
November 21, 2015

Homework 4: Estimating Runtime Constants

The Bottom Line

Simplifying formulas

• If P is a polynomial with leading term And [A > 0] then P ∼ And

and P = Θ(nd)
• When finding Tilda or Theta class, ignore terms of strictly lower

asymptotic class

Finding model constants

• Growth Exponent d ' log10 T (10n0)/T (n0)
• Growth Constant A ' T (n0)/M(n0)

where n0 is a specific size for which we have data, T is actual runtime data,
and M is the abstract model. The concrete modelling formula is then

T (n) ' A×M(n).

1 Definitions, Notation, and Representations

Define a function F to be admissable iff it is defined on almost all of the non-negative
integers and has positive real values on almost all of the domain. That is, there is
an integer n0 such that F (n) is defined and F (n) > 0 for all integers n > n0. Note
that for polynomials, this condition requires that the leading coefficient is a positive
number.

Note also we continue to use the terminology almost all of the non-negative inte-
gers to mean for all integers n that are greater than some fixed value n0 – in other
words, the condition holds for all but a finite number of possible exceptions. This
terminology is easier to talk about and allows us to stop mentioning “n > n0”, sim-
plifying the wording of many statements.

Finally, recall the concept of asymptotic equivalence: Two admissible functions F
and G are asymptotically equivalent iff

lim
n→∞

F (n)

G(n)
= 1.

We adopt the “tilde notation”: F ∼ G means that F and G are asymptocially
equivalent.

1



2

2 Simplifying Formulas

We begin by collecting some facts established in previous assignments:

Lemma 0. The relation ∼ is an equivalence relation on the set of admissable func-
tions.

Proof. This is Proposition 1 of Homework 2 [“Prop 2.1” for short]. �

Lemma 1. Suppose that F and G are admissible and the quotient F (n)/G(n) tends
to 1 as n grows large - that is, F ∼ G. Then F (n) and G(n) are in the same Θ
equivalence class.

Proof. This is Proposition 3 of Homework 2 [“Prop 2.3” for short]. �

Look at these two functions of n:

F (n) = a0n
d + a1n

d−1 + . . . + an

G(n) = a0n
d

(where we assume the leading coefficient a0 is non-zero). F (n) is the general form of
a polynomial of degree d, whereas G(n) is its leading term.

Lemma 2. Suppose F (n) is the general form of a polynomial of degree d with leading
coefficient A = a0 > 0. Then F ∼ And.

Proof. (This is very similar to Prop 1.4. However a slightly different proof is as
follows.) Let G(n) = And and do the calculations:

F (n)

G(n)
=

a0n
d

a0nd
+

a1n
d−1

a0nd
+ . . . +

ad

a0nd

= 1 +
a1

a0

n−1 +
a2

a0

n−2 + . . . +
ad

a0

n−d

(where A = a0). It is apparent that F (n)
G(n)

tends to 1 as n becomes large. Therefore

F ∼ G (and, by Lemma 1, F = Θ(G)). �

The setting for polynomials can be generalized. (Here H plays the role of a
polynomial, h is the leading term, and φ is the “tail” consisting of all the lower order
terms.)



3

Lemma 3. Suppose we have admissible functions

H(n) = h(n) + φ(n)

where φ(n) has the property that φ(n)
h(n)

→ 0 as n→∞. Then H ∼ h.

proof. This is embodied in both Prop1.1 and Prop 2.2. Another way to state a
proof uses the same process we used above for polynomials:

H(n)

h(n)
=

h(n)

h(n)
+

φ(n)

h(n)

= 1 +
φ(n)

h(n)

→ 1 + 0 as n→∞
= 1

�

Lemmas 2 and 3 can be loosely paraphrased as follows:

(1) (Polynomial Theta rule) A polynomial of degree d is Θ(nd).
(2) (Polynomial Tilde rule) A polynomial of degree d and leading coefficient A is

asymptotically equivalent to And.
(3) (Lower order cancellation rule) When finding the Theta or Tilda class of a

function, terms with strictly lower asymptotic order can be ignored.

Example applications of these simplifying rules, showing a simple representative for
the ∼ class and the Θ class:

Table 1: Class Representatives
F (n) ∼ Θ
n(n + 1)/2 1

2
n2 n2

0.05n2 + 175 log n 0.05n2 n2

n + (log n)2 n n
8n3 + 5n2 log n− 3n2 + n log n + 17 8n3 n3

5000n2 + 2300
√

n 5000n2 n2

n2 + n sin n n2 n2

Exercise 1. Verify the statements in Table 1 by showing step-by-step simplification,
citing a specific rule or Lemma for each step.



