
July 25, 2018

Graphs 3: Networks

Undirected or directed graphs often model problems by enhancing themselves with
useful structural information, such as coloring of vertices (bipartite graphs and the
map coloring problem are two famous examples here) and adding weight or “cost”
to edges. This chapter concerns the latter cases, which loosely form the study of
(undirected or directed) networks. We will first consider the undirected case and look
at two algorithms for finding a minimum spanning tree (which is a spanning tree with
minimal total weight). Kruskal’s MST algorithm ties to the spanning tree algorithm
introduced as an application of the Partition/Union-Find ADT.

Prim’s MST algorithm starts us on a more general path that can be generalized
to directed networks yielding Dijkstra’s single-source-shortest-paths algorithm along
the way to the A* algorithm of AI fame.

Outside the Box

Best Lecture Slides PU1
PU2

Best Video UCB
Kruskal Demo whfreeman

Textbook deconstruction. This notes chapter corresponds roughly to
Chapter 23 and 24 in [Cormen et al 3e]. What is missing there and here
is a wide description of applications and accompanying illustrations. The
Sedgewick-Wayne slides from Princeton are excellent resources in general,
but particularly for applications and graphics. The Berkeley lectures start
out with material from breadth-first search, but there is also a nice discussion
of Kruskal in them.

Weighted graphs are good models for many kinds of systems and networks, such
as:

Transportation networks: roads, airline routes, UPS delivery routes

Transmission networks: pipelines, electrical grid, telephone, TV Cable, hydraulic
control systems

Communication networks: CPU chips, ethernet, cell phone wireless, Internet...
1

http://www.cs.princeton.edu/~rs/AlgsDS07/14MST.pdf
http://www.cs.princeton.edu/~rs/AlgsDS07/15ShortestPaths.pdf
http://www.youtube.com/watch?v=zFbq8vOZ_0k&feature=relmfu
http://bcs.whfreeman.com/fapp8e/content/cat_080/Kruskal.html

2

plus many applications in other areas where graphs model things like pixels in an
image and points in cluster analysis. We will study just a sample of important
algorithms, finding a spanning tree of a weighted graph whose total cost or weight
is minimized. Such a minimum spanning tree would, for example, represent the
lowest resistance power supply to a collection of points on a grid or the shortest
communication pathways among a set of nodes.

1 Weighted Graphs

A weighted graph is a directed or undirected graph G = (V, E) and a real-valued
function w : E → R defined on E. The value w(e) is called the weight of the edge
e. If S ⊂ E is any set of edges of G, the weight w(S) of S is the defined as the total
weight of the edges of S:

w(S) =
∑
e∈S

w(e).

When the subset is a path P ⊂ E, the weight w(P) is often called the length of P .
Section 2 concerns minimum-weight spanning trees of weighted undirected graphs.
Section 3 concerns shortest (minimum-weight) paths in weighted directed graphs.

Before looking at the runtime of MST algorithms, here are a couple of observations
that simplify statements of runtime for connected graphs

(1) If G = (V, E) is a connected graph, then O(|V |) ≤ O(|E|).
(2) If G = (V, E) is a connected graph, then Θ(log |V |) = Θ(log |E|).

(1) follows from the fact that |V | ≤ 1+|E| and (2) from the observation that |V |−1 ≤
|E| ≤ |V |2.

2 Minimum Spanning Trees

Suppose G = (V, E) is an undirected graph and w : E → R is a weight function for
G. A spanning tree of G is a subgraph T that is connected and has no cycles (i.e.,
a tree that touches all of the vertices of G). A minimum spanning tree [MST] is a
spanning tree whose edge set has minimal weight among all spanning trees of G: if
T ′ is any other spanning tree, then w(T) ≤ w(T ′)

We discussed spanning trees briefly in Section 5.2 of Disjoint Sets Union/Find
Algorithms as an application of the Partition data structure, and again in Section 4
of Graphs 1: Representation, Search, and Traverse as applications of graph survey
algorithms. Here again is the Spanning Tree Algorithm:

