
February 20, 2013

Amortized Analysis

The concept of amortized runtime analysis is usually first encountered when study-
ing the efficiency of the resizing operation for an array or vector, such as in the
Vector::PushBack operation.

When the vector capacity is greater than it’s official size, a call to PushBack(t)

is implemented by just incrementing the size variable and copying the new element
into the revealed slot:

PushBack(T t)

{

data_[size_] = t;

++size_;

}

This clearly has constant runtime Θ(1). But occasionally there is no unused capacity
for the vector object, and a resizing operation must be performed:

PushBack(T t)

{

if (size_ == capacity_)

Resize();

data_[size_] = t;

++size_;

}

Resize()

{

newCapacity = 2 * capacity_;

newData = new T [newCapacity];

for (size_t i = 0; i < capacity_; ++i) newData[i] = data_[i];

delete [] data_;

data_ = newData;

capacity_ = newCapacity;

}

which clearly has runtime Θ(n) (n = size) and a slow one at that due to the memory
management calls and the implicit 2n calls to the T constructor and n calls to the T
destructor. Thus the worst case runtime of PushBack is Θ(n). But, given that most

1

2

calls to PushBack have runtime cost proportional to 1 and only the occasional call
has cost proportional to n, what is the average cost over m PushBack operations?

A similar situation arises in tree iterators, which sometimes need to traverse large
portions of the data structure to get to the “next” element. In worst cases, this can
be the entire tree, meaning that a particular operation might be as costly as Ω(n).
What is the average cost of a sequence of m tree::iterator operations? Or, as it is
often stated, what is the runtime cost of an entire tree traversal?

And hash table Iterators sometimes need to skip over an indeterminate number of
empty buckets to find the next non-empty bucket. Again, in certain cases this could
be almost all of the buckets, meaning that operation is Ω(b+n) worst case, where b =
number of buckets and n the size of the table. What is the cost of an entire traversal
of a Hash Table?

The answers to questions like these are expressed in terms of the “amortized”
cost. The high cost of the resizing, skipping, or searching operations is averaged out
over all of the other less expensive calls.

Theorem 1. The runtime of m calls to Vector::PushBack is Θ(m), provided m >= n.

Observing that Θ(m)/m = Θ(1), we get:

Corollary. The amortized runtime cost of Vector::PushBack is constant.

Recall that a standard traversal of a container c of type C is defined to be the loop

for (C::Iterator i = c.Begin() ; i != c.End() ; ++i)

{

// some action

}

Theorem 2. The runtime of a standard traversal of a tree with n nodes is Θ(n).

Corollary. The amortized runtime cost of a Tree::Iterator operation is constant.

Assuming HashTable uses chaining to resolve collisions, as in the “vector of lists”
implementation, with b buckets and n elements, we have:

Theorem 3. The runtime of a standard traversal of a HashTable is Θ(b + n).

3

Corollary. The amortized runtime cost of a HashTable::Iterator operation is Θ(1+
b/n).

Note that Θ(1+b/n) = Θ(1) if we have the usual structural assumption that b = Θ(n).

(An aggregate analysis proof of Theorem 1 is in the lecture notes on vectors, and a
similar proof of Theorem 2, for binary trees, is in the lecture notes on trees. Theorem
3 is covered in one of the Exercises at the end of this chapter.)

1 Techniques for Amortized Analysis

We look at three techniques for amortized analysis. The general goal is to analyze
the total cost of a sequence of m operations. The amortized cost is defined to be the
average cost of the sequence of operations, per operation:

Amortized cost per operation =
cost of m operations

m

Three general approaches to amortized analysis are listed below:

1.1 Aggregate Analysis

In aggregate analysis, the total cost of a sequence of m operations is estimated and
simplified.

1.2 Cost Accounting

In the cost accounting method we assign an “amortized” cost along with the intrinsicly
defined actual cost:

ci = actual cost of the ith operation

ai = amortized cost of the ith operation

ai − ci = credit amount for the ith operation

c =
m∑

i=0

ci = total cost

a =
m∑

i=0

ai = total amortized cost

4

and subject to the constraint that the total credit is non-negative:

a− c =
m∑

i=0

ai −
m∑

i=0

ci ≥ 0

Note that given the above, the total cost is bounded by the total amortized cost:

total cost = c ≤ a

and, hence, cost ≤ O(a).

While the cost ci is inherent to the algorithm, the amortized cost ai is something
we can define for convenience of proof, subject only to the constraint that c ≤ a.