4

It is worth contemplating the relationship between Tilda and Theta. On the one
hand, a limit need not exist in order for two functions to be Theta equivalent, so
Theta applies in principle to a larger setting. On the other hand, most functions we
encounter that represent the asymptotic growth of an algorithm have a polynomial
or polynomial-like form, such as the examples above. Moreover, when it is applica-
ble, asymptotic equivalence produces finer distinctions than Theta. As illustrated in
the examples, Tilda [asymptotic equivalence] retains the leading coefficient, whereas
Theta ignores it. It is reasonable to conclude that, in the cases where it is applicable,
it is more useful to know the Tilda class than the Theta class (and, the Theta class
is easily derived from the Tilda class in any case). The remaining sections are about
finding ways to estimate the Tilde (and hence Theta) class from actual timing data.

3 Estimating the growth exponent from Data

In many cases an exponent associated with the asymptotic class of an algorithm can
be estimated from data. Start by assuming that the algorithm runtime has Θ class
one of these forms (aka “abstract models”):

And + φ(n) [Model 1]

And log n + φ(n) [Model 2]

where A 6= 0 and φ(n) is dominated by the first term: φ(n)
nd → 0 as n→∞ [Model 1]

or φ(n)
nd log n

→ 0 as n→∞ [Model 2].

Lemma 4. The abstract models have Tilda and Theta class as follows:

And + φ(n) ∼ And = Θ(nd) [Model 1]

And log n + φ(n) ∼ And log n = Θ(nd log n) [Model 2]

The proof is a direct application of Lemma 3.

Thus we can “ignore” the second term φ when finding the exponent d in the
models. (φ represents all of the “lower order details”.) In both cases we can find
the exponent d and the leading coefficient (aka “growth constant”) A from actual
runtime data.

Example 1: Model 1 and insertion sort

Assume that the asymptotic growth of an algorithm is modelled by F (n) = And

[Model 1] and that we have data gathered from experimentation to evaluate F at size



5

n and again at size 10n:
F (10n) = A(10n)d

= And10d

= A10dF (n)

which shows that raising the input size by one order of magnitude increases the
runtime by d orders of magnitude. For instance, when d = 2 (the quadratic case),
increasing the size of the input by one decimal place increases the runtime by two
decimal places. Another way to phrase the result is as a ratio:

F (10n)

F (n)
=

A(10n)d

And
= 10d

which can be stated succintly as

d = log10(
F (10n)

F (n)
).

Note that the growth constant cancels in the quotient: calculating the exponent
ignores A and hence we could use A = 1 in this setting.

If we have actual timing data T (n) for an algorithm modelled by F we can use
the ratio to estimate d. Consider for example the insertion sort algorithm, and use
“comps”, the number of data comparisons, as a measure of runtime. We know from
theory that insertion sort is modelled by F and we wish to know the exponent d. We
have collected runtime data

T (1000) = 244853

T (10000) = 24991950

The ratio T (10000)/T (1000) is

T (10000)

T (1000)
=

24991950

244853

= 102.07 . . .

' 100±
= 102

yielding an estimate of d = 2, or quadratic runtime. Your eye might have noticed
this in the data itself: T (10000) is about 100 times T (1000).

Example 2 - Model 2 and List::Sort

The somewhat more complex Model 2 works in the same way. Assume that the
asymptotic growth of an algorithm is modelled by G(n) = And log n [Model 2] and
that we have data gathered from experimentation to evaluate G at size n and again
at size 10n:



6

G(10n)

G(n)
=

(10n)d log(10n)

nd log n

=
nd10d log(10n)

nd log n

=
10d log(10n)

log n

= 10d(
log 10 + log n

log n
)

= 10d(
1 + log n

log n
)

= 10d(1 +
1

log n
)

→ 10d

because 1
log n

→ 0 as n → ∞. (Again the growth constant A is made irrelavant by

cancellation.) As in the pure exponential case, this conclusion can be stated in terms
of logarithms:

d ' log10(
F (10n)

F (n)
).

Consider the bottom-up merge sort specifically for linked lists, implemented as
List::Sort. It is known from theory that the algorithm is modelled by G, and we have
collected specific timing data as follows:

T (10000) = 123674

T (100000) = 1566259

Then:
T (100000)

T (10000)
=

1566259

123674

= 11.66 . . .

