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Graphs 1: Representation, Search, and Traverse

This notes chapter begins with a review of graph and digraph concepts and terminol-
ogy and introduces the adjacency matrix and adjacency list representation systems.
Then we study the depth-first and breadth-first search processes and elaborations on
them, including DFS and BFS traversals and the ultimate Survey algorithms.

Outside the Box

Best Lecture Slides PU
Best Video UCB
Demos DFSurvey (undirected) LIB/area51/fdfs ug.x

DFSurvey (directed) LIB/area51/fdfs dg.x

BFSurvey (undirected) LIB/area51/fbfs ug.x

BFSurvey (directed) LIB/area51/fbfs dg.x

Textbook deconstruction. This notes chapter corresponds roughly to
Chapter 22 in [Cormen et al 3e], which covers graph (and digraph) concepts
and representations and the basic depth- and breadth-first search processes.
The notation G = (V, E) is common to the text, the video linked here, and
these notes.

1 Definitions, Notation, and Representations

Graphs and directed graphs are studied extensively in the pre-requisit math se-
quence Discrete Mathematics I, II [FSU::MAD 2104 and FSU::MAD 3105], so these
notes will not dwell on details. We will however mention key concepts in order to
establish notation and recall familiarity. Where there may be slight variations in
terminology, we side with the textbook (see [Cormen::Appendix B.4]). Assume that
G = (V, E) is a graph (directed or undirected).

1.1 Undirected Graphs - Theory and Terminology

• Undirected Graph: aka Ungraph, Bidirectional Graph, Bigraph; Graph
• Vertices, vSize = |V | = the number of vertices of G
• Edges, eSize = |E| = the number of edges of G.
• Adjacency: Vertices x and y are said to be adjacent iff [x, y] ∈ E.
• Path from v to w: a set {x0, . . . , xk} of vertices such that x0 = v, xk = w, and

[xi−1, xi] is an edge for i = 1, . . . , k. The edges [xi−1, xi] are called the edges
of the path and k is the length of the path. A path is simple if the vertices
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defining it are distinct - that is, not repeated anywhere along the path. If p
is a path from v to w we say w is reachable from v.

• Connected Graph: for all vertices v, w ∈ V , w is reachable from v.
• Cycle: A path of length at least 3 from a vertex to itself.
• Acyclic Graph: Graph with no cycles
• Degree of a vertex v: deg(v) = the number of edges with one end at v.

1.2 Directed Graphs - Theory and Terminology

• Directed Graph: aka Digraph
• Vertices, vSize = |V | = the number of vertices of G
• Edges, eSize = |E| = the number of (directed) edges of G.
• Adjacency: Vertex x is adjacent to vertex y, and y is adjacent from x, iff

(x, y) ∈ E.
• Path from v to w: a set {x0, . . . , xk} of vertices such that x0 = v, xk = w, and

(xi−1, xi) is an edge for i = 1, . . . , k. The edges (xi−1, xi) are called the edges
of the path and k is the length of the path. A path is simple if the vertices
defining it are distinct - that is, not repeated anywhere along the path. If p is
a path from v to w we say w is reachable from v. Note: that these edges are
all directed and must orient in the forward direction.

• Strongly Connected Digraph: for all vertices v, w ∈ V , w is reachable from v.
Note this means the existence of two directed paths - one from v to w and
the other from w to v. Also note that putting the two paths together creates
a (directed) cycle containing both v and w.

• (Directed) Cycle: A path of length at least 1 from a vertex to itself. Note
this is distinct from the undirected case, allowing paths of length 1 (so-called
self-loops) and length 2 (essentially and out-and-back path, equivalent to a
two-way edge).

• Acyclic Digraph: Digraph with no cycles; DAG
• inDegree of a vertex v: inDeg(v) = the number of edges to v.
• outDegree of a vertex v: outDeg(v) = the number of edges from v.

There are subtle distinctions in the way graphs and digraphs are treated in definitions.
There are also “conversions” from graph to digraph and digraph to graph.

• Undirected graph edges have no preferred direction and are represented using
the notation [x, y] to mean the un-ordered pair in which [x, y] = [y, x]. Di-
rected graph edges have a preferred direction and are represented using the
notation (x, y) to mean the ordered pair in which (x, y) 6= (y, x). (In practice,
the notation [x, y] is often dropped when context makes it clear whether the
edge is directed or undirected or when both directed and undirected graphs
are considered in the same context.)
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• In an undirected or directed graph, vertex y is said to be a neighbor of the
vertex x iff (x, y) ∈ E. In undirected graphs, being neighbors and being
adjacent are equivalent. In digraphs, y is a neighbor of x iff y is adjacent from
x. (Note this terminology differs from that in [Cormen et al 3e].)

• If D = (V, E) is a digraph, the undirected version of D is the graph D′ =
(V, E ′) where [x, y] ∈ E ′ iff x 6= y and (x, y) ∈ E. Note this replaces, in
effect, a 1-way edge with a 2-way edge (or two opposite 1-way edges in the
representations), except self-loops are eliminated.

• If G = (V, E) is a graph, the directed version of G is the graph G′ = (V, E ′)
where (x, y) ∈ E ′ iff [x, y] ∈ E. Note this replaces each undirected edge [x, y]
with two opposing directed edges (x, y) and (y, x).

Theorem 1u. In an undirected graph,
∑

v∈V deg(v) = 2× |E|.
Theorem 1d. In a directed graph,

∑
v∈V inDeg(v) =

∑
v∈V outDeg(v) = |E|.

The proof of Theorem 1 uses aggregate analysis. First show the result for directed
graphs, where edges are in 1-1 correspondence with their initiating vertices. Then
apply 1d to the directed version of an undirected graph and adjust for the double
counting.

1.3 Graph and Digraph Representations

There are two fundamental families of representation methods for graphs - connec-
tivity matrices and adjacency sets. Two archetypical examples apply to graphs and
digraphs G = (V, E) with the assumption that the vertices are numbered starting
with 0 (in C fashion): V = {v0, v1, v2, . . . , vn−1}.