3

Spanning Tree Algorithm [STA]
given: Graph G = (V,E)
use: Queue q of edges in E // in any order

Partition p // connectivity bookkeeping

initialize p(|E|) // partition initialized to singletons
initialize F = empty // forest initialized to vertices
for each edge e=[x,y] in q
{
if (!p.Find(x,y)) // x and y are in different trees in F
{
add e to F // joins the two trees in F
p.Union(x,y) // records the join in the partition

}
}
output (V,F)

We showed that

STA Runtime ≤ O(|E| log∗ |V |+ |E| ×ARQ)

which reduces to

STA Runtime ≤ O(|E| log∗(|V |))

if we make no restrictions on the order maintained by the queue on the edges, where ARQ is
the amortized runtime cost of the queue operations. Recall that log∗(n) ≤ 4 for n < 21024,
which means in practical terms that the STA runtime is O(|E| ×ARQ).

2.1 Kruskal’s MST Algorithm

Kruskal’s algorithm for finding a MST for a weighted graph builds on the STA algorithm
by the additional assumption that we consider the edges in order of increasing weight:

Kruskal’s Minimum Spanning Tree Algorithm [MSTA]
given: WeightedGraph G = (V,E),w
use: Queue q of edges in E, sorted by increasing weight

Partition p // connectivity bookkeeping

initialize q; // ARQ1
initialize p(|V|)
initialize F = empty
while (!q.Empty())
{

4

// loop invariant: (V,F) contains no cycles
[x,y] = q.Front(); // ARQ2
q.Pop(); // ARQ3
if (!p.Find(x,y))
{
F = F union {[x,y]}; // add edge to forest
p.Union(x,y); // record increased connectivity

}
}
output (V,F)

Because the STA was shown to produce a spanning tree for any connected graph and any
ordering of edges, the same is true for Kruskals MSTA. The question remaining is one of
minimality, which is quite plausible given that we consider the edges in order of increasing
weight.

Suppose that F as exported from Kruskal’s MSTA is not minimal among spanning trees.
Then some other MST F1 has weight less than that of F. Let e be the first least cost edge
in F1 that is not in F. Then up to considering e, F would be the same as F1, because at
each stage the existence of F1 implies acceptance of the edges for F.1 But then F would add
e because it meets the criteria for inclusion, contradiction the assumption and proving the
correctness of Kruskal’s MSTA. �

The runtime of Kruskal’s MSTA is O(|E| log∗ |V |+ |E| ×ARQ), and the bound is tight
if ARQ dominates log∗ |V |. In order to consider the edges in order of increasing weight,
we have prepared the queue by increasing weight, which gives the following estimates for
ARQ.

ARQ1 queue initialization Θ(|E| log |E|)
ARQ2 q.Front() Θ(1)
ARQ3 q.Pop() Θ(1)

yielding the estimate for O(ARQ) to be O(|E| log |E|). Using the observations (1) and
(2) above, we see that O(ARQ) = O(|E| log |V |). Putting this estimate together with
the general estimate for STA yields the following estimate for the asymptotic runtime of
Kruskal’s MSTA:

Runtime of KMSTA ≤ O(|E| log |V |).

This runtime can be improved by using a faster sort algorithm to prepare the queue.
Perhaps the fastest would be to use a numerical (non-comparison) sort such as byte sort to

1This argument assumes no two edges have the same weight. The proof in the general case is
somewhat more elaborate. See Textbook.

5

initialize the queue to be completely sorted by increasing weight.2 Making this substitution
yields an improved runtime estimation table:

ARQ1 queue initialization Θ(|E|)
ARQ2 q.Front() Θ(1)
ARQ3 q.Pop() Θ(1)

and a runtime estimate of O(|E| log∗ |V |). These runtimes are summarized as follows:

Theorem 1c. The runtime of Kruskal’s MST Algorithm, using a Θ(n log n)-time compar-
ison sort to prepare the edge queue, is O(|E| log |V |).
Theorem 1n. The runtime of Kruskal’s MST Algorithm, using a linear-time sort to prepare
the edge queue, is O(|E| log∗ |V |).

