
n nt

 .1
1 nnn

t

Prediction of the Length of the Next CPU Burst

Examples of Exponential Averaging

 =0

 n+1 = n

 Recent history does not count

 =1

 n+1 = tn

 Only the actual last CPU burst counts

 If we expand the formula, we get:

n+1 = tn+(1 -) tn -1 + …

+(1 -)j tn -j + …

+(1 -)n +1 0

 Since both and (1 -) are less than or equal to 1, each successive term
has less weight than its predecessor

Priority Scheduling

 A priority number (integer) is associated with each process

 The CPU is allocated to the process with the highest priority (smallest

integer highest priority)

 Preemptive

 nonpreemptive

 SJF is a priority scheduling where priority is the predicted next CPU burst

time

 Problem Starvation – low priority processes may never execute

 Solution Aging – as time progresses increase the priority of the process

Round Robin (RR)

 Each process gets a small unit of CPU time (time quantum),

usually 10-100 milliseconds. After this time has elapsed, the

process is preempted and added to the end of the ready queue.

 If there are n processes in the ready queue and the time

quantum is q, then each process gets 1/n of the CPU time in

chunks of at most q time units at once. No process waits more

than (n-1)q time units.

 Performance

 q large FIFO

 q small q must be large with respect to context switch,

otherwise overhead is too high

Example of RR with Time Quantum = 4

Process Burst Time

P1 24

P2 3

P3 3

 The Gantt chart is:

 Typically, higher average turnaround than SJF, but better response

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

Time Quantum and Context Switch Time

Turnaround Time Varies With The Time Quantum

Multilevel Queue

 Ready queue is partitioned into separate queues:

foreground (interactive)

background (batch)

 Each queue has its own scheduling algorithm

 foreground – RR

 background – FCFS

 Scheduling must be done between the queues

 Fixed priority scheduling; (i.e., serve all from foreground then from

background). Possibility of starvation.

 Time slice – each queue gets a certain amount of CPU time which it can

schedule amongst its processes; i.e., 80% to foreground in RR

 20% to background in FCFS

Multilevel Queue Scheduling

Multilevel Feedback Queue

 A process can move between the various queues; aging can be

implemented this way

 Multilevel-feedback-queue scheduler defined by the following

parameters:

 number of queues

 scheduling algorithms for each queue

 method used to determine when to upgrade a process

 method used to determine when to demote a process

 method used to determine which queue a process will enter

when that process needs service

Example of Multilevel Feedback Queue

 Three queues:

 Q0 – RR with time quantum 8 milliseconds

 Q1 – RR time quantum 16 milliseconds

 Q2 – FCFS

 Scheduling

 A new job enters queue Q0 which is served FCFS. When it gains CPU,

job receives 8 milliseconds. If it does not finish in 8 milliseconds, job is

moved to queue Q1.

 At Q1 job is again served FCFS and receives 16 additional milliseconds.

If it still does not complete, it is preempted and moved to queue Q2.

Multilevel Feedback Queues

Thread Scheduling

 Distinction between user-level and kernel-level threads

 Many-to-one and many-to-many models, thread library schedules

user-level threads to run on LWP

 Known as process-contention scope (PCS) since scheduling

competition is within the process

 Kernel thread scheduled onto available CPU is system-contention

scope (SCS) – competition among all threads in system

Pthread Scheduling

 API allows specifying either PCS or SCS during thread creation

 PTHREAD SCOPE PROCESS schedules threads using PCS

scheduling

 PTHREAD SCOPE SYSTEM schedules threads using SCS

scheduling.

Pthread Scheduling API

#include <pthread.h>

#include <stdio.h>

#define NUM THREADS 5

int main(int argc, char *argv[])

{

int i;

pthread t tid[NUM THREADS];

pthread attr t attr;

/* get the default attributes */

pthread attr init(&attr);

/* set the scheduling algorithm to PROCESS or SYSTEM */

pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM);

/* set the scheduling policy - FIFO, RT, or OTHER */

pthread attr setschedpolicy(&attr, SCHED OTHER);

/* create the threads */

for (i = 0; i < NUM THREADS; i++)

pthread create(&tid[i],&attr,runner,NULL);

Pthread Scheduling API

/* now join on each thread */

for (i = 0; i < NUM THREADS; i++)

pthread join(tid[i], NULL);

}

/* Each thread will begin control in this function */

void *runner(void *param)

{

printf("I am a thread\n");

pthread exit(0);

}

Multiple-Processor Scheduling

 CPU scheduling more complex when multiple CPUs are

available

 Homogeneous processors within a multiprocessor

 Asymmetric multiprocessing – only one processor

accesses the system data structures, alleviating the need

for data sharing

 Symmetric multiprocessing (SMP) – each processor

is self-scheduling, all processes in common ready queue,

or each has its own private queue of ready processes

 Processor affinity – process has affinity for processor

on which it is currently running

 soft affinity

 hard affinity

NUMA and CPU Scheduling

Multicore Processors

 Recent trend to place multiple processor cores on same physical chip

 Faster and consume less power

 Multiple threads per core also growing

 Takes advantage of memory stall to make progress on another thread

while memory retrieve happens

Multithreaded Multicore System

Operating System Examples

 Solaris scheduling

 Windows XP scheduling

 Linux scheduling

Solaris Dispatch Table

Solaris Scheduling

Windows XP Priorities

Linux Scheduling

 Constant order O(1) scheduling time

 Two priority ranges: time-sharing and real-time

 Real-time range from 0 to 99 and nice value from 100 to 140

 (figure 5.15)

Priorities and Time-slice length

List of Tasks Indexed According to Priorities

Algorithm Evaluation

 Deterministic modeling – takes a particular

predetermined workload and defines the performance of

each algorithm for that workload

 Queueing models

 Implementation

Evaluation of CPU schedulers by Simulation

End of Chapter 5

5.08

In-5.7

In-5.8

In-5.9

Dispatch Latency

Java Thread Scheduling

 JVM Uses a Preemptive, Priority-Based Scheduling Algorithm

 FIFO Queue is Used if There Are Multiple Threads With the Same Priority

Java Thread Scheduling (cont)

JVM Schedules a Thread to Run When:

1. The Currently Running Thread Exits the Runnable State

2. A Higher Priority Thread Enters the Runnable State

* Note – the JVM Does Not Specify Whether Threads are Time-Sliced or Not

Time-Slicing

Since the JVM Doesn’t Ensure Time-Slicing, the yield() Method

May Be Used:

while (true) {

// perform CPU-intensive task

. . .

Thread.yield();

}

This Yields Control to Another Thread of Equal Priority

Thread Priorities

Priority Comment

Thread.MIN_PRIORITY Minimum Thread Priority

Thread.MAX_PRIORITY Maximum Thread Priority

Thread.NORM_PRIORITY Default Thread Priority

Priorities May Be Set Using setPriority() method:

setPriority(Thread.NORM_PRIORITY + 2);

Solaris 2 Scheduling