1.3.1 Adjacency Matrix Representation

In the adjacency matrix representation we define an n× n matrix M by

M(i, j) =

{
1 if G has an edge from vi to vj

0 otherwise

M is the adjacency matrix of G.

Consider the graph G1 depicted here:

0 --- 1 2 --- 6 --- 7
Graph G1 | | |

| | |
3 --- 4 --- 5 --- 8 --- 9
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The adjacency matrix for G1 is:

M =



− 1 − 1 − − − − − −
1 − − − − − − − − −
− − − − − 1 1 − − −
1 − − − 1 − − − − −
− − − 1 − 1 − − − −
− − 1 − 1 − − − 1 −
− − 1 − − − − 1 − −
− − − − − − 1 − − 1
− − − − − 1 − − − 1
− − − − − − − 1 1 −


(where we have used “−” instead of “0” for readability). Adjacency matrix repre-
sentations are very handy for some graph contexts. They are easy to define, low in
overhead, and there is not a lot of data structure programming involved. And some
questions have very quick answers:

1. Using an adjacency matrix representation, the question “Is there an edge from
vi to vj ?” is answered by interpreting M(i, j) as boolean, and hence in time
Θ(1).

Adjacency matrix representations suffer some disadvantages as well, related to the
fact that an n× n matrix has Θ(n× n) places to store and visit:

2. An adjacency matrix representation requires Θ(n2) storage.
3. A loop touching all edges of a graph (or digraph) represented with an adja-

cency matrix requires Ω(n2) time.

Particularly when graphs are sparse - a somewhat loose term implying that the num-
ber of edges is much smaller than it might be - these basic storage and traversal tasks
should not be so expensive.

1.3.2 Sparse Graphs

A graph (or digraph) could in principle have an edge from any vertex to any other.1

In other words the adjacency matrix representation might have 1’s almost anywhere,
out of a total of Θ(n2) possibilities. In practice, most large graphs encountered in

1We usually don’t allow self-edges in undirected graphs without specifically warning the context
that self-edges are allowed.
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real life are quite sparse, with vertex degree significantly limited, so that the number
of edges is O(n) and the degree of each vertex may even be O(1).2 Observe:

4. Suppose d is an upper bound on the degree of the vertices of a graph (or
digraph). Then d×n is an upper bound on the number of edges in the graph.

So, a graph with, say, 10,000 vertices, and vertex degree bounded by 100, would have
no more than 1,000,000 edges, whereas the adjacency matrix would have storage for
100,000,000, with 99,000,000 of these representing “no edge”.3

1.3.3 Adjacency List Representation

The adjacency list representation is designed to require storage to represent edges
only when they actually exist in the graph. There is per-edge overhead required, but
for sparse graphs this overhead is negligible compared to the space used by adjacency
matrices to store “no info”.

The adjacency list uses a vector v of lists reminiscent of the supporting structure
for hash tables. The vector is indexed 0, . . . , n − 1, and the list v[i] consists of the
subscripts of vertices that are adjacent from vertex vi.

For example, the adjacency list representation of the graph G1 illustrated above
is:

v[0]: 1 , 3
v[1]: 0 0 --- 1 2 --- 6 --- 7
v[2]: 5 , 6 | | |
v[3]: 0 , 4 | | |
v[4]: 3 , 5 3 --- 4 --- 5 --- 8 --- 9
v[5]: 2 , 4 , 8 Graph G1
v[6]: 2 , 7
v[7]: 6 , 9
v[8]: 5 , 9
v[9]: 7 , 8

As with the matrix representation above, time and space requirements for adja-
cency list representations are based on what needs to be traversed and stored:

2For example, Euler’s Formula on planar graphs implies that if G is planar then |E| ≤ 3|V | − 6,
hence |E| = O(|V |).

3The human brain can be modeled loosely as a directed graph with vertices representing neuronal
cells and edges representing direct communication from one neuron to another. This digraph is
estimated to have about 1010 vertices with average degree about 103.
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5. An adjacency list representation requires Θ(|V |+ |E|) storage
6. A loop touching all edges of a graph (or digraph) represented with an adja-

cency list representation requires Ω(|V |+ |E|) time.

Proofs of the last two factoids use aggregate analysis.

Note that when G has many edges, for example when |E| = Θ(|V |2), the estimates
are the same as for matrix representations. But for sparse graphs, in particular when
|E| = O(|V |), the estimates are dramatically better - linear in the number of vertices.

1.3.4 Undirected v. Directed Graphs

Both the adjacency matrix and adjacency list can represent either directed or undi-
rected graphs. And in both systems, an undirected edge has a somewhat redundant
representation.

An adjacency matrix M represents an undirected graph when it is symmetric
about the main diagonal:

M(i, j) = M(j, i) for all i, j

One could think of this constraint as a test whether the underlying graph is directed
or not.

An adjacency list v[] represents an undirected graph when all edges (x, y) appear
twice in the lists - once making y adjacent from x and once making x adjacent from
y:

...
v[x]: ... , y , ...
...
v[y]: ... , x , ...
...

1.3.5 Variations on Adjacency Lists

Many graph algorithms require examining all vertices adjacent from a given vertex.
For such algorithms, traversals of the adjacency lists will be required. These traversals
are inherently Ω(list.size), and replacing list with a faster access time set structure
might even slow down the traversal (although not affecting its asymptotic runtime).
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On the other hand, unlike the situation with hash tables where we could choose
the size of the vector to hold the average list size to approximately 2, we have no such
luxury in representing graphs.

If a graph process requires many direct queries of the form “is y adjacent from x”
(as distinct from traversing the entire adjacency list), a question that requires Ω(d)
time to answer using sequential search in a list of size d, it can be advantageous to
replace list with a faster access set structure, which would allow the question to be
answered in time O(log d). (In the graph context, d is the size of the adjacency list
and the outDegree of the vertex whose adjacency list is being searched.)

