
August 9, 2016

Estimating Runtime

The Bottom Line

Simplifying formulas

• An admissible polynomial of degree d is Θ(nd)
• When finding Θ, ignore terms of strictly lower asymptotic class

Finding model constants

• Growth Exponent d ' log10 T (10n0)/T (n0)
• Growth Constant A ' T (n0)/M(n0)

where n0 is a specific size for which we have data, T is actual runtime data,
and M is the abstract model. The concrete modelling formula is then

T (n) ' A×M(n).

1 Definitions, Notation, and Representations

Define a function F to be admissable iff it is defined on almost all of the non-negative
integers and has positive real values on almost all of the domain. That is, there is
an integer n0 such that F (n) is defined and F (n) > 0 for all integers n > n0. Note
that for polynomials, this condition requires that the leading coefficient is a positive
number.

Note also we are introducing the terminology “almost all of the non-negative
integers” to mean “for all integers n that are greater than some fixed value n0” – in
other words, the condition holds for all but a finite number of possible exceptions.
This terminology is easier to talk about and allows us to stop mentioning “n > n0”,
simplifying the wording of many statements.

Lemma 1. Suppose that F and G are admissible and the quotient F (n)/G(n) tends
to a positive constant c as n grows large - that is,

lim
n→∞

F (n)

G(n)
= c > 0.

Then F (n) and G(n) are in the same Θ equivalence class.

Proof. We must show there are positive constants C1 and C2 such that C1×G(n) ≤
F (n) and F (n) ≤ C2 × G(n) for almost all n. By definition of limit, we know that

1



2

for any ε > 0, c − ε ≤ F (n)
G(n)

≤ c + ε for almost all n. Choosing ε = C/2, C1 = c − ε,

and C2 = c + ε we have

C1 =
c

2
= c− ε ≤ F (n)

G(n)

and
F (n)

G(n)
≤= c + ε = 3

c

2
= C2

for almost all n. Multiplying by G(n) yields

C1G(n) ≤ F (n) ≤ C2G(n)

for almost all n, the desired result. �

2 Simplifying Formulas

Look at these two functions of n:

F (n) = a0n
d + a1n

d−1 + . . . + an

G(n) = nd

(where we assume the leading coefficient a0 > 0). F (n) is the general form of an
admissible polynomial of degree d, whereas G(n) is the much simpler form of the
highest power term.

Lemma 2. With the definitions above, F (n) and G(n) are in the same Θ equivalence
class.

proof. First note the calculation

F (n)

G(n)
=

a0n
d

nd
+

a1n
d−1

nd
+ . . . +

ad−1n

nd
+

ad

nd

= a0 +
a1

n
+

a2

n2
+ . . . +

ad−1

nd−1
+

ad

nd

from which it is apparent that F (n)
G(n)

tends to a0 as n becomes large. Since F and G

are admissible, the result follows from Lemma 1. �

In the light of Lemma 2, nd is our choice representative for the Θ class of any
polynomial of degree d.

Along these same lines, suppose we have a function

H(n) = h(n) + φ(n)

where φ(n) has the property that φ(n)
h(n)

→ 0 as n→∞.



3

Lemma 3. H(n) and h(n) are in the same Θ equivalence class.

Proof. Use the same idea as the proof of Lemma 2:

H(n)

h(n)
=

h(n)

h(n)
+

φ(n)

h(n)

= 1 +
φ(n)

h(n)

→ 1 + 0 as n→∞
= 1

�

Lemmas 2 and 3 can be loosely paraphrased as follows:

(1) (Polynomial rule) A polynomial of degree d with positive leading coefficient
is Θ(nd).

(2) (Lower order cancellation rule) When finding the Θ class of a function, terms
with strictly lower asymptotic order can be ignored.

Example applications of these two simplifying rules:

n(n + 1)/2 = Θ(n2)

n2 + log n = Θ(n2)

n + log n = Θ(n)

5000n2 + 2300
√

n = Θ(n2)

3 Estimating the growth exponent from Data

In many cases an exponent associated with the asymptotic class of an algorithm can
be estimated from data. Start by assuming that the algorithm runtime has Θ class
one of these forms (aka “abstract models”):

And + Bφ(n) [Model 1]

And log n + Bφ(n) [Model 2]

where A > 0 and φ(n) is dominated by the first term: φ(n)
nd → 0 as n→∞ [Model 1]

or φ(n)
nd log n

→ 0 as n→∞ [Model 2].



4

Lemma 4. The abstract models have Θ class as follows:

And + Bφ(n) = Θ(nd) [Model 1]

And log n + Bφ(n) = Θ(nd log n) [Model 2]

The proof is a direct application of Lemma 3.

Thus we can “ignore” the second term when finding the exponent d in the models.
In both cases we can find the exponent d from actual runtime data.

Example 1: Model 1 and insertion sort

Assume that the asymptotic growth of an algorithm is modelled by F (n) = And

[Model 1]. and that we have data gathered from experimentation to evaluate F at
size n and again at size 10n:

F (10n) = (10n)d

= nd10d

= 10dF (n)

which shows that raising the input size by one order of magnitute increases the run-
time by d orders of magnitude. For instance, when d = 2 (the quadratic case),
increasing the size of the input by one decimal place increases the runtime by two
decimal places. Another way to phrase the result is as a ratio:

F (10n)

F (n)
=

(10n)d

nd
= 10d

which can be stated succintly as

d = log10(
F (10n)

F (n)
).

