
Assignment 4
50 Points

Problem 1. Consider hash tables with collision resolved by chaining, implemented as
vector-of-lists, as in fsu::HashTable<K,D,H>. Show that the standard traversal has run-
time Θ(b + n), where b is the number of buckets and n is the size of the table. Use the
context and notation established on the next page. (Hint: use aggregate analysis.)

Problem 2. Consider the Partition data structure implementing the Union/Find disjoint
sets algorithms. Let T be any tree in the forest, and denote the rank of T by d and the
number of elements of the set represented by T by k. Show that d ≤ log2 k. (Hint: Use
mathematical induction on d. For the inductive step, examine the tree of rank d with the
fewest number of nodes.)

Problem 3. Consider the family of rectangular mazes described in Disjoint Sets Appendix:
Maze Technology.

(a) Devise an algorithm that translates a 2-D maze of square cells into a graph whose
characteristics reflect all properties of the maze. For example, a path in the graph would
correspond to a path in the maze. (We’ll refer to this translation as an isomorphism.)

(b) Describe in more general terms how the isomorphism would generalize to 2-D mazes
of cells of other shapes, such as hexagonal, or variable shape as long as the shapes are
polygons. (E.g., any tile floor would do.)

(c) Based on the technology for 2-D mazes of square cells, invent maze technology for
describing 3-D mazes of cubical cells. How would the isomorphism generalize to this
case?

1



2

// standard traversal of HashTable t:
for (HashTable::Iterator i = t.Begin(); i != t.End(); ++i)

// HashTable and HashTableIterator context:
class HashTable
{
public:
typedef HashTableIterator Iterator;

Iterator Begin();
Iterator End(); // known to be constant time

...
private:
Vector<List> v; // vector of lists (bucket vector)

};

class HashTableIterator
{
public:
typedef HashTableIterator Iterator;

Iterator& operator++();

...
private:
unsigned vi; // vector index
ListIterator li; // bucket iterator

};

// algorithms used in traversal:

HashTableIterator HashTable::Begin()

{
Iterator i;
i.vi = 0; // start at 0th bucket
while (v[i.vi].Empty()) // while bucket is empty
++i.vi; // go to next bucket

i.li = v[i.vi].Begin(); // start at beginning of this bucket
return i; // NOTE: Begin() == End() for an empty bucket

}

HashTableIterator& HashTableIterator::operator++()

{
++li; // go to next item in bucket
if (li == v[vi].End()) // if at end of bucket
{
do
++vi; // go to next bucket

while (v[vi].Empty()); // until bucket is not empty
li = v[vi].Begin(); // start at beginning of this bucket

}
return *this; // NOTE: Begin() == End() for an empty bucket

}