1.3.6 Dealing with Graph Data

Often applications require maintaining data associated with vertices and/or edges.
Vertex data is easily maintained using auxilliary vectors. Edge data in an adjacency
matrix representation is also straightforward to maintain in another matrix.

Edge data is slightly more difficuly to maintain in an adjacency list representation,
in essence because the edges are only implied by the representation. This problem
can be handled in two ways. Adjacency lists can be replaced with edge lists - instead
of listing adjacent vertices, list pointers to the edges that connect the adjacent pairs.
Then an edge can be as elaborate as needed. It must at minimum know what its two
vertex ends are, of course, something like this:

template <class T>
struct Edge
{

T data_; // whatever needs to be stored
unsigned from_ , to_; // vertices of edge

}

Or a hash table can be set up to store edge data based on keys of the form (x,y),
where (x,y) is the edge implied by finding y in the list v[x].

1.4 Graph Classes

We now have four distinct representations to enshrine in code: adjacency matrix
and adjacency list representations for both undirected and directed graphs. The
following class hierarchy provides a plan for defining these four representations while
enforcing terminology uniformity and re-using code by elevating to a parent class
where appropriate:
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Graph // abstract base class
GraphMatrixBase // base class for adj matrix reps

UnGraphMatrix // undirected adj matrix representation
DiGraphMatrix // directed adj matrix representation

GraphListBase // base class for adj list reps
UnGraphList // undirected adj list representation
DiGraphList // directed adj list representation

The following pseudo-code provides a plan for implementation:

class Graph // abstract base class for all representations
{

typedef unsigned Vertex;
public:

virtual void SetVrtxSize (unsigned n) = 0;
virtual void AddEdge (Vertex from , Vertex to) = 0;
virtual bool HasEdge () const;
virtual unsigned VrtxSize () const;
virtual unsigned EdgeSize () const;
virtual unsigned OutDegree (Vertex v) const = 0;
virtual unsigned InDegree (Vertex v) const = 0;
...

};

class GraphMatrixBase : public Graph
{
...

AdjIterator Begin (Vertex x) const;
AdjIterator End (Vertex x) const;

...
fsu:: Matrix m_;

};

class GraphListBase : public Graph;
{
...

AdjIterator Begin (Vertex x) const;
AdjIterator End (Vertex x) const;

...
fsu:: Vector < fsu::List < Vertex > > v_;

};
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The AdjIterator type needs to be defined for both matrix and list representations.
This is a forward iterator traversing the collection of vertices adjacent from v. For
the adjacency list representation AdjIterator is a list ConstIterator. Begin can be
defined as follows:

AdjIterator GraphListBase ::Begin (Vertex x)
{ return v_[x].Begin (); }

The following implementations should completely clarify the way edges are repre-
sented in all four situations:

DiGraphMatrix :: AddEdge(Vertex x, Vertex y)
{

M[x][y] = 1;
}

UnGraphMatrix :: AddEdge(Vertex x, Vertex y)
{

M[x][y] = 1;
M[y][x] = 1;

}

DiGraphList :: AddEdge(Vertex x, Vertex y)
{

v[x]. Insert(y);
}

UnGraphList :: AddEdge(Vertex x, Vertex y)
{

v[x]. Insert(y);
v[y]. Insert(x);

}

2 Search

One of the first things we want to do in a graph or digraph is find our way around.
There are two widely used and famous processes to perform a search in a graph,
both of which have been introduced and used in other contexts: depth-first and
breadth-first search. In trees, for example, preorder and postorder traversals follow
the depth-first search process, and levelorder traversal follows the breadth-first pro-
cess. And solutions to maze problems typically use one or the other to construct a
solution path from start to goal. Trees and mazes are representable as special kinds
of graphs (or digraphs), and that context provides the ultimate generality to study
these fundamental algorithms.
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We will assume throughout the remainder of this chapter that G = (V, E) is a
graph, directed or undirected, with |V | vertices and |E| edges. We also assume that
the graph is presented to the search algorithms using the adjacency list representation.

2.1 Breadth-First Search

The Breadth-First Search [BFS] process begins at a vertex of G and explores the graph
from that vertex. At any stage in the search, BFS considers all vertices adjacent from
the current vertex before proceeding deeper into the graph.

Breadth First Search (v)
Uses: double ended control queue conQ

vector of bool visited

for each i, visited[i] = false;
conQ.PushBack(v);
visited[v] = true;
// PreProcess (0,v);
while (!conQ.Empty ())
{

f = conQ.Front ();
if (n = unvisited adjacent from f)
{

conQ.PushBack(n); // PushFIFO
visited[n] = true;
// PreProcess(f,n);

}
else
{

conQ.PopFront ();
// PostProcess(f);

}
}

This statement of the algorithm shows the control structure only, which uses the
control queue and visited flags, with other activities gathered under Pre- and Post-
processing of vertices and edges. The PreProcess and PostProcess calls may be mod-
ified to suit the target purpose of the search. If a particular goal vertex g is sought,
PostProcess can check whether n = g and return if true. It is usually also desireable
to return a solution path, in which case PreProcess can record the information that
f is the predecessor of n in the search.
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The runtime of BFS is straightforward to estimate, ignoring the cost of pre and
post processing. The aggregate runtime cost breaks down into three categories:

Total Cost = cost of initializing the visited flags

+ cost of the calls to queue push/pop operations

+ cost of finding the unvisited adjacents.

Initializing the visited flags costs Θ(|V |). There is one push and one pop operation
for each edge in the graph that is accessible from v, so that the number of queue
operations is no greater than 2|E|. The third term is dependent on the graph repre-
sentation, which we assume is the adjacency list. Finding the next unvisited vertex
adjacent from f requires sequential search of the adjacency list. This search is ac-
complished using an adjacency iterator that pauses when the next unvisited adjacent
is found. The iterator is re-started where it is paused, but never re-initialized. More-
over, a given adjacency list is traversed only one time, when its vertex is at the front
of the queue. Therefore the cost of finding unvisited adjacents is the aggregate cost of
traversing all of the adjacency lists one time. The aggregate size of adjacency lists is
2|E| for graphs and |E| for digraphs, but also all (reachable) vertices must be tested,
so the cost of finding all of the next unvisited adjacents is O(|V | + |E|). Therefore
the runtime is bounded above by Θ(|V |) + O(|E|) + O(|V |+ |E|):

Theorem 2. The runtime of BFS is O(|V |+ |E|).

