
August 17, 2018

Hash Table Analysis

Assume that we have a hash table structured as a vector of lists, resolving collisions by
sequential search of buckets, as in the generic hash table template HashTable<K,D,H>
distributed in the file hashtbl.h. Let n denote the number of items in the table [table
size] and b denote the number of buckets (or slots) in the table implementation. At
this point we make no assumptions about the hash function.

Proposition 1. Denote by e(k) the expected number of buckets of size k and by
p(k) the probability a given bucket has exactly k items. Then

e(k) = bp(k).

Proof. e(k) = expected value = (frequency) × (probability) = b× p(k). �

Proposition 2. Let p(k) denote the probability a given bucket has exactly k items.
Then the expected bucket size is

n∑
k=0

kp(k) =
n

b
.

Proof. The expected value of bucket size is the sum of (the expected value of size of
buckets of size k) × (probability a bucket has size k), where

expected value of size of buckets of size k = k duh

probability a bucket has size k = p(k) definition of p(k)

Substituting, we get the formula on the left for expected value of bucket size. On
the other hand, there are n items in b buckets, so the average bucket size is n/b, the
formula on the right. �

Proposition 3. Let a[k] denote the actual number of buckets of size k. Then the
size of the table is

n =
∑
k≥0

ka[k].

Proof. The number of items in buckets of size k is k × a[k]. Since each item is in
at most one bucket, the sum on the right does not overcount the number of items.
Since each item is in at least one bucket, the sum on the right does not undercount
either. So the sum must be the number n of items. �

1



2

Remark. The smallest safe upper index for the sum in the formula above is the
maximum bucket size, because there are no items in buckets with size greater than
the maximum.

We could also say that n is the smallest safe upper index for the sum, if we want a
data independent answer. n is attained in the most dismal case where all items end
up in the same bucket, which would make a[i] = 0 for i < n and a[n] = 1, reducing
the sum to n = n× a[n].

Assume now that we have assigned keys to buckets randomly, so that each key has
a uniformly likely probability of being assigned to a bucket. (This is called “simple
uniform hashing” in the textbook - see page 259.)

Proposition 4. The probability that a given bucket is empty is

p(0) =

(
b− 1

b

)n

.

Proof. The probability that one particular item is not in a given bucket is the
probability it is in some other bucket. There are b buckets in total, so there are b− 1
other buckets. Thus the probability that one particular item is not in a given bucket
is q = (b−1)/b. The probability that two particular items are both not in that bucket
is the product q × q = q2. Reasoning by induction, it follows that the probability
that k particular items are not in a given bucket is qk−1 × q = qk. Finally, then, the
probability that none of the n items is in the given bucket is qn. �

Proposition 5. Assume simple uniform hashing and 0 ≤ k ≤ n. The probability
that a given bucket has size k is

p(k) =

(
n

k

)(
1

b

)k (
b− 1

b

)n−k

.

Proof. This is a refinement of the argument above. Note that the probability that
an item is in a given bucket is p = 1/b and the probability it is not in that bucket is
q = 1− p = (b− 1)/b. If we have a particular choice of k items, the probability that
exactly these items are in a given bucket is pkqn−k, because those k items are each in
the bucket, accounting for the pk factor, and the remaining n−k items are not in the
bucket, accounting for the qn−k factor. There are

(
n
k

)
independent choices of exactly

k items to put in the bucket, so the probability that the given bucket has size k is
the sum of pkqn−k over all these independent ways of selecting k items:

(n
k)∑

i=1

pkqn−k =

(
n

k

)
pkqn−k

�



3

Proposition 6. Assume simple uniform hashing. The bucket size distribution
{e(k)} satisfies the iterative calculation (recurrence):

e(0) = b

(
b− 1

b

)n

initial condition

e(k) =

(
n− k + 1

k

) (
1

b− 1

)
e(k − 1) for k = 1 . . . n.

e(k) = 0 for k > n.

Proof. We use the notation established above: p = 1/b, q = (b − 1)/b. Note that
p + q = 1 and p/q = 1/(b− 1).

First the initializer:

e(0) = bp(0) Proposition 2

= b

(
b− 1

b

)n

Proposition 4

Then the recurrence:

e(k)

e(k − 1)
=

bp(k)

bp(k − 1)
Proposition 2

=
p(k)

p(k − 1)
cancel b

=

(
n
k

)
pkqn−k(

n
k−1

)
pk−1qn−k+1

Proposition 5

=
(n− k + 1)p

kq
applying definitions and simplifying

=

(
n− k + 1

k

) (
1

b− 1

)
substituting p/q = 1/(b− 1)

Multiplying by e(k − 1) completes the proof for the iterative formula. Finally, note
that no bucket can have more than n items, so e(k) = 0 when k > n. �



4

Hash Table Analysis Algorithms. Assumptions: n = table size, b = number of
buckets

Analysis of a specific hash table, with a specified hash function, number of buckets,
and loaded data set, can be an important feature of hash table implementations,
simply due to the variability of performance of hashing, particularly on non-random
data where a bias in the hashing specified may exist. The results above provide
background needed to devise algorithms required for such an analysis.

Algorithm 1: Maximum Bucket Size

Runtime: Θ(b) + cost of calls to size = Θ(b + n) typical

unsigned long MaxBucketSize ()

{

unsigned long max = 0

for (size_t i = 0; i < b; ++i)

{

s = size of bucket i

if (max < s)

max = s

}

return max;

}

Algorithm 2: Actual Bucket Size Distribution

Runtime: Θ(b + n)
void ActualBucketSizeDistribution (Vector <unsigned long >& sizeCount)

{

// calculate and set size of distribution

m = MaxBucketSize ();

sizeCount.SetSize (1+m,0);

// calculate distribution

for (size_t i = 0; i < b; ++i)

++ sizeCount[size of bucket i];

}

Algorithm 3: Number of Non -Empty Buckets

Runtime: 1 + cost of buck size distribution = Θ(b + n) typical

Number of non -empty buckets = b - sizeCount [0];



5

Algorithm 4: Simple Uniform Hashing Bucket Size Distribution

Runtime: Θ(n)
void ExpectedBucketSizeDistribution (Vector <real >& expdCount)

{

expdCount.SetSize (1+n ,0.0); // set size of distribution

expdCount [0] = (b-1)/b;

expdCount [0] = pow(expdCount [0],n-1);

expdCount [0] *= (b-1);

for (size_t k = 1; k < 1+n; ++k)

expdCount[k] = ((n-k+1)/((b-1)*k)) * expdCount[k-1];

}

Remark. The distribution calculated in Algorithm 4 is a binomial distribution, so
named because of the relationship with binomial choice and the expansion of the
binomial (A + B)n [with A = b and B = (b− 1)/b)]:

(A + B)n = An + nAn−1B + ... +

(
n

k

)
AkBn−k + ... + Bn

In this context, because the 1
b

factors are much smaller than the b−1
b

factors, it is
very closely approximated by the Poisson distribution.1 Algorithm 4 calculates many
more terms than would normally be useful in practice - most of them are so small
they equate to zero in float or double representation. It is therefore usually a waste
of space and time to allocate the entire vector of size 1 + n and calculate all of its
elements. In the case here, it is more prudent to allocate space of size 1 + m and, if a
few more values are needed, calculate them on the fly (continuing the same iterative
process, starting at the (1 + m)th value expdCount[m]) without storing them.

1See entries in Wikipedia and NIST Handbook.