In practical terms, this last runtime is Θ(|E|).

2.2 Prim’s Algorithm

Prim takes a similar approach - build the MST by greedily adding edges meeting an ac-
ceptance criterion. The difference is that Prim maintains the property that the growing
collection of edges is acyclic and connected, so that it is always a tree.

Prim’s Minimum Spanning Tree Algorithm [MSTA]
given: WeightedGraph G = (V,E),w
use: PriorityQueue q of DIRECTED edges in E

start vertex s
initialize W = {s} // vertices of Prim tree
initialize T = empty // edges of Prim tree
for each neighbor n of s,
q.Push((s,n)); // ARQ1

while (!q.Empty())
{
// loop invariant 1: (W,T) contains no cycles
// loop invariant 2: (W,T) is connected
(x,y) = q.Front(); // ARQ2
q.Pop(); // ARQ3
if (y is not in W)
{
W = W union {y};
T = T union {[x,y]};

2This would require assuming edge weights are integers, or at least that there is a convenient
O(|E|) algorithm monotonically mapping edge weights to integers.

6

for each neighbor z of y,
if (z is not in W)
q.Push((y,z)); // ARQ4

}
}
output (W,T)

Many descriptions of Prim’s algorithm use a priority queue of vertices. We use a priority
queue of directed edges, which amounts to the same thing, except that edges have a built-in
priority w(e). In this way we do not have to invoke a key (priority) change in the queue
once an edge has been inserted. We could as easily think of the queue as containing the
“to” vertex of the directed edge. (See Section 3.5 below for more discussion of this topic.)

It is straightforward to verify loop invariants (1) and (2) and conclude that (W,T) is a
tree. The two remaining issues are spanning and minimality.

Suppose some vertex of G is not in W. Then there must be an edge with one end in W and
the other not. Let e = [x,y] be such an edge with minimal weight. Then when x is added
to W, the edge e is added to the priority queue. At some future time, e will pass the test
and be added to T and at the same time y will be added to W, a contradiction. Therefore
(W,T) spans G.

Suppose that W1,T1 is a MST with weight less than W,T. Let e be the least-weight edge
in T1 that is not in T. Then up to considering e the edges of T are the same as those of T1.
But then e would be at the front of the control queue, so e would be added to T. �

Runtime of Prim’s MSTA using comparison-based O(n log n) priority queue is estimated
in the following table:

ARQ1 q.Push(e) O(log q.size)
ARQ2 q.Front() Θ(1)
ARQ3 q.Pop() O(log q.size)
ARQ4 q.Push(e) O(log q.size)

Aggregating the cost of all queue operations yields O(|E| log |E|) = O(|E| log |V |) runtime,
the same as that of Kruskal (Theorem 1c). Though Prim is not using a Partition data
structure, that small superlinear component would be masked by the queue runtime in any
case. Prim’s queue operational requirements are not readily available from a simple initial
sort, so the numerical sort optimization we used to reduce Kruskal’s runtime (Theorem 1n)
is not available for Prim. However, Prim’s algorithm is a harbinger of other increasingly
advanced search algorithms.

7

3 Shortest Paths

The context for this section is weighted directed graphs. Assume that G = (V,E) is a
directed graph with weight function w : E → R.

3.1 Weighted Cycles

In the various search algorithms studied so far, including Breadth-First and Depth-First
search in either directed or undirected graphs and MST algorithms in undirected graphs,
we ensured that cycles were avoided by some mechanism that guaranteed the final result
was acyclic by simply never visiting a vertex more than once.