We cannot conclude the estimate is tight only because not all edges are accessible
from a given vertex.

As an example, performing BFS(5) on the graph G1 encounters the vertices as
follows:

adj l i s t rep Graph G1 BFS : : conQ

−−−−−−−−−−−− −−−−−−−− <−−−−−−−−
v [ 0 ] : 1 , 3 nu l l . . .

v [ 1 ] : 0 0 −−− 1 2 −−− 6 −−− 7 5 6 3 9

v [ 2 ] : 5 , 6 | | | 5 2 6 3 9 7

v [ 3 ] : 0 , 4 | | | 5 2 4 3 9 7

v [ 4 ] : 3 , 5 3 −−− 4 −−− 5 −−− 8 −−− 9 5 2 4 8 3 9 7 0

v [ 5 ] : 2 , 4 , 8 2 4 8 9 7 0

v [ 6 ] : 2 , 7 2 4 8 6 7 0

v [ 7 ] : 6 , 9 4 8 6 0

v [ 8 ] : 5 , 9 4 8 6 3 0 1

v [ 9 ] : 7 , 8 8 6 3 1

8 6 3 9 nu l l

. . .

Vertex d i s cove ry order : 5 2 4 8 6 3 9 7 0 1

grouped by d i s t ance : [ ( 5 ) (2 4 8) (6 3 9) (7 0) (1 ) ]
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2.2 Depth-First Search

Like BFS, the Depth-First Search [DFS] process also begins at a vertex of G and
explores the graph from that vertex. In contrast to BFS, which considers all adjacent
vertices before proceeding deeper into the graph, DFS follows as deep as possible into
the graph before backtacking to an unexplored possibility.

Depth First Search (v)
Uses: double ended control queue conQ

vector of bool visited

for each i, visited[i] = false;
conQ.PushFront(v);
visited[v] = true;
// PreProcess (0,v)};
while (!conQ.Empty ())
{

f = conQ.Front ();
if (n = unvisited adjacent from f)
{

conQ.PushFront(n); // PushLIFO
visited[n] = true;
// PreProcess(f,n);

}
else
{

conQ.PopFront ();
// PostProcess(f);

}
}

It is remarkable that the only difference between DFS and BFS is in the way unvisited
adjacents are place on the control queue conQ. In DFS, conQ has LIFO behavior,
functioning as a control stack. In BFS, conQ has FIFO behavior, functioning as a
control queue. The effect is that in DFS, the front of conQ is the previously pushed
unvisited adjacent vertex, whereas in BFS, the front of conQ remains the same after
the unvisited adjacent vertex has been pushed.

Theorem 3. The runtime of DFS is O(|V |+ |E|).

The argument is a repeat of that for Theorem 2. Again we cannot conclude the
estimate is tight only because not all edges are accessible from a given vertex.
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Continuing with the example G1, here is a trace of DFS(5). (The orientation in
the way we show conQueue is reversed for DFS.)

adj l i s t rep Graph G1 DFS : : conQ

−−−−−−−−−−−− −−−−−−−− −−−−−−−−>

v [ 0 ] : 1 , 3 nu l l . . .

v [ 1 ] : 0 0 −−− 1 2 −−− 6 −−− 7 5 5

v [ 2 ] : 5 , 6 | | | 5 2 5 4

v [ 3 ] : 0 , 4 | | | 5 2 6 5 4 3

v [ 4 ] : 3 , 5 3 −−− 4 −−− 5 −−− 8 −−− 9 5 2 6 7 5 4 3 0

v [ 5 ] : 2 , 4 , 8 5 2 6 7 9 5 4 3 0 1

v [ 6 ] : 2 , 7 5 2 6 7 9 8 5 4 3 0

v [ 7 ] : 6 , 9 5 2 6 7 9 5 4 3

v [ 8 ] : 5 , 9 5 2 6 7 5 4

v [ 9 ] : 7 , 8 5 2 6 5

5 2 nu l l

. . .

DFS d i s cove ry order : 5 2 6 7 8 9 4 3 0 1 ( push order ) ‘ ‘ preorder ’ ’

DFS f i n i s h i n g order : 8 9 7 6 2 1 0 3 4 5 ( pop order ) ‘ ‘ postorder ’ ’

Note that the conQ is illustrated with the front (where push/pop is occurring) to the
right, the way a stack is typically illustrated.

2.3 Remarks

It is worth noting the memory use patterns for BFS and DFS. In either case, memory
use is Θ(|V |) plus the maximum size of the set of gray vertices (those currently in the
control queue). In the case of BFS, the gray vertices form a “search frontier” roughly
a fixed distance away from the starting vertex v, growing in diameter (and typically
size) as it moves away from v. (See Lemma 5 of Section 4.2.) In the case of DFS,
the gray vertices represent the current path from v to the most recently discovered
vertex.

Of course, the sizes of these collections are dependent on the structure of the graph
being searched. But typically, the search frontier of BFS can be significantly larger
than the longitudinal search path of DFS. This is made quite clear when searching
from the root of a binary tree: the BFS frontiers are cross-sections in the tree, ap-
proaching |V | in size, whereas the DFS paths are downward paths in the tree, limited
to log |V | for a complete tree.

One can think of DFS as the strategy a single person might use to find a goal
in a maze, armed with a way to mark locations that have been visited. The person
proceeds to an adjacent unvisited vertex as long as there is one. If at some point
there is no unvisited adjacent vertex, the person backtracks along the marked path
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to a vertex that has an unvisited adjacent and then proceeds. Similarly, BFS might
be a strategy employed by a search party of many people. At each vertex, the party
splits into sub-groups, one for each unvisited adjacent, and the subgroup proceeds to
that adjacent.