' 10±
= 101

predicting d = 1. Note here that the data will not likely be enough to discriminate
between Models 1 and 2, so we must base that choice on other considerations.

4 Estimating the growth constant

We can refine an abstract model to a “concrete” version by finding the leading coef-
ficient (growth constant) A in the model. Knowing specific values for both A and d



7

will provide a model that can predict runtimes with useful accuracy. The goal is to
make timing data and the concrete model match as closely as possible:

T (n) ' A×M(n) for all n

At this point, we are assuming one of two “abstract” models for the runtime cost
of an algorithm:

F (n) = nd

G(n) = nd log n

and further we have estimated a value for the (integer) exponent d. Given that, we
want to calculate an estimate for the constant A such that T (n) = A ×M(n) for
either of our models M by solving one of the evaluated equations obtained from data
for A:

A =
T (n)

M(n)

where T is timing data and M is the growth model (F or G). In fact, we get different
estimates for A for each known pair (n, T (n)) in our collected data - a classic over-
constrained system. Ideally we would use a method such as least squares (linear
regression) to optimize a value for A using all of the collected runtime data. A decent
substitute would be to interpolate a value using the two data points we used to
estimate the exponent. Here are those calculations using the two examples already
given above.

Example 1 (continued)

We have this data for insertion sort:

T (1000) = 244853

T (10000) = 24991950

The data points give estimates of A as

A =
T (1000)

F (1000)
=

244853

10002

= 0.2485

A =
T (10000)

F (10000)
=

24991950

100002

= 0.2499



8

It is reasonable to settle for A = 0.25 to complete our concrete model:

M(n) = 0.25× n2 Concrete Model for insertion sort

This model can be used to estimate runtimes for values of n where actual data is
lacking. Note that the choice of the quadratic abstract model is based on theory and
known to be a correct abstract model for insertion sort.

Example 2 (continued)

We have this data collected for List::Sort:

T (10000) = 123674

T (100000) = 1566259

The data points give estimates of A as

A =
T (10000)

G(10000)
=

123674

10000 log 10000
=

123674

10000× 4

= 3.09185

A =
T (100000)

G(100000)
=

1566259

100000 log 100000
=

1566259

100000× 5

= 3.132518

It is reasonable to settle for A = 3.1 to complete our concrete model:

M(n) = 3.1× n log n Concrete Model for List::Sort

This model can be used to estimate runtimes for values of n where actual data is
lacking. Note that the choice of the linear×log abstract model is based on theory
and known to be a correct abstract model for List::Sort (a version of bottom-up
merge sort).

5 Cautions and Limitations

The reader was likely surprised that using the data as in Sections 3 and 4 above
is unable to distinguish between the pure power model F and the model G that is
a power model multiplied by a logarithm. The reason at one level is simple: the
quotients G(10n)/G(n) and F (10n)/F (n) differ by 10d/ log n. The numerator 10d is
a fixed number, whereas the denominator log n grows infinitely large with n (albeit
rather slowly), so the difference gets ever smaller as n grows large. Given that data



9

inevitably has some variation due to randomness, teasing out such a diminishingly
fine distinction is problematic.

Another observation the reader likely made is that we used the base 10 logarithm
instead of the more common base 2 logarithm. Any base could have been used. We
chose base 10 because multiplying by 10 is a visually simple process - just move the
decimal point - whereas if we used base 2 (and doubled our input size instead of
multiplying it by 10) the results are similar, except it is less easy visually to recognize
“approximately” 2n than “approximately” 10n.

Different base logarithmic functions have the same Θ class, so when discussing Θ
we are free to use any base log:

Lemma 5. loga x = loga b× logb x

which tells us that log2 n = Θ(log10 n), the first being a constant multiple of the
second, that constant being log2 10.

Finally, and most important, we need to keep in mind that using the techniques of
Sections 3 and 4 are (1) only estimates - “estimate” being another word for “educated
guess” - and (2) dependent on a choice of model. The choice of model may also be
an educated guess, or it could be from theoretical considerations, or it could be a
simplification from known theoretical constraints.

As in all of science, a model is an approximation of reality.

Exercise 2. Find the model exponent d and growth constant A for each line in the
following table:

Table 2: Measurement Data
n T (n) T (10n) Model d A
10000 8395 84054 And

80 179200 179200000 And

10000 256040 3115695 And log n
10000 254848 25467962 And

500 559016 17666669 And

Report d as an integer or simple fraction and A to two decimal places.