1.3∗ Potential Functions

For the potential function method it is helpful to think of the evolving data structure
as a sequence D0, D1, D2, . . . as transformed by the sequence of operations, beginning
with D0 before the first operation. Define

ci = actual cost of the operation transforming Di−1 to Di

We need to define a potential function Φ that maps the instances of the data structure
to the real numbers such that:

Φ(Di) >= Φ(D0) for each i

Then the amortized cost can be defined as

ai = ci + Φ(Di)− Φ(Di−1)

Note that
m∑

i=1

ai =
m∑

i=1

(ci + Φ(Di)− Φ(Di−1))

=
m∑

i=1

ci +
m∑

i=1

(Φ(Di)− Φ(Di−1))

=
m∑

i=1

ci + Φ(Dm)− Φ(D0)

That is, the total amortized cost is the total cost plus the difference in beginning
and ending potential. Since Φ(Dm) >= Φ(D0), the total amortized cost is an upper
bound on the total cost.

*More advanced topic.

5

Thus in the potential function method we are free to define a potential function Φ,
subject only to the constraint that the potential Φ(Di) is not smaller than the begin-
ning potential Φ(D0), and conclude that the runtime of a sequence of m operations
is bounded by the total amortized cost.

2 Illustratative Problems

We illustrate the three amortized analysis methods each with two problems:

2.1 MultiStack

A MultiStack is an ordinary stack contrived with an additional operation MultiPop(i)

that pops the stack i times (or n = size times, if i > n):

MultiPop(i)

{

while (i > 0 && !s.Empty())

{

s.Pop();

--i;

}

}

2.2 Binary counter increment

Incrementing a binary counter is an interesting example to analyze, because (1) it is
an inherent part of most loops and (2) calls to increment have data-dependent cost
that can range from 1 to k, where k is the number of bits. Here is C++ pseudocode
for incrementing a counter at the bit level:

BinaryCounter::operator ++()

{

i = 1; // location of bit

while ((not out of bits) && (bit i is 1))

{

unset bit i;

shift to next bit;

}

if (bit i is 0)

set bit i;

}

6

The operator++ algorithm can be analyzed in terms of the three primitive operations
unset, set and shift. Note that these three operations have hardware support (see
Appendix: Code) and run in constant hardware cost. Note also that, in the algorithm
above, shift is paired with unset in every case, so we can estimate runtime cost by
counting only set and unset operations.

An instrumented implementation for this algorithm is available for experimenta-
tion in [LIB]/area51/binarycounter.x.

3 Aggregate Analysis

The two algorithms developed in the previous section serve to illustrate the use of
the three methods for amortized analysis. We begin with aggregate analysis.

3.1 Aggregate Analysis of MultiStack

The worst case runtime [WCRT(1)] for one MultiPop operation is s.Size(). It
follows that for m MultiStack ops, starting with an empty stack, the worst case
runtime is

WCRT(m) <= (number of ops)× (worst case cost of any op)

= m×m = m2

because the size can be m. This is a correct bound, but it is not tight. We can do
better!

Observe that Pop (including those in MultiPop) can be called at most m times,
because Push can be called at most m times, so the cost of all MultiPop operations in
a set of m operations is ≤ m.1 And the cost of all the other operations is the number
of them (since each is constant cost) and hence is ≤ m. Therefore the total cost of
m MultiStack operations is ≤ m + m, and we have:

WCRT(m) <= O(m)

Therefore the cost of a single multistack operation, amortized over m operations, is
O(m)/m = O(1) = Θ(1).

3.2 Aggregate Analysis of binary counter increment

What is the cost of operator++ ? We have already observed that set and unset

have constant runtime. Therefore the runtime cost of operator ++ is the number
of set operations plus the number of unset operations. (We can ignore the cost of
shift since it is tied with unset.) Either of these two operations we call a “bit flip”.

1Here is where we “aggregate” the number of Pop operations.

7

First observe that the maximum length of the loop in operator++ is k = the
number of bits in the counter. Therefore

WCRT = length of loop = number of bits in counter = k

This yields an estimate of O(km) for a sequence of m increments. But we can do
better. Counting bits from least to most significant, starting with 0, observe:

bit 0 flips each time ++ is called (either set or unset)

bit 1 flips every other time ++ is called

bit 2 flips every 4th time

. . .

bit i flips one out of every 2i times operator ++ is called

. . .

In a sequence of m increments, bit i is flipped m/(2i) times (assuming m < k) so the
total number of flips is

k∑
i=0

m

2i
= m

k∑
i=0

1

2i

≤ m
∑
i≥0

1

2i

= m× 2

= 2m

Therefore the cost of all m calls to operator++ is ≤ O(m) and the amortized cost of
one call is ≤ O(m)/m = Θ(1).2

4 Cost Accounting Analysis

Again we treat each of the two example algorithms.

4.1 Cost Accounting Analysis of MultiStack

Define the following cost c and amortized cost a for each of the three MultiStack
operations:

op c a

-- -- --

Push 1 2 // leave extra 1 credit with item

Pop 1 0

MultiPop(i) min(i,size) 0

2This argument is very similar to that in the lecture notes for analysis of Vector::PushBack.

