
March 13, 2019

Homework 4: Ranking Components By Size
50 Points

A component of a graph G = (V,E) is a maximal connected subgraph G1 = (V1, E1) of G.
Any two vertices in V1 are connected by a path and no edge has one vertex in V1 and the
other outside V1.

A component of a Partition p is one of the sets in p.

Part 1: Algorithms. Invent an algorithm named RankComponentsBySize that oper-
ates on a Partition object p (through its API) and produces a vector v of unsigned integers
such that v[i] is the size of the (1+ i)th largest component of p: p[0] is the size of the largest
component, p[1] is the size of the second-largest component, and so on.

Algorithm I: RankComponentsBySize
U = universe
p = Partition object on U
v = vector to store results
{
step 1: count the items in each set (‘‘tree’’) of the partition
associative_array treeSize[]
for each element x of the universe
treeSize[p.Root(x)] += 1

step 2: put the sizes in the vector v
step 3: sort v large-to-small
return v

}

Also invent an algorithm that creates a Partition object p that captures the precise component
structure of an undirected graph g. Combine the two algorithms to obtain an application for a
graph g: The Component Rank Sequence of g.

Algorithm II: Construct Partition model of graph
g = graph
U = universe = {vertices of g}
p = Partition object on U initialized to singletons
{
for each edge e = [x,y] in g
p.Union(x,y)

return p
}

1

2

Part 2: Implementations. Code up the RankComponentsBySize algorithm in C++ conformant
with the stub below (and also available in the file LIB/graph/partition util.h).

template < class P >
// void RankComponentsBySize (const P& p, fsu::Vector<size_t>& v) // p is a Partition object
void RankComponentsBySize (P& p, fsu::Vector<size_t>& v) // allows path compression
{
size_t components = p.Components();
fsu::HashTable<size_t,size_t> treesize(p.Components());
for (size_t i = 0; i < p.Size(); ++i)
{
++treesize[p.Root(static_cast<typename P::IntType>(i))];

}
assert(components == treesize.Size());
v.SetSize(components);
size_t i = 0;
typename fsu::HashTable<size_t,size_t>::Iterator j;
for (j = treesize.Begin(); j != treesize.End(); ++j)
{
v[i++] = (*j).data_;

}
fsu::GreaterThan<size_t> gt;
fsu::g_heap_sort(v.Begin(),v.End(),gt);

}

And also install your process for capturing the component structure of a graph in the second stub
below (and also available in the file LIB/graph/graph util.h).

template < class G >
void ComponentRankSequence(const G& g , size_t maxToDisplay, std::ostream& os)
{
fsu::Partition<size_t> p(g.VrtxSize()); // uses partition2.h
typename G::AdjIterator i;
for (size_t v = 0; v < g.VrtxSize(); ++v)
{
for (i = g.Begin(v); i != g.End(v); ++i)
// p.Union(v,*i); // OK, but Union is called twice for each edge
if (v < *i) p.Union(v,*i); // blocks redundant Union calls

}
RankComponentsBySize(p,maxToDisplay,os);

}

Test your implementations by compiling a copy of LIB/graph/agraph.cpp and executing agraph.x
on various graphs: on small graphs that can be hand verified and on some large graphs (such as
the “Kevin Bacon” actor-movie abstract graph) and some very large graphs generated at random.
Compare your results with those using LIB/area51/agraph i.x.

Note that these implementations are installed in the suggested contexts partition util.h and
graph util.h. The solution for Homework 3, IsBipartite, is also installed in graph util.h so

3

that these two files are now fully implemented, and the graph analysis program agraph.cpp can
now be built to an executable agraph.x.

In addition, the test harness fpartion2+.cpp now builds to the executable fpartition2+.x
which gives direct access to test the partition version.

Part 3: Correctness. Provide an argument that your algorithm is correct.

Algorithm I has three steps. Step 1: determines the sizes of the sets in the partition p by counting
the elements that ascend to each root in the tree model. Step 2: places the set sizes in a vector.
Step 3: sorts the vector large-to-small. The vector satisfies the required conclusion - a large-to-small
ranked listing of the component sizes. �

Algorithm II builds a partition by calling Union on the vertices of each edge in the graph.
If vertices v and w are vertices in the same component of the graph G then there is a path v =
x0, x1, ..., xk = w such that xi−1 and xi are the vertices of an edge e = [xi−1, xi] in G. By construction,
we have called Union(xi−1, xi) for each i, so v = x0, x1, ..., xk = w are in the same component.

Conversely, if v and w are in the same component of the partition then a sequence of Union operations
on pairs xi−1, xi, startng at x0 = v and ending at xk = w, must have occured, so there is a path in
G connecting v and w. �

Part 4: Run Costs. Provide an estimate of the runtime and runspace requirements of your
algorithm and your component modelling process.