This analogy illustrates two important differences between DFS and BFS: (1) BFS
discovers a most efficient path to any goal, because the various sub-search-parties
operate concurrently and proceed away from the starting vertex. The first party to
reach the goal sounds the “found” signal. (2) BFS is more expensive in its use of
memory, because there are multiple searches in process concurrently.

3 Survey

The information that can be extracted during one of our basic search algorithms can
be very useful. On the other hand, when one has a specific goal such as discovering a
path between two vertices, there may be no need for all that information. If you need
to hang a picture on a wall, you don’t need a professional assessment/survey of your
property, only a simple tape measure. But when you want a total evaluation, a survey
is called for. For graphs and digraphs, we have two such surveys available: breadth-
first and depth-first. Breadth-first survey concentrates on distance and depth-first
survey concentrates on time.

3.1 Breadth-First Survey

It may be past time that we succomb to the temptation to package algorithms as
classes. We do that now for the graph surveys. Here is pseudo code for a BFSurvey
class:

class BFSurvey
{
public:

BFSurvey ( const Graph& g );
void Search ( );
void Search ( Vertex v );
void Reset ( );
Vector < int > distance; // distance from origin
Vector < Vertex > parent; // for BFS tree
Vector < Color > color; // bookkeeping

private:
const Graph& g_;
Vector < bool > visited_ ;
Deque < Vertex > conQ_ ;

};
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The class contains a reference to a graph object on which the survey is performed,
private data used in the algorithm control, and public variables to house three results
of the survey - distance, parent, and color for each vertex in the graph. (These
could be privatized with accessors and other trimmings for data security.) These data
are instantiated by the survey and have the following interpretation when the survey
is completed:

code math english
distance[x] d(x) the number of edges travelled to get from v to x

parent[x] p(x) the vertex from which x was discovered
color[x] x.color either black or white, depending on whether x was reachable from v

During the course of Search, when a vertex is pushed onto the control queue in FIFO
order, it is colored gray and assigned distance one more than its parent at the front
of the queue. The vertex is colored black when popped from the queue. At any given
time during Search, the gray vertices are precisely those in the FIFO control queue.

The 1-argument constructor initializes the Graph reference and sets all the various
data to the initial/reset state:

BFSurvey :: BFSurvey (const Graph& g)
: distance(g.vSize , g.eSize + 1), parent(g.vSize , null),

color(g.vSize , white), visited_(g.vSize , false),
g_(g)

{}

The Search(v) method is essentially BFSearch(v) with the pre- and post-processing
functions defined to maintain the survey data. However, the visited flags and parent
information are not automatically unset at the start, so that the method can be
called more than once to continue the survey in any parts of the graph that were not
reachable from v.

void BFSurvey :: Search( Vertex v )
{

conQ_.Push(v);
visited_[v] = true;
distance[v] = 0;
color[v] = grey;
while (!conQ_.Empty ())
{

f = conQ_.Front ();
if (n = unvisited adjacent from f in g_)
{



16

conQ_.PushBack(n); // PushFIFO
visited_[n] = true;
distance[n] = distance[f] + 1;
parent[n] = f;
color[n] = grey;

}
else
{

conQ_.PopFront ();
color[f] = black;

}
}

}

The no-argument Search method repeatedly calls Search(v), thus ensuring that the
survey considers the entire graph. Often there are relatively few vertices not reached
on the first call, but nevertheless Search() perseveres until every vertex has been
discovered.

void BFSurvey :: Search ()
{

Reset ();
for (each vertex v of g_)
{

if (color[v] == white) Search(v);
}

}
void BFSurvey :: Reset()
{

for (each vertex v of g_)
{

visited_[v] = 0;
distance[v] = g_.eSize + 1; // impossibly large
parent[v] = null;
color[v] = white;

}
}

We have shown in Theorem 2 of Section 2.1 that BFSearch(v) has runtime O(|V |+
|E|), and this bound carries over to BFSurvey::Search(). Note that BFSurvey::Search()
touches every edge and vertex in the graph. Therefore we can apply Factoid 6 in Sec-
tion 1.3.3 to conclude that the bound is tight:

Theorem 4. BFSurvey::Search() has runtime Θ(|V |+ |E|).
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3.2 Depth-First Survey

The similarities between depth- and breadth-first search/survey algorithms are far
more numerous than the differences. Yet the differences are critical to understanding
and using the two. So as tedious as it may be, it is important to concentrate by
finding the differences and understanding their consequences. Here is pseudo code for
a DFSurvey class:

class DFSurvey
{
public:

DFSurvey ( const Graph& g );
void Search ( );
void Search ( Vertex v );
void Reset ( );
Vector < unsigned > dtime; // discovery time
Vector < unsigned > ftime; // finishing time
Vector < Vertex > parent; // for DFS tree
Vector < Color > color; // various uses

private:
unsigned time_;
const Graph& g_;
Vector < bool > visited_ ;
Deque < Vertex > conQ_ ;

};

The class structure is identical to that of BFSurvey, with these exceptions:

(1) The two DFSurvey::Search algorithms use DFS [LIFO] rather than BFS [FIFO]

(2) DFSurvey maintains global time used to time-stamp discovery time and fin-
ishing time for each vertex, rather than the distance data of BFSurvey.

These time, parent, and color data are instantiated by the survey and have the fol-
lowing interpretation when the survey is completed:

code math english
dtime[x] td(x) discovery time = time x is first discovered
ftime[x] tf (x) finishing time = time x is released from further investigation
parent[x] p(x) the vertex from which x was discovered
color[x] x.color black or white, depending on whether x was reachable from v
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The 1-argument constructor initializes the Graph reference and sets all the various
data to the initial/reset state.

During the course of Search, vertices are colored gray at discovery time and
pushed onto the control queue in LIFO order, and colored black at finishing time
and popped from the queue. At any given time during Search, the gray vertices are
precisely those in the LIFO control queue.

