March 13, 2019

Homework 3: IsBipartite Algorithm
50 Points

A k — coloring of a graph G = (V| E) is a mapping color : V. — {1,..., k} such that for any
edge e = [v,w] € E color(v) # color(w). G is said to be bipartite iff G has a 2-coloring.

The idea of a k-coloring is that the vertices can be “colored” using k distinct colors so that
the vertices of any edge have different colors. A bipartite graph is one that can be colored
with two colors.

Part 1. Invent an algorithm named IsBipartite with these properties:

(1) IsBipartite operates on any undirected graph G = (V, E)

(2) IsBipartite returns true iff G is bipartite

(3) If IsBipartite returns true then a supplied vector will be populated with a 2-coloring
of the vertices of G

(4) The runtime of IsBipartite is < O(|V| + |E|)

The Algorithm

bool IsBipartite
Input: Graph G(V,E)
Return: true iff G is 2-colorable
Output if true: mapping color: V -> {1,2} such that:
for any edge e = [x,y] in E color(x) != color(y)

{

1: Run breadth-first survey on G

2: Assign colors based on distance parity:

for each vertex v

{
if bfs.Distance(v) is even
color(v) =1
else
color(v) = 2
}

3: Check 2-color property:
for each vertex v

{
for each neighbor w of v
{
if color(w) == color(v) return false;
}
}

return true

}

Part 2. Code up the algorithm in C++ conformant with the stub below. Test the implementation
on small graphs that can be hand verified and on some large graphs (such as the “Kevin Bacon”
actor-movie abstract graph) and some very large graphs generated at random. Include some random
maze graphs, and report any discoveries.

The Implementation

template < class G >
bool IsBipartite (const G& g , fsu::Vector <char>%& color)
{
fsu: :BFSurvey<G> bfs(g);
bfs.Search();
color.SetSize(g.VrtxSize());
// set color Red for even distance and Black for odd distance
for (typename G::Vertex v = 0; v < g.VrtxSize(); ++v)
{
(0 == bfs.Distance()[v] % 2 ? color[v] = ’R’ : color[v] = ’B’);
}
// all vertices have been colored; check 2-color property
for (typename G::Vertex v = 0; v < g.VrtxSize(); ++v)

{
for (typename G::AdjIterator i = g.Begin(v); i != g.End(v); ++i)
{
if (color[*i] == color[v]) return O;
}
}
return 1;

template < class G >

bool IsBipartite (const G& g)

{
fsu::Vector<char> color (g.VrtxSize());
return IsBipartite (g,color);

}

Sample Test Results

graph g.VrtxSize() g.EdgeSize() IsBipartite() vertex color counts
graph1.10.10 10 10 true Red = 5 , Black = 5
graph.20.25 20 25 false

rangraphl 100 100 false

rangraph?2 100000 35000 true Red = 75772 , Black = 24228
rangraph3 100000 350000 false

Kevin Bacon 119429 202927 true Red = 4188 , Black = 115241
rangraph_bp 20000 100000 true Red = 10000 , Black = 10000
ranmazel100x200 20000 18200 true Red = 10674 , Black = 9326

Discovery. Maze graphs are bipartite? (True - any subgraph of the square lattice is bipartite.)

Part 3. Provide a proof that your algorithm is correct.
Lemma 1. If G has a 2-coloring then colors of vertices along any path in G must alternate.

Proof of Lemma 1. The vertices along a path are the ends of the connecting edges of the path.
By definition, a k-coloring must assign different colors to the two ends of each edge. When k = 2
there are only 2 color choices, so they must alternate. (|

Lemma 2. If G is bipartite and connected then except for color names any two 2-colorings of G
are the same.

Proof of Lemma 2. Suppose c; is a coloring of G. Choose any vertex vg. Then the color of any
other vertex x is determined by following a path from vy to x: by Lemma 1, if the path has an
even number of edges then ¢;(z) = ¢1(vp) and if the path has an odd number of edges then ¢ (z)
is the other color. So if ¢y is any other 2-coloring of G then either co(2z) = ¢1(x) for all vertices x
or co(x) # ¢1(x) for all vertices x: ¢; and co either agree on all vertices or they supply the opposite
color for all vertices. |

Proof of correctness of algorithm. Assume without loss of generality that the graph is connected.
(Otherwise, apply the argument to each component of G.)

Step 1 runs a BFSurvey on G which results in the distance calculated from a search root for each
vertex. Since the distance is realized by a path, any 2-coloring must respect the parity along these
paths - colors must alternate as we encounter vertices along any path. (Lemma 1.)

Step 2 assigns colors based on distance parity. By Lemma 1, any 2-coloring must satisfy this property.

Step 3 checks the 2-color property for every pair of adjacent vertices. If a failure is found, the
algorithm terminates and returns false. If no failure is found, true is returned and the coloring is
returned.

Note that when the check fails, there is no other possible 2-coloring of the graph, by Lemma 2.
Thus when a check fails, the only possible 2-coloring has failed, and the graph is not bipartite. If
all checks pass, the 2-coloring has been found. O

Part 4. Provide a proof that your algorithm has runtime < O(|V| + |E|)

Proof. We know that the runtime of BFSurvey done in Step 1 is ©(|V| + | E|) by Theorem 2f of
the graph notes. Step 2 consists of a simple loop over all vertices, so step 2 has runtime = ©(|V]).
Step 3 consists of a standard traversal “touching” each vertex and each edge (twice ...) and hence
has runtime ©(|V| 4 2|E|) = O(]V| + |E|). Since these three steps are executed consequtively, the
runtime is the maximum of the three estimates. O