When designing algorithms for discovering shortest paths, in contrast, a vertex may be
visited more than once while incrementally minimizing shortest path distances, and this
introduces the possibility of traversing a cycle during the run of the algorithm. Consider
the following weighted directed graph G2:

0: <2,1> <3,1>
1: <2,1> <3,1> digraph G2 in adjacency list representation
2: <1,1> <3,1>
3: <1,-3>

Note the directed path from v0 to v3: P = {v0, v2, v3} with total weight 1 + 1 = 2. But
also note the cycle C = {v1, v2, v3, v1} with total weight 1 + 1 + (−3) = −1. And finally,
note that P ∪ C = {v0, v2, v3, v1, v2, v3} is another path from v0 to v3 with total weight
1 + 1 + (−3) + 1 + 1 = 1. In fact we could splice as many copies of C into P as we like, say
k copies, to get a path of total weight 1 + 1− k = 2− k.

Lemma 1. A minimum weight path from x to y cannot contain a negative-weight cycle.

Proof. Suppose P is a path from x to y that contains a negative-weight cycle L. Then
P ′ = P ∪ L is another path from x to y that has weight w(P ′) = w(P) + w(L) < w(P).
Therefore there is no minimum weight path from x to y. �

Lemma 2. A minimum weight path from x to y cannot contain a positive-weight cycle.

Proof. Suppose P is a path from x to y that contains a positive-weight cycle L. Then
P ′ = P − L is another path from from x to y with weight W (P ′) = w(P)− w(L) < w(P),
so P does not have minimum weight. �

If P is a path and some vertex along P belongs to a zero-weight cycle L, then we could
add or subtract L to P without changing the path weight, so a minimum weight path

8

might contain a zero-weight cycle. However, it makes sense to eliminate that possibility by
insisting that a minimum-weight path be simple - that is, contain no redundancies in its
vertex set.

3.2 Relaxation

Minimum-weight path algorithms maintain two entities associated with a vertex x: an
evolving estimate d[x] of the minimum path distance D(s, x) from the start vertex s to x
and a predecessor vertex p[x] for x in a minimum-weight path. At the conclusion of the run
of the algorithm, d[x] = D(s, x) and p[x] reconstructs a minimum-weight path. However
during the run of the algorithm, both d[x] and p[x] may be revised a number of times.

Suppose for example that we have an estimate of d[x] for the distance from a starting
vertex s to x and at some point we discover an edge e = (x, y). Then a path from s to y
can be pieced together from a shortest path from s to x and the edge e, so that the path
distance from s to y can be no greater than d(x) + w(e). If we discover that the estimate
d[y] > d[x] + w(e) then we revise the estimate for d[y] and modify the current search path
to y in a process called relaxation:

Relax(x,y,w) // e = (x,y), w is the weight function
if (d[x] + w(e) < d[y])
{
d[y] = d[x] + w(e); // update path distance estimate d[y]
parent[y] = x; // update path to go through x

}

Dijkstra, Bellman-Ford, and A* all use relaxation to refine paths during the search.3

Another routine that single source shortest path algorithms have in common is the way
search is initialized:

Initialize-single-source (G,s)
for each vertex x of G
{
distance[x] = infinity
parent[x] = NULL

}
d[s] = 0;

Dijkstra, Bellman-Ford, and A* all use this initialization procedure.

3In breadth-first search, we did not need relaxation to adjust the path weight because weight
equals edge count in a graph or digraph whose edge weights are all 1.

9

3.3 Single-Source Shortest Path Algorithms

All of the algorithms in this section solve the Single-Source Shortest-Path [SSSP] problem,
which can be posed as follows: Given a weighted directed graph G = (V,E), w and a starting
vertex s ∈ V , construct functions d : V → R and p : V → V ∗ such that

(1) d(x) is the length of a shortest path from s to x; and
(2) p(x) 6= NULL is the predecessor of x in a shortest path from s to x

where V ∗ = V ∪ {NULL}. The path P (x) reconstructed using p is a simple path, and the
totality of paths P (x) form a tree rooted at s. Moreover, p[x] 6= NULL iff x is reachable
from s. An SSSP algorithm solves the SSSP problem.