The Search(v) method is DFSearch(v) with the pre- and post-processing functions
defined to maintain the survey data. Note however that the visited flags are not
automatically unset at the start, so that the method can be called more than once
to continue the survey in any parts of the graph that were not reachable from v.
Global time is incremented immediately after each use, which ensures that no two
time stamps are the same.

void DFSurvey :: Search( Vertex v )
{

dtime[v] = time_ ++;
conQ_.Push(v);
visited_[v] = true;
color[v] = grey;
while (!conQ_.Empty ())
{

f = conQ_.Front ();
if (n = unvisited adjacent from f in g_)
{

dtime[n] = time_ ++;
conQ_.PushFront(n); // PushLIFO
visited_[n] = true;
parent[n] = f;
color[n] = grey;

}
else
{

conQ_.PopFront ();
color[f] = black;
ftime[f] = time_ ++;

}
}

}

The no-argument Search method repeatedly calls Search(v), thus ensuring that the
survey considers the entire graph.
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void DFSurvey :: Search ()
{

Reset ();
for (each vertex v of g_)
{

if (color[v] == white) Search(v);
}

}
void DFSurvey :: Reset()
{

for (each vertex v of g_)
{

visited_[v] = 0;
parent[v] = null;
color[v] = white;
dtime[v] = 2|V|; // last time stamp is 2|V| -1
ftime[v] = 2|V|;
time_ = 0;

}
}

The runtime of DFSurvey::Search() succombs to an argument identical to that for
BFSurvey::Search():

Theorem 5. DFSurvey::Search() has runtime Θ(|V |+ |E|).

4 Interpreting and Applying Survey Data

This section is devoted to theory of BFS and DFS, including verification that the
BFS tree is a minimal distance tree and two important analytical results on DFS
time stamps. We begin by defining the search trees.

4.1 BFS and DFS Trees

Note that for either BFSurvey or DFSurvey, parent informationis collected during
the course of the algorithm and stored in the vector parent[]. Assume either DFS
or BFS context, and suppose we have run Search() - the complete survey.

If parent[x] 6= null, define p(x) = ∗parent[x] = the vertex from which x is discovered,
and:
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T (s) = {(p(x), x)|x 6= s and x is reachable from s}

V (s) = {x|x is reachable from s}

F = {(p(x), x)|parent[x] 6= null}

Lemma 1 (Tree Lemma). After XFSurvey::Search(s), (V (s), T (s)) is a tree with
root s. If G is a directed graph, the edges of T (s) are directed away from s.

Proof. First note that s is the unique vertex in T (s) with null parent pointer, by
inspection of the algorithm. Also note that (p(x), x) is an edge (directed from p(x) to
x) in the graph, again by inspection of the algorithm. Following the parent pointers
until a null pointer parent[s] = null is reached defines a (directed) path in T (s) from
s to x.

Now count the vertices and edges. For each vertex x other than s, (p(x), x) is
an edge distinct from any other (p(y), y) because x 6= y. Therefore the edges are in
1-1 correspondence with the vertices other than s. We have a connected graph with
|V (s)| = |E(s)|+ 1, so it must be a tree. �

We call (V (s), T (s)) the search tree generated by the survey starting at s.

Lemma 2 (Forest Lemma). After XFSurvey::Search(), (V, F ) is a forest whose
trees are all of the search trees generated during the search:

F = ∪sT (s)

where the union is over all vertices s with parent[s] = null.

Proof. By the Tree Lemma, T (s) is a tree for each starting vertex s. Suppose some
edge in F connects two of these trees, say T (s1) and T (s2). The edge must necessarily
be of the form (p(x), x) for some x, where x ∈ T (s1) and p(x) ∈ T (s2). But then the
parent-path from x will pass through p(x) to s2, which means that s2 should have
been discovered by XFSurvey::Search(s1). �

We call (V, F ) the search forest generated by the survey.

4.2 Interpreting BFSurvey

We have alluded to the shortest path property of BFS in previous sections. It is time
to come to full contact with a proof, and we devote most of the rest of this section
to doing that. We follow the proof in [Cormen et al 3e]. For any pair x, y of vertices
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in G, define the shortest-path-distance from x to y to be δ(x, y) = the length of the
shortest path from x to y in G, or δ(x, y) = 1 + |E| if y is not reachable from x.

Lemma 3. Let G = (V, E) be a directed or undirected graph and x, y, z ∈ V . If y is
reachable from x and z is reachable from y then

δ(x, z) ≤ δ(x, y) + δ(y, z).

Proof. First note that z is reachable from x by concatenating shortest paths from x to
y and y to z. This path from x through y to z has length δ(x, y)+δ(y, z). The shortest
path from x to z can be no longer than this path. Therefore δ(x, z) ≤ δ(x, y)+δ(y, z).

Note in passing that δ(y, z) = 1 if (y, z) ∈ E. �

Assumptions. For the remainder of this section, let G = (V, E) be a directed or
undirected graph and suppose BFSurvey::Search(s) has been called for some starting
vertex s ∈ V . Let d(x) = distance[x] for each x ∈ V .

Lemma 4. The path in T (x) from s to x has length d(x).

Proof. Use mathematical induction on d(x). �

Corollary. For each vertex x, d(x) ≥ δ(s, x).

Lemma 5. If x and y are both gray vertices (i.e., in the control queue) with x colored
gray before y (i.e., x pushed before y), then d(x) ≤ d(y) ≤ d(x) + 1.

Lemma 6. If x and y are reachable from s and x is discovered before y, then d(x) ≤
d(y).

Proof. Examine the code to see that when x is pushed onto the control queue,
d(x) = d(p(x)) + 1 (and at that time p(x) is the front of the queue). Show by
mathematical induction that d values are non-decreasing for all vertices in the queue.
Because d values are never changed once a vertex is pushed, if x is pushed before y
then d(x) ≤ d(y). �

Lemma 7. d(x) = δ(s, x) for all reachable x.

