Assignment 3
 50 points

Define a function f to be admissable iff it is defined on almost all of the nonnegative integers and has positive real values on almost all of the domain. That is, there is an integer n_{0} such that $f(n)$ is defined and $f(n)>0$ for all integers $n>n_{0}$. Note that for polynomials, this condition requires that the leading coefficient is a positive number.

Asymptotic Equivalence and Tilde Notation

For admissable functions f and g, define $f \sim g$ to mean that

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1
$$

We show below that \sim is an equivalence relation. The terminology used for $f \sim g$ is that f and g are asymptotically equivalent. We denote by f the asymptotic equivalence class of f.

Proposition 1. \sim is an equivalence relation on the set of admissable functions.

Hint. Recall you need to prove the three conditions:
Reflexive: $f \sim f$ for all f
Symmetric: $f \sim g$ implies $g \sim f$ for all f, g

Transitive: $f \sim g$ and $g \sim h$ implies $f \sim h$, for all f, g, h
Proposition 2. Suppose f and g are admissable and

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0
$$

Then $f+g \sim g$.

Proposition 3. Suppose f and g are admissable and $f \sim g$. Then $f=\Theta(g)$.

Exercise 4. Is the following inverse of Proposition 3 true? Suppose f and g are admissable and $f=\Theta(g)$. Then $f \sim C g$ for some positive constant C. (true or false)

Exercise 5. Prove true or false:
(a) $n \log n+\log n \sim n \log n$
(b) $n \log n+n \sim n \log n$
(c) $n \log n+n \log n \sim n \log n$