3.4 Dijkstra’s SSSP Algorithm

The following Single-Source Shortest-Path algorithm was published by Edger Dijkstra in
1959. Assume that G = (V,E) is a directed graph with non-negative weight function
w : E → [0,+∞).

Dijkstra’s SSSP Algorithm
Input: weighted digraph (G,w), w is non-negative

source vertex s
Uses: Set X of vertices

Initialize-single-source (G,s);
Initialize X = V;

while (X is not empty)
{
x = vertex in X with minimal distance d;
X.Remove(x);
for each vertex y adjacent from x
{
Relax(x,y,w);

}
}

10

Lemma 3. In Dijkstra’s SSSP algorithm, when a vertex x is removed from the set X, d[x]
is the minimal path distance from s to x and p[] reconstructs a path of weight d[x] from s
to x.

Proof. We use induction on the number of “black” vertices - those that have been removed
from the set X. Since the first vertex removed is s and d[s] = 0, p[s] = NULL the base
case is verified.

For the inductive step, assume the result is true for all current black vertices, and con-
sider a vertex y in X with minimal d[y]. Suppose that d[y] is not the minimum path
distance of y, and let P be a minimal weight path from s to y. Then w(P) < d[y]. Let x be
the penultimate vertex on P and let P1 be P with the edge (x,y) removed. Then w(P1) =
w(P) - w(x,y) <= w(P) (because w(x,y) >= 0). Note also that d[x] <= w(P1), so that
d[x] < d[y], hence x is black. In summary: x is black and

d[x] + w(x,y) <= w(P) < d[y].

But x being black means that d[y] would have been updated to d[y] = d[x] + w(x,y)
when x was removed from X, a contradiction. Therefore d[y] is the minimal path distance
of x.

Note also that when y is removed from X, p[y] = x and d[y] = d[x] + w(x,y). In-
voking the induction hypothesis, p[] reconstructs a minimum-weight path Q1 from s to x.
Note that the path Q obtained by appending (x,y) to Q1 is the path from s to y constructed
by p[], and that

w(Q) = w(Q1) + w(x,y) = d[x] + w(x,y) = d[y].

Therefore Q is a minimum-weight path from s to y. �

The original version of the algorithm used an array as the set X. There are various
strategies one could use to implement the first two lines of the while loop:

(1) Use sequential search in the array to find x and “leapfrog” removal.
(2) Sort the array, use binary search to find x, and leapfrog removal.
(3) Replace the array with a linked list, sequential search, and unlink-to-

remove.

All of these result in O(|V |) cost for the find and remove steps, inside a loop that runs |V |
times. Therefore this version of Dijkstra’s SSSP algorithm runs in time O(|V |2).

Using modern priority queue technology, we can improve the algorithm runtime for all
but the most densely connected digraphs.

11

Dijkstra’s SSSP Algorithm v2
Input: weighted digraph (G,w)

source vertex s
Uses: Priority queue Q of vertices with priority d[]

Vector<bool> finished[]

Initialize-single-source (G,s);
Initialize finished to false
Initialize Q = V with priority d
while (!Q.Empty())
{
x = Q.Front();
Q.Pop();
if (finished[x]) continue;
for each vertex y adjacent from x
{
Relax2(x,y,w,Q);

}
finished[x] = true;

}

with the following refinement of the relaxation process:

Relax2(x,y,w,Q) // e = (x,y), w is the weight function
{
if (d[x] + w(e) < d[y])
{
d[y] = d[x] + w(e); // update path distance estimate d[y]
parent[y] = x; // update path to go through x
Q.Push(y,d[y]); // (re)insert y in Q

}
}

Note that the queue may contain several copies of a vertex with differing priorities. Only
the highest priority entry is processed through the Relax loop. A functionally equivalent
version keeps fewer vertices in memory (fewer “gray” vertices) and has a smaller queue:

Dijkstra’s SSSP Algorithm v3
Input: weighted digraph (G,w)

source vertex s
Uses: Priority queue Q of vertices with priority d[]

Initialize-single-source (G,s);
Q.Push(s);
while (!Q.Empty())

12

{
x = Q.Front();
Q.Pop();
for each vertex y adjacent from x
{
Relax3(x,y,w,Q);

}
}

Relax3(x,y,w,Q) // e = (x,y), w is the weight function
{
if (d[y] == infinity) // (or parent[y] == NULL); y is a white vertex
{
d[y] = d[x] + w(e); // estimate path distance d[y]
parent[y] = x; // define path from s through x to y
Q.Push(y); // insert y into Q; y is now a gray vertex

}
else // y is a gray vertex
if (d[x] + w(e) < d[y])
{
d[y] = d[x] + w(e); // update path distance estimate d[y]
parent[y] = x; // update path to go through x
Q.DecreaseKey(y,d[y]); // upgrade y’s place in Q

}
}

Note that Lemma 3 applies to all three versions of Dijkstra’s algorithm, because it makes
no structural constraints on the control set.

Theorem 2 (Correctness of Dijkstra SSSP). Suppose (G, w) is a weighted directed
graph with w(e) ≥ 0 for all edges e of G. Let s be a vertex of G and run Dijkstra’s SSSP
algorithm (any version). Then for any vertex x that is reachable from s, (1) d(x) is the
weight of a shortest path from s to x and (2) p reconstructs a shortest path from s to x.

Proof. Let x be a reachable vertex, that is, a vertex with a path P from s to x. Then x
is discovered (placed in the control set X or Q) no later than when the penultimate edge
(w, x) of P is traversed. Therefore x is eventually removed from the control set. By Lemma
3, d(x) is the weight of a shortest path from s to x after x has been removed from the
control set (X or Q) and p reconstructs a shortest path from s to x. �

Theorem 3 (Runtime of Dijkstra’s SSSP). Suppose (G, w) is a weighted directed
graph with w(e) ≥ 0 for all edges e of G. Let s be a vertex of G. The runtime of Dijkstra’s
SSSP algorithm is:
Version 1: O(|V |2)

13

Version 2: O(|E| log |V |)
Version 3: O(|E| log |V |).

Proof. The following table captures the cost of various components of the algorithm:

operation v1 v2 v3
initialize X |V | |V | 1
find light edge |V | log |E| log |E|
process edge |V | log |E| log |E|
aggregate |V | × |V | |E| × log |E| |E| × log |E|

Aggregating over the main loop which has length |V | and the processing of edges yields
the counts at the bottom row of the table. Substituting log |E| = log |V | completes the
proof. �

3.5 Priority Queue Technology

Both the Prim and Dijkstra algorithms use priority queues to keep track of vertices pri-
oritized by current value of d[x]. The implementation details of the algorithms and the
priority queues are bound together, and the nuances are subtle but also important. We
explore these details here.

3.5.1 Profligate Queue Strategy

This strategy uses a standard heap-based priority queue in the algorithm and the following
version of Relax:

Relax-Profligate(x,y,w,Q)
{
if (d[x] + w(e) < d[y])
{
d[y] = d[x] + w(e);
parent[y] = x;
Q.Push(y,d[y]); // insert y with priority d

// previous entry remains, but ignored
}

}

The typical priority queue API does not have an efficient (or public) way to locate and/or
remove an element that is somewhere in the queue. This strategy just doesn’t bother and
leaves the obsolete entry in the queue. Dijkstra’s SSP would just add a check to detect
black (obsolete) vertices when they appear at the front of the queue and remove them.

14

This strategy has the advantages of simpler code and the use of standard priority queue
technology. The disadvantage is the control queue has worst-case size Θ(|E|).

