
Assignment 6
25 Points

1. Consider hash tables with collision resolved by chaining, implemented as vector-of-lists,
as in fsu::THashTable<K,D,H>. Show that the standard traversal has runtime Θ(b+n),
where b is the number of buckets and n is the size of the table. Use the context and
notation established on the next page. (Hint: use aggregate analysis.)

2. Consider the Partition data structure implementing the Union/Find disjoint sets algo-
rithms. Let T be any tree in the forest, and denote the rank of T by d and the number of
elements of the set represented by T by k. Show that d ≤ log2 k. (Hint: Use mathemat-
ical induction on d. For the inductive step, examine the tree of rank d with the fewest
number of nodes.)

3. (counts as 3 problems) Consider the family of rectangular mazes described in Disjoint
Sets Appendix: Maze Technology.
(a) Devise an algorithm that translates a 2-D maze of square cells into a graph whose

characteristics reflect all properties of the maze. For example, a path in the graph
would correspond to a path in the maze. (We’ll refer to this translation as an
isomorphism.)

(b) Describe in more general terms how the isomorphism would generalize to 2-D mazes
of cells of other shapes, such as hexagonal, or variable shape as long as the shapes
are polygons. (E.g., any tile floor would do.)

(c) Based on the technology for 2-D mazes of square cells, invent maze technology for
describing 3-D mazes of cubical cells. How would the isomorphism generalize to this
case?

1



2

// standard traversal of HashTable t:
for (HashTable::Iterator i = t.Begin(); i != t.End(); ++i)

// HashTable and HashTableIterator context:
class HashTable
{
public:
typedef HashTableIterator Iterator;

Iterator Begin();

Iterator End(); // known to be constant time
...

private:
Vector<List> v; // vector of lists (bucket vector)

};

class HashTableIterator
{
public:
typedef HashTableIterator Iterator;

Iterator& operator++();

...
private:
unsigned vi; // vector index
ListIterator li; // bucket iterator

};

// algorithms used in traversal:

HashTableIterator HashTable::Begin()

{
Iterator i;
i.vi = 0; // start at 0th bucket
while (v[i.vi].Empty()) // while bucket is empty
++i.vi; // go to next bucket

i.li = v[i.vi].Begin(); // start at beginning of this bucket
return i; // NOTE: Begin() == End() for an empty bucket

}

HashTableIterator& HashTableIterator::operator++()

{
++i.li; // go to next item in bucket
if (i.li == v[i.vi].End()) // if at end of bucket
{
do
++i.vi; // go to next bucket

while (v[i.vi].Empty()); // until bucket is not empty
i.li = v[i.vi].Begin(); // start at beginning of this bucket

}
return *this; // NOTE: Begin() == End() for an empty bucket

}