Algorithm I:

The const version of p.Root(x) has runtime O(log2(n)) and the non-const version is faster,
approaching O(log∗(n)). (See Theorems 1 and 2 of the Disjoint Sets Union/Find Notes.) The insert
and access time in an associative array is amortized constant [if we use an unordered map such
as a HashTable implementation] and O(log2(n)) [if we use ordered map such as a balanced BST
implementation]. Therefore step 1, the first (counting) loop, runs in time at most O(n log∗(n)) when
using unordered map and non-const Patrtition methods.

Step 2 of the algorithm is a copy loop with runtime Θ(m) where m is the number of components.
Clearly m ≤ n so step 2 is dominated by step 1.

The sort algorithm in step 3 has runtime O(m log2(m)). In many situations m is much smaller than
n, although there is no guarantee this is the case in general. In situations where there are only a
few components, such as a random graph with expected vertex degree large than 2, the runtime will
be dominated by the step 1.

Note that step 1 is also where we can improve runtime by using hashmap and allowing the calls to
Root to be the non-const [path-compression] version.

We can assert that the runtime is bounded above in all cases by O(n log∗(n) + m log2(m)). �

4

The extra space required by the algorithm is the associative array treesize used to determine
the sizes of the components. The size of treesize is the number m of components, so we can
conclude the extra space requirement is +Θ(m). �

Algorithm II:

Let n be the number of vertices in the graph G. Algorithm II consists of a straightforward traversal
of G with a call to Union embedded in the inner loop. The traversal itself requires Θ(n + |E|) steps
and the Union call has runtime O(log∗ n). Therefore the runtime is O((n + |E|)× log∗ n). No extra
space is required. �

Part 5: Experiments.

5.1. Try to provide experimental evidence of the Erdös-Reńyi “critical value” for the emergence of
a giant component.

These experimental results show the sizes of the largest and runner-up components for randomly
generated graphs:

vertices edges [d] largest second ratio
-------- ----- ---- ------- ------ -----
100,000 45,000 0.90 268 207 1.29

282 226 1.24
332 175 1.90
323 273 1.84
303 187 1.62

100,000 47,500 0.95 932 343 2.71
724 537 1.35
710 421 1.69
365 316 1.16
275 273 1.01

100,000 52,500 1.05 11278 537 21.00
10614 327 32.46
8099 372 21.77
10999 481 22.87
11681 301 38.81

100,000 55,000 1.10 19027 268 70.00
19858 190 104.52
15980 180 88.78
17862 355 50.32
18506 134 1381.09

The results show a 20-fold jump in the ratio of the size of the largest component to the size of the
next largest component as [d] passes from 0.95 to 1.05.

5

5.2. Given your analysis of the Kevin Bacon graph, in the light of the Erdös-Reńyi result, what can
you see or say about these graphs?

The Kevin Bacon graph has this component signature:

Welcome to graph analysis
Graph g: movies.txt.ug
g.VrtxSize(): 119429
g.EdgeSize(): 202927
g bipartite? YES: Red = 4188 , Black = 115241
number of components: 33
all components ranked by size:
rank size
---- ----

1 118774
2 67
3 46
4 44
5 34
6 29
7 29
8 27
9 27
10 26
11 25
12 23
13 23
14 21
15 20
16 19
17 18
18 18
19 17
20 16
21 14
22 13
23 12
24 12
25 11
26 11
27 11
28 10
29 9
30 8
31 7
32 6
33 2

which shows one major component that is 1773 times the size of the next smaller component. The 32
minor components represent tiny movie-actor universes that are disconnected from the main Kevin

6

Bacon universe. The average degree of a vertex is [d] = 3.4, so the “giant component” is predicted
by Erdös-Reńyi.

Note however that this component “tail” is slightly thicker than one would expect for a random
graph, which typically looks like

Graph g: rangraph.119429.202927
g.VrtxSize(): 119429
g.EdgeSize(): 202927
g bipartite? NO
number of components: 4274
top 10 components ranked by size:
rank size
---- ----

1 114863
2 9
3 4
4 4
5 4
6 3
7 3
8 3
9 3
10 3

Actual naturally occuring graphs tend to have this “thick tail” property, and why is unknown.

5.3. Discuss random maze graphs in the context of Erdös-Reńyi. What can you see or say about
these graphs?

Here is analysis of a random maze graph with 49 components:

Welcome to graph analysis
Graph g: maze100x200.49.ug
g.VrtxSize(): 20000
g.EdgeSize(): 19951
g bipartite? YES: Red = 10022 , Black = 9978
number of components: 49
top 10 components ranked by size:
rank size
---- ----

1 19945
2 4
3 2
4 2
5 2
6 2
7 1
* 1 (the remaining 42 components have size 1)

7

There is one major component (where all cells are mutually reachable), 5 very small closed regions
consisting of 4,2,2,2, and 2 cells, and 42 closed boxes. Note that [d] = 1.995 for this maze graph ...
approximately double the Erdös-Reńyi threshold. This is a typical result for randomly generated
mazes. This result is fairly typical for random mazes when the process is terminated when start and
goal are first connected:

Research-level Question: Can you find a formula for the expected degree of a random maze
graph? (Note in the above that [d] is approximately 2.00 which is also the col/row ratio.)