Proof. Suppose that the result fails. Let δ be the smallest shortest-path-distance for
which the result fails, and let y be a vertex for which d(y) > δ(s, y) = δ. Let x be
the next-to-last vertex on a shortest path from s to y. Then δ(s, y) = 1 + δ(s, x)
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and, because of the minimality of δ = δ(s, y), d(x) = δ(s, x). We summarize what we
know so far:

d(y) > δ(s, y) = 1 + δ(s, x) = 1 + d(x)

Now consider the three possible colors of y at the times x is at the front of the control
queue. If y is white, then y will be pushed onto conQ while x is at the front, making
d(y) = d(x) + 1, a contradiction. If y is black, it has been popped and d(y) ≤ d(x)
by Lemma 6, again a contradiction. If y is gray, then d(y) ≤ d(x) + 1 by Lemma 4,
a contradiction yet again. Therefore under all possibilities our original assumption is
false. �

Putting these facts together we have:

Theorem 6 (Breadth-First Tree Theorem). Suppose BFSurvey::Search(s)
has been called for the graph or digraph G = (V, E). Then

(1) For each reachable vertex x ∈ V , d(x) is the shortest-path-distance from s to
x; and

(2) The breadth-first tree contains a shortest path from s to x.

4.3 Interpreting DFSurvey

The time stamps on vertices during a DFSurvey::Search() provide a way to codify the
effects of LIFO order in the control system for DFS. We have already observed that
time stamps are unique, and one stamp is used for each change of color of a vertex.
Let us define td(x) = dtime[x] and tf (x) = ftime[x] for each vertex x. Inspection of
the algorithm shows that discovery occurs before finishing:

Lemma 8. For each vertex x, td(x) < tf (x).

Therefore the interval [td(x), tf (x)] represents the time values for which x is in the
control LIFO, that is, the times when x has color gray. Prior to td(x), x is white, and
after tf (x), x is black.

Theorem 7 (Parenthesis Theorem). Assume G = (V, E) is a (directed or
undirected) graph and that DFSurvey::Search() has been run on G. Then for two
vertices x and y, exactly one of the following three conditions holds:

(1) The time intervals [td(x), tf (x)] and [td(y), tf (y)] are disjoint, and x and y
belong to different trees in the DFS forest.

(2) [td(x), tf (x)] is a subset of [td(y), tf (y)], and x is a descendant of y in the forest.
(3) [td(x), tf (x)] is a superset of [td(y), tf (y)], and x is an ancester of y in the

forest.
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Proof. First suppose x and y belong to different trees in the forest. Then x is discov-
ered during one call Search(v) and y is discovered during a different call Search(w)
where v 6= w. Then x is colored gray and then black during Search(v), and y is
colored gray and then black during Search(w). Clearly these two processes do not
overlap in time, and condition (1) holds.

Suppose on the other hand that x and y are in the same tree in the search forest.
Without loss of generality we assume y is a descendant of x. Then, by inspection of
the algorithm, x must be colored gray before y. Hence, td(x) < td(y). But due to
the LIFO order of processing, this means that y is colored black before x. Therefore
tf (y) < tf (x). That is, [td(y), tf (y)] is a subset of [td(x), tf (x)], and condition (3)
holds. A symmetric argument completes the proof. �

Theorem 8 (White Path Theorem). In a depth-first forest of a directed or
undirected graph G = (V, E), vertex y is a descendant of vertex x iff at the discovery
time td(x) there is a path from x to y consisting entirely of white vertices.

Proof. First note that discovery times td(x) = dtime[x] are stamped prior to any
processing of x in the DFSurvey::Search algorithm.

First suppose z is a descendant of x. If z = x then {x} is a white path. If z 6= x
then td(x) < td(z) by the Parenthesis Theorem, so z is white at time td(x). Applying
the observation to any z in the DFS tree path from x to y shows that the DFS tree
path from x to y consists of white vertices.

Conversely, suppose at time td(x) there is a path from x to y consisting entirely of
white vertices. If some vertex in this path is not a descendant of x, let v be the one
closest to x with this property. Then the predecessor u on the path is a descendant
of x. At time td(u), v is white and an unvisited adjacent of u, so v will be discovered
and p(v) = u. That is, v is a descendant of u, and hence of x, contradicting the
assumption that v is not a descendant of x. Therefore every vertex on the white path
is a descendant of x. �

4.4 Classification of Edges

The surveys can be used to classify edges of a graph or directed graph. We will use
DFSSurvey for this purpose. Given an edge, there are four possibilities: (1) it is
in the DFS Forest; it goes from x to another vertex in the same tree, either (2) an
ancester or (3) a descendant; or (4) it goes to a vertex that is neither ancester nor
descendant, whether in the same or a different tree.
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1. Tree edges are edges in the depth-first forest.
2. Back edges are edges (x, y) connecting a vertex x in the DFS forest to an ancester

y in the same tree of the forest.
3. Forward edges are edges (x, y) connecting a vertex x in the DFS forest to a

descendant y in the same tree of the forest.
4. Cross edges are any other edges. These might go to another vertex in the same

tree or a vertex in a different tree.

For an undirected graph, this classification is based on the first encounter of the edge
in the DFSurvey.

Note these observations relating the color of the terminal vertex of an edge to the
edge classification. Suppose e = (x, y) is an edge of G, and consider the moment in
(algorithm) time when e is explored. Then:

1. If y is white then e is a tree edge.
2. If y is gray then e is a back edge.
3. If y is black then e is a forward or cross edge.

Theorem 9. In a depth-first survey of an undirected graph G, every edge is either
a tree edge or a back edge.

Proof. Let e = (x, y) be an edge of G. Since G is undirected, e = (y, x) as well, so
we can assume that x is discovered before y. At time td(x), y is white. Suppose e is
first explored from x. Then y is white at the time, and hence e becomes a tree edge.
If e is first explored from y, then x is gray at the time, and e is a back edge. �

Theorem 10. A directed graph D contains no directed cycles iff a depth-first search
of D yields no back edges.

Proof. If DFS produces a back edge (x, y), adding that edge to the DFS tree path
from x to y creates a cycle.

