Homework 1 50 points

Context

Define a function f to be admissable iff it is defined on almost all of the nonnegative integers and has positive real values on almost all of the domain. That is, there is an integer n_{0} such that $f(n)$ is defined and $f(n)>0$ for all integers $n>n_{0}$. Note that for polynomials, this condition requires that the leading coefficient is a positive number.

Instructions: Prove propositions 1-4 and work the exercise.
Proposition 1. If f and g are admissable and $f \leq \mathcal{O}(g)$ then $\Theta(f+g)=\Theta(g)$.

Hint. Apply the definitions directly.

Exercise. Prove or disprove: $\Theta(1+g)=\Theta(g)$ for any admissable g.
Proposition 2. Suppose that f and g are admissable and

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=C
$$

where C is a non-negative constant. Then $f=\mathcal{O}(g)$ and $g=\Omega(f)$. Moreover, if $C>0$ then $f=\Theta(g)$.

Hint. Start by showing that $f(n) / g(n) \leq C+1$ for almost all n.

Proposition 3. If a and b are positive numbers (not necessarily integers) and $a \leq b$ then $n^{a} \leq \mathcal{O}\left(n^{b}\right)$ and $n^{b} \geq \Omega\left(n^{a}\right)$.

Hint. Consider the quotient $n^{a} / n^{b}=n^{a-b}$ and apply Proposition 2 above.

Proposition 4. Suppose f is a polynomial in n of degree d, with the form

$$
f(n)=\sum_{i=0}^{d} a_{i} n^{i}
$$

with leading coefficient $a_{d}>0$. Then $f(n)=\Theta\left(n^{d}\right)$.
Hint. Write $p(n)$ as the sum of $a_{d} n^{d}$ plus terms of lower degree, and apply various results above along with mathematical induction.