3.5.2 Frugal Queue Strategy

In order to keep the size of the control queue as small as possible, we need to upgrade the
status of vertices already in the queue with a change of priority key value and a restructure
operation that moves the entry to a new location in the queue based on its new priority.
This strategy uses the following version of Relax:

Relax-Frugal(x,y,w,Q)
{
if (d[y] == infinity) // y is a white vertex
{
d[y] = d[x] + w(e);
parent[y] = x;
Q.Push(y,d[y]);

}
else // y is a gray vertex
if (d[x] + w(e) < d[y])
{
d[y] = d[x] + w(e);
parent[y] = x;
Q.DecreaseKey(y,d[y]); // adjust y’s place in Q

// based on changed priority d[y]
}

}

The new feature is a DecreaseKey operation in the (min) priority queue, and also an implied
ability to directly access a location in the priority queue to make the key change. The
DecreaseKey operation is easily implemented as long as we know where to decrease the key.

The priority queue would need to maintain an indexing of vertices to their location in the
queue, possibly a vector index such that index [x] is the location of x in the underlying
heap. This mapping would need to be updated in parallel with the heap, so that it remains
current. Then the DecreaseKey operation can be implemented as

DecreaseKey(x,d)
{
index_[x]->key_ = d; // change key value in heap
g_push_heap(heap_.Begin(), 1+index_[x]); // fix range [Begin,index[x]]

}

15

where heap is the underlying heap structure.

This enhanced priority-queue-with-locator-index has the same asymptotic runtime as a
standard priority queue, but there is significantly more overhead involved in maintaining
the locator index. The payoff is reduced size of the queue, which also affects runtime of the
queue operations. The queue size is O(|V |) worst case.

3.6 Bellman-Ford SSSP Algorithm

The algorithms studied so far in this chapter, Spanning Tree, Kruskal, Prim, and Dijkstra,
have all been greedy algorithms. Bellman-Ford is an SSSP algorithm that is classifiable as
a dynamic programming algorithm, with optimal substructure. It is also an algorithm that
does not require the assumption of non-negative weights and can detect negative-weight
cycles (which make the SSSP problem unsolvable).

Bellman-Ford SSSP Algorithm

returns: BOOL
// true iff G has no negative-weight cycles

Initialize-single-source(G,s)
repeat (|V| - 1) times
{
for each edge (x,y)
{
Relax(x,y,d);

}
}
for each edge (x,y)
if (d[y] > d[x] + w(x,y))
return false;

return true

The runtime of Bellman-Ford is straightforward to estimate. Initialization requires |V |
steps. The main loop structure is a nested pair of fixed-length loops of lengths |V | and |E|,
respectively, giving |V | × |E| steps. And the closing loop requires |E| steps. The runtime is
therefore Θ(|V ||E|).

Theorem 4. Assume G, w is a weighted directed graph and s is a vertex of G. Let b be
the return value after running the Bellman-Ford algorithm on G, w, s. If b is false then G
has a negative-weight cycle reachable from s. If b is true then d, p solves the SSSP problem
in G, w starting at s.

16

4 Introduction to Algorithm A*

Algorithm A* was introduced by Peter Hart, Nils Nilsson and Bertram Raphael in 1968.
It has been in heavy use ever since in both research and practical applications. There is
at least one web site maintained specifically to explain algorithm A* and keep up with its
evolving applications and descendants.

Algorithm A* uses two notions of distance between vertices x, y in a weighted graph:
actual (path) distance as the weight of a shortest path from x to y, and heuristic distance,
defined by a distance estimator heuristic. Let D(x, y) denote the path distance from x to
y, that is, the weight of a shortest path from x to y, where path weight is defined to be the
total weight of the path, and assume we have a heuristic distance estimator H(x, y). We
will further assume that the heuristic function H satisfies both of the following properties:

(1) H is admissible iff for any two vertices x, y ∈ V , H(x, y) ≤ D(x, y).
(2) H is monotonic iff for any edge e = (x, y) and any vertex z, H(x, z) ≤ w(e) + H(y, z).