If D has a (directed) cycle C, let y be the first vertex discovered in C, and let
(x, y) be the preceding edge in C. At time td(y), the vertices of C form a white path
from y to x. By the white path theorem, x is a descendant of y, so (x, y) is a back
edge. �
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5 Spinoffs from BFS and DFS

If theorems have corollaries, do algorithms have cororithms? Maybe, but that is
difficult to speak. “Spinoff” is very informal term meaning an extra outcome or
simple modification of the algorithm that requires little or no extra verification or
anaylsis.

5.1 Components of a Graph

Suppose G = (V, E) is an undirected graph. G is called connected iff for every pair
x, y ∈ V of vertices there is a path in G from x to y. A component of G is a graph C
such that

(1) C is a subgraph of G,
(2) C is connected, and
(3) C is maximal with respect to (1) and (2)

The technology developed in Section 4.3 shows that the following instantiation of
the DFS algorithm produces a vector component<unsigned> such that component[x]
is the component containing x for each vertex x of G. All that is needed is to
declare the components vector and define PostProcess and make a small adjustment
to DFSurvey::Search():

void DFSurvey :: Search ()
{

unsigned components = 0;
for (each vertex v of g_)

if (color[v] == white)
{

components +=1;
Search(v);

}
}
PostProcess(f)
{

component[f] = components;
}

Recall that we know the DFS forest is a collection of trees, each tree generated by a
call to Search(v). The DFS trees are in 1-1 correspondence to the components of G.
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The algorithm above counts the components and assigns each vertex its component
number as it is processed.

This is an algorithm that runs in time Θ(|V |+ |E|) and computes a vector that,
subsequently, looks up the component of any vertex in constant time. The algorithm
doesn’t need vertex color (equate color white with unvisited), only the minimum
control structure variables.

5.2 Topological Sort

A directed graph is acyclic if it has no (directed) cycles. A directed acyclic graph is
called a DAG for short. DAGs occur naturally in various places, such as:

vertices directed edge
cells in a spreadsheet dependancy from another cell
targets in a makefile dependency on another target
courses in a curriculum course pre-requisit

In these and other models, it is important to know what order to consider the vertices.
For example, courses need to be taken respecting the pre-requisit structure, make
needs to build the targets in dependency order, and a spreadsheet cell should be
calculated only after the cells on which it depends have been calculated. A topological
sort of a DAG is an ordering of its vertices in such a way that all edges go from lower
to higher vertices in the ordering.

DFS can be used to extract a topological sort from a DAG, as follows:

TopSort
Modifies DFSurvey
Uses double -ended queue outQ

Run DFSurvey(D)
As a vertex x is finished , outQ.PushFront(x) // LIFO - reverses order

Then outQ [front to back] is a topological sort of D

Theorem 10 does the heavy lifting to show the correctness of TopSort.
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Exercises

1. Conversions between directed and undirected graphs.
(a) Consider an undirected graph G = (V, E) represented by either an adjacency

matrix or an adjacency list. What changes to the representations are made
when G is converted to a directed graph? Explain.

(b) Consider a directed graph D = (V, E) represented by either an adjacency
matrix or an adjacency list. What changes to the representations are made
when D is converted to an undirected graph? Explain.

2. Find the appropriate places in the Graph hierarchy to re-define each of the virtual
methods named in the Graph base class, and provide the implementations.

3. The way vertices are stored in adjacency lists has an arbitrary effect on the order
in which they are processed by DFS and BFS.
(a) Explain these effects.
(b) How might the graph edge insertion operations be modified to enforce encoun-

tering vertices in numerical order?
4. Prove: During BFSurvey::Search() on a graph G, if x and y are both gray vertices

with x colored gray before y, then d(x) ≤ d(y) ≤ d(x) + 1. (This is Lemma 5
above.)

5. Describe 3 other ways to find the components of a graph (other than the algorithm
in Section 5.1): (a) Directly from BFS or DFS survey data, (b) Using a BFS or DFS
forest, and (c) using a traversal of the graph edge set and Partition / Union-Find.

6. Consider an alternative topological sort algorithm offered first by Donald Knuth:

TopSort2
Operates on: Directed Graph D = (V,E)
Uses: vector <unsigned > id indexed on vertices

FIFO queue conQ
double -ended queue outQ

for each vertex x, id[x] = inDegree(x);
for each vertex x

if id[x] = 0
conQ.Push(x);

While (!conQ.Empty ())
{

f = conQ.Front ();
conQ.Pop ();
for every neighbor n of f
{

--id[f];
if (id[f] == 0)

conQ.Push(n); // front or back?
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}
outQ.Push (t); // front or back?

}
if (outQ.Size() == |V|)

export outQ as a topological sort of D (front to back)
else

export ‘‘D has a cycle ’’

(a) Show that TopSort2 produces a topological sort iff D is acyclic.
(b) The two push operations were not specified as FIFO (push back) or LIFO (push

front). Which choices will ensure that TopSort2 produces the same topological
sort as TopSort?

(c) Use aggregate analysis to derive and verify the worst case runtime for TopSort2.

Software Engineering Projects

7. Develop the graph class hierarchy as outlined in Section 1.4 above. Be sure to
provide adjacency iterators facilitating BFS and DFS implementations.

8. Implement BFSurvey and DFSurvey operating on graphs and digraphs via the API
provided by the hierarchy above.

9. Develop two classes BFSIterator and DFSIterator that may be used by UnGraphList
and DiGraphList. The goal is that these traversal loops are defined for the
graph/digraph g:

for (BFSIterator i.Initialize(g,v); !i.Finished (); ++i)
{

std::cout << *i;
}
for (DFSIterator i.Initialize(g,v); !i.Finished (); ++i)
{

std::cout << *i;
}

and accomplish BFSurvey::Search(v) and DFSurvey::Search(v), respectively, and
output the vertex number in discovery order. Of course, the traversals defined
with iterators may be stopped, or paused and restarted, in the client program.
The iterators should provide access to all of the public survey information.