8

As we Push items on the stack, leave the 1 credit with the pushed item. Then every
item has enough credit to pay for the Pop operation that removes it from the stack
(including any Pop that is part of MultiPop). Therefore the amortized cost of Push
pays for all of the Pop and MultiPop operations:

Total cost ≤ total amortized cost = 2m

and amortized cost per operation is O(2m)/m = Θ(1). Note that our insightful
definition of the amortized costs eliminated having to deal with the summations,
making the analysis seem “easier”. The logic of depositing the credit with the pushed
item makes the proof that (cost of any sequence of operations) ≤ (total amortized
cost of that sequence) more or less self-evident.

4.2 Cost Accounting Analysis of Binary Increment

Observe that a bit must be set before it can be unset. So we may as well pay for the
subsequent unset operation at the time the bit is set:

op c a

-- -- --

set 1 2 // leave credit with bit being set

unset 1 0

Thus in the loop defining operator++, all of the unset operations are already paid
for by the previous set operation that set the bit being unset. But set occurs only
once in a call to operator++, outside the loop. Therefore

a =
∑

i

ai ≥
∑

ci = c

(the necessary condition for accounting analysis) and

a =
∑

i

ai = 2m

It follows that the runtime cost of m increment operations is O(m) and the amortized
cost of one increment is Θ(1).

9

5∗ Potential Function Analysis

We continue as above with analysis of the two example algorithms.

5.1 Potential Function Analysis of MultiStack

We are given a sequence of m MultiStack operations beginning with an empty stack
S0 and transforming to stacks S1, S2, ..., Sm. Define the potential of a stack S as the
number of elements in the stack:

Φ(S) = S.size

Then Φ(S0) = 0 because S0 is empty, and Φ(Si) >= 0 because no stack has negative
size, so the potential requirements are met.

Calculate the amortized cost by operation:

Push: ai = ci + Φ(Si)− Φ(Si−1) = 1 + Si.size− Si−1.size = 1 + 1 = 2

Pop: ai = ci + Φ(Si)− Φ(Si−1) = 1 + Si.size− Si−1.size = 1− 1 = 0

MultiPop(k): ai = ci + Φ(Si)− Φ(Si−1) = k′ + Si.size− Si−1.size = k′ − k′ = 0

where k′ = min(k, Si−1.size). Thus (the total cost of m MultiStack operations) ≤
(the total amortized cost) ≤ 2m, and the amortized cost per operation is Θ(1).

5.2 Potential Function Analysis of BinaryIncrement

We are given a sequence of m Increment operations on a binary counter C0 initialized
to 0 and transforming to counters C1, C2, ..., Cm. Define the potential of a counter as
the number of 1 bits in its binary representation:

Φ(C) = number of 1 bits in C.word

Clearly Φ(C) >= 0 for any counter C, and Φ(C0) = 0, so the potential conditions
are met.

For convenience, denote Φ(Ci) by bi = number of 1 bits in Ci.word. Suppose that
the ith application of operator++ unsets ti bits before setting a bit. (The loop body
executes ti times.) Examine these values by cases:

*More advanced topic.

10

Case: bi = 0
Then the increment getting us to Ci unset all bits and did no set:

bi−1 = ti = k

ci = ti

Case: bi 6= 0

bi = bi−1 − ti + 1

ci = ti + 1

Therefore in all cases
bi <= bi−1 − ti + 1 and

bi − bi−1 <= −ti + 1

Calculating the amortized cost of operation i, we get:

ai = ci + Φ(Ci)− Φ(Ci−1)

≤ (ti + 1) + bi − bi−1

≤ ti + 1− ti + 1

= 2

and therefore the cost of m increments is O(m) and the amortized cost of one incre-
ment is constant.

Exercises

1. Construct a proof of Theorem 1 using the Cost Accounting method.
2. Construct a proof of Theorem 3 using the Potential Function method.

11

Appendix: Code

// binary counter class

template < typename N = size_t >

class BinaryCounter

{

public:

BinaryCounter(N begin = 0) : word_ (begin)

{}

BinaryCounter& operator ++()

{

N i = 0x01; // mask determining location of bit

while ((i != 0) && ((word_ & i) != 0))

{

word_ &= ~i; // unset bit i

i = i << 1; // shift to next bit

}

if (i != 0) // word_ & i == 0

{

word_ |= i; // set bit i

}

return *this;

}

N Value () const { return word_; }

private:

N word_; // bits = 8 * sizeof(N)

};

// example binary counter client program

int main(int argc, char* argv[])

{

size_t start = 0, stop = 1025;

if (argc > 1)

start = atoi(argv[1]);

if (argc > 2)

stop = atoi(argv[2]);

for (BinaryCounter<> bc(start); bc.Value() < stop; ++bc)

std::cout << ’’Counter value: ’’ << bc.Value() << ’\n’;

}

