Homework 3: IsBipartite Algorithm 50 Points

A k - coloring of a graph $G=(V, E)$ is a mapping color : $V \rightarrow\{1, \ldots, k\}$ such that for any edge $e=[v, w] \in E \operatorname{color}(v) \neq \operatorname{color}(w) . G$ is said to be bipartite iff G has a 2-coloring.

The idea of a k-coloring is that the vertices can be "colored" using k distinct colors so that the vertices of any edge have different colors. A bipartite graph is one that can be colored with two colors.

Part 1. Invent an algorithm named IsBipartite with these properties:
(1) IsBipartite operates on any undirected graph $G=(V, E)$
(2) IsBipartite returns true iff G is bipartite
(3) If IsBipartite returns true then a supplied vector will be populated with a 2 -coloring of the vertices of G
(4) The runtime of IsBipartite is $\leq \mathcal{O}(|V|+|E|)$

Part 2. Code up the algorithm in $\mathrm{C}++$ conformant with the stub below. Test the implementation on small graphs that can be hand verified and on some large graphs (such as the "Kevin Bacon" actor-movie abstract graph) and some very large graphs generated at random. Include some random maze graphs, and report any discoveries.

Part 3. Provide a proof that your algorithm is correct.

Part 4. Provide a proof that your algorithm has runtime $\leq \mathcal{O}(|V|+|E|)$

Here is $\mathrm{C}++$ code stub in which to code your algorithm. Note that the graph g and the vector color are passed by const reference and non-const reference, respectively.

```
template < class G >
bool IsBipartite ( const G& g , fsu::Vector <char>& color )
{
    // code goes here
}
template < class G >
bool IsBipartite ( const G& g )
{
    fsu::Vector<char> color (g.VrtxSize());
    return IsBipartite (g,color);
}
```


Cite your sources!