That is, H never overestimates distances and H obeys a “triangle inequality”.4 From (2)
we can prove:

Lemma 4 (Admissibility). If H is monotonic and H(x, x) = 0 for all x then H is
admissible.

Proof. Let P = {x, v1, v2, . . . , vk−1, y} be a shortest path from x to y. Then

H(x, y) ≤ w(x, v1) + H(v1, y)

≤ w(x, v1) + w(v1, v2) + H(v2, y)

≤ w(x, v1) + w(v1, v2) + w(v2, v3) + H(v3, y)
≤ . . .

≤
∑
e∈P

w(e) + H(y, y)

= w(P) + H(y, y).

Observing that H(y, y) = 0 and w(P) = D(x, y) completes the proof. �

We now set up the notation for Algorithm A* as it is traditionally done: Suppose s is
a start vertex and goal is a goal vertex, and define

g(x) = D(s, x) = path distance from start to x
h(x) = H(x, goal) = heuristic estimate of distance from x to goal
f(x) = g(x) + h(x) = A* search priority

4We use the notation of directed edges, but the context can be either directed or undirected.

17

We will use the following example to motivate and illustrate algorithm A*: The graph
represents a roadmap, with vertices being cities or other road intersections and edges being
road segments directly connecting two vertices. The distances are w(x, y) = the weight of
the road segment directly connecting x to y; D(x, y) = the shortest roadway distance from
x to y; and H(x, y) = the straight-line (euclidean) distance between x and y. We have a
start city s and a destination city goal and wish to calculate the driving distance from s to
goal. A* sets up as follows:

vertex x city
edge e = (x, y) road between cities x and y
w(e) length of road between x and y
g(x) D(s, x) = shortest roadway distance from s to x
h(x) H(x, goal) = straight-line distance from x to goal
f(x) D(s, x) + H(x, goal)

The euclidian distance function is admissible and monotonic, so our assumptions are met
by the example. Note in passing that H(x, y) is easily calculated directly from GPS data,
whereas w(x, y) requires a database of road segment lengths and D(x, y) can be calculated
but is not readily available.

Algorithm A* uses the same search pattern as that of Prim and Dijkstra, using f(x) as
priority in the queue. The queue strategy can be either profligate or frugal. (See section
5.5.) The queue is called the OPEN set in the following statement of the algorithm. The
CLOSED set consists of the black vertices with which the algorithm is finished. The white
vertices have not yet been encountered.

Algorithm A*
find a shortest path from start to goal

Uses: ordered set OPEN of vertices, (partially) ordered by F
cost functions G, H, F = G + H

// relating A* terminology to BFS vertex color scheme
OPEN = set of gray vertices
CLOSED = set of black vertices

initialize: for each x, visited[x] = false, parent[x] = NULL, color[x] = white

visited[start] = true;
parent[start] = NULL;
color[start] = gray;
OPEN.Insert(start,F(start));

18

while (!OPEN.Empty())
{
f = OPEN.Front();
if (f == goal) break;
for each adjacent n from f
{
cost = G(f) + w(f,n);
if (color[n] = white)
{
G(n) = cost;
F(n) = cost + H(n);
parent[n] = f;
OPEN.Insert(n,F(n));
color[n] = gray;

}
else if (color[n] = gray)
{
if (cost < G(n)) // path through n is not optimal
{ // Relax
G(n) = cost;
F(n) = cost + H(n);
parent[n] = f;
OPEN.DecreaseKey(n, F(n));

}
}
else // color[n] = black
{
// no action needed when H is admissable and monotonic
// otherwise it is possible n needs to be reconsidered

}
}
OPEN.Remove(f);
color[f] = black;

}
if (f == goal)
reconstruct reverse path from goal to start by following parent vertices

else
no solution found

Theorem 5 (Correctness of A*). Using an admissible monotonic heuristic, if there is
a path from start to goal, A* will always find one with minimum weight.