If we have actual timing data T (n) for an algorithm modelled by F we can use
the ratio to estimate d. Consider for example the insertion sort algorithm, and use
“comps”, the number of data comparisons, as a measure of runtime. We know from
theory that insertion sort is modelled by F and we wish to know the exponent d. We
have collected runtime data

T (1000) = 244853

T (10000) = 24991950



5

The ratio T (10000)/T (1000) is

T (10000)

T (1000)
=

24991950

244853

= 102.07 . . .

' 100±
= 102

yielding an estimate of d = 2, or quadratic runtime. Your eye might have noticed
this in the data itself: T (10000) is about 100 times T (1000).

Example 2 - Model 2 and List::Sort

The somewhat more complex Model 2 works in the same way. Assume that the
asymptotic growth of an algorithm is modelled by G(n) = And log n [Model d]. and
that we have data gathered from experimentation to evaluate G at size n and again
at size 10n:

G(10n)

G(n)
=

(10n)d log(10n)

nd log n

=
nd10d log(10n)

nd log n

=
10d log(10n)

log n

= 10d(
log 10 + log n

log n
)

= 10d(
1 + log n

log n
)

= 10d(1 +
1

log n
)

→ 10d

because 1
log n

→ 0 as n → ∞. As in the pure exponential case, this concliusion can

be stated in terms of logarithms:

d ' log10(
F (10n)

F (n)
).

Consider the bottom-up merge sort specifically for linked lists, implemented as
List::Sort. It is known from theory that the algorithm is modelled by G, and we have



6

collected specific timing data as follows:

T (10000) = 123674

T (100000) = 1566259

Then:
T (100000)

T (10000)
=

1566259

123674

= 11.66 . . .

' 10±
= 101

predicting d = 1. Note here that the data will not likely be enough to discriminate
between Models 1 and 2, so we must base that choice on other considerations.

4 Estimating the growth constant

We can refine an abstract model to a “concrete” version by finding the constant A
such that A×Model(n) more accurately predicts runtime. The goal is to make timing
data and the concrete model match as closely as possible:

T (n) ' A×M(n) for all n

At this point, we are assuming one of two “abstract” models for the runtime cost
of an algorithm:

F (n) = nd

G(n) = nd log n

and further we have estimated a value for the (integer) exponent d. Given that, we
want to calculate an estimate for the constant A such that T (n) = A ×M(n) for
either of our models M by solving one of the evaluated equations obtained from data
for A:

A =
T (n)

M(n)

where T is timing data and M is the growth model (F or G). In fact, we get different
estimates for A for each known pair (n, T (n)) in our collected data - a classic over-
constrained system. Ideally we would use a method such as least squares (linear
regression) to optimize a value for A using all of the collected runtime data. A decent
substitute would be to interpolate a value using the two data points we used to
estimate the exponent. Here are those calculations using the two examples already
given above.

Example 1 (continued)



7

We have this data for insertion sort:

T (1000) = 244853

T (10000) = 24991950

The data points give estimates of A as

A =
T (1000)

F (1000)
=

244853

10002

= 0.2485

A =
T (10000)

F (10000)
=

24991950

100002

= 0.2499

It is reasonable to settle for A = 0.25 to complete our concrete model:

M(n) = 0.25× n2 Concrete Model for insertion sort

This model can be used to estimate runtimes for values of n where actual data is
lacking. Note that the choice of the quadratic abstract model is based on theory and
known to be a correct abstract model for insertion sort.

Example 2 (continued)

We have this data collected for List::Sort:

T (10000) = 123674

T (100000) = 1566259

The data points give estimates of A as

A =
T (10000)

G(10000)
=

123674

10000 log 10000
=

123674

10000× 4

= 3.09185

A =
T (100000)

G(100000)
=

1566259

100000 log 100000
=

1566259

100000× 5

= 3.132518



8

It is reasonable to settle for A = 3.1 to complete our concrete model:

M(n) = 3.1× n log n Concrete Model for List::Sort

This model can be used to estimate runtimes for values of n where actual data is
lacking. Note that the choice of the linear×log abstract model is based on theory
and known to be a correct abstract model for List::Sort (a version of bottom-up
merge sort).

5 Cautions and Limitations

The reader was likely surprised that using the data as in Section 3 above is unable
to distinguish between the pure power model F and the model G that is a power
model multiplied by a logarithm. The reason at one level is simple: the quotients
G(10n)/G(n) and F (10n)/F (n) differ by 10d/ log n. The numerator 10d is a fixed
number, whereas the denominator log n grows infinitely large with n (albeit rather
slowly), so the difference gets ever smaller as n grows large. Given that data in-
evitably has some variation due to randomness, teasing out such a diminishingly fine
distinction is problematic.

Another observation the reader likely made is that we used the base 10 logarithm
instead of the more common base 2 logarithm. Any base could have been used. We
chose base 10 because multiplying by 10 is a visually simple process - just move the
decimal point - whereas if we used base 2 (and doubled our input size instead of
multiplying it by 10) the results are similar, except it is less easy visually to recognize
“approximately” 2n than “approximately” 10n.

Different base logarithmic functions have the same Θ class, so when discussing Θ
we are free to use any base log:

Lemma 5. loga x = loga b× logb x

which tells us that log2 n = Θ(log10 n), the first being a constant multiple of the
second, that constant being log2 10.

Finally, and most important, we need to keep in mind that using the techniques
of Section 3 are (1) only estimates - “estimate” being another word for “educated
guess” - and (2) dependent on a choice of model. The choice of model may also be
an educated guess, or it could be from theoretical considerations, or it could be a
simplification from known theoretical constraints.

As in all of science, a model is an approximation of reality.


