
July 23, 2019

Homework 2 Solutions
50 Points

Problem 1. Consider hash tables with collision resolved by chaining, implemented as
vector-of-lists, as in fsu::HashTable<K,D,H>. Show that the standard traversal has run-
time Θ(b + n), where b is the number of buckets and n is the size of the table. Use the
context and notation established below. (Hint: use aggregate analysis.)

Solution. The standard traversal calls two HashTable:: processes: Begin() and Iterator::++(),
each of which is implemented with a loop of calls to the counter increment ++i.vi. Because
i.vi is an unsigned integer that is initialized to 0 and limited in range to be less than b,
and i.vi is always advanced (never decremented), the aggregate number of calls to ++i.vi
is b = Θ(b).

In addition, each call to HashTable::Iterator::operator++ calls ListIterator::operator++
and possibly other List methods when the list is empty or we reach the end of the list. All of
the list operations have constant runtime. The aggregate number of such calls is Θ(n + b):
n from the list increment calls and b from the list Empty/Begin calls.

Therefore the aggregate number of calls to any of the primitive operations in a traversal
is Θ(b) + Θ(n + b) = Θ(n + b). �

// context for analysis:
for (HashTable::Iterator i = t.Begin(); i != t.End(); ++i) {}

class HashTable
{
public:
typedef HashTableIterator Iterator;

Iterator Begin();
Iterator End();

...
private:
Vector<List> v; // vector of lists (bucket vector)

};

class HashTableIterator
{
public:
typedef HashTableIterator Iterator;

Iterator& operator++();

...
private:
Table * pt; // pointer to table object
unsigned vi; // vector index

1

2

ListIterator li; // bucket iterator
};

HashTableIterator HashTable::Begin()

{
Iterator i;
i.pt = this;
i.vi = 0; // start at 0th bucket
while (i.vi < v.Size() && v[i.vi].Empty()) // while bucket is empty
++i.vi; // go to next bucket

if (i.vi == v.Size()) // no non-empty bucket found
return End();

i.li = v[i.vi].Begin(); // start at beginning of this bucket
return i; // NOTE: Begin() == End() for an empty bucket

}

HashTableIterator HashTable::End()

{
Iterator i;
i.pt = this;
i.vi = v.Size() - 1; // last bucket
i.li = v[i.vi].End(); // end of last bucket
return i; // NOTE: Begin() == End() for an empty bucket

}

HashTableIterator& HashTableIterator::operator++()

{
++li; // go to next item in bucket
if (li == v[vi].End()) // if at end of bucket
{
do
++vi; // go to next bucket

while (vi < pt->v.Size() && v[vi].Empty()); // until bucket is not empty
if (vi == pt -> v.Size())
*this = pt -> End();

else
li = v[vi].Begin(); // start at beginning of this bucket

}
return *this; // NOTE: Begin() == End() for an empty bucket

}

3

Problem 2. Consider the Partition data structure implementing the Union/Find disjoint sets
algorithms. Let T be any tree in the forest, and denote the rank of T by d and the number of
elements of the set represented by T by k. Show that d ≤ log2 k.

Solution. We apply the principle of mathematical induction on the variable d = rank. The case
d = 0 reflects the fact that a tree of height 0 has log 2 = 1 node. For the inductive step, assume the
result is true for trees in the Partition forest with rank < d and prove the result for trees with rank
d.

Let T be a tree of smallest size among all trees of rank d. Let T1 and T2 be the two trees that
formed T in a Link operation. Denote the sizes of T , T1, T2 by k, k1, k2, respectively.

Because T1 has fewer nodes than T , T1 has rank < d, by our choice of T having minimal size
among all trees of rank d. Similarly T2 has rank < d. Therefore by the induction hypothesis
d− 1 ≤ log k1 and d− 1 ≤ log k2, so

d ≤ log k1 + 1 = log k1 + log 2 = log 2k1

and similarly

d ≤ log 2k2

Now, k = k1 + k2, and either k1 ≤ k2 or k2 ≤ k1, so either 2k1 ≤ k or 2k2 ≤ k. Therefore d ≤ log k.

For any other tree T ′ of rank d and size k′, k ≤ k′ so d ≤ log k′. �

Problem 3(a). Devise an algorithm that translates a 2-D maze of square cells into a graph whose
characteristics reflect all properties of the maze. For example, a path in the graph would correspond
to a path in the maze. (We’ll refer to this translation as an isomorphism.)

Solution. Suppose the maze has p rows and q columns, and that the cells are numbered conse-
qutively c0, c1, . . . , cn−1, where n = pq. Define the graph G = (V,E) by

V = {v0, v1, . . . , vn−1}
E = {(vi, vj)| ci and cj share a face with no wall}

In other words, G has n vertices and an edge connecting vi to vj iff ci and cj share a common face
with no wall up between them. The mapping that sends a cell ci to the vertex vi preserves the
notion of adjacency from the maze context to the graph context, in the sense that:

ci is a maze-neighbor of cj iff vi is a graph-neighbor of vj .

This is the notion of isomorphism. �

4

Problem 3(b). Describe in more general terms how the isomorphism would generalize to 2-D mazes
of cells of other shapes, such as hexagonal, or variable shape as long as the shapes are polygons.
(E.g., any tile floor would do.)

Solution. The description for part (a) works equally well for any polygonal shape, as long as the
notion of “share a common face” is reasonably defined:

We are assuming that the cells have polygonal boundaries (consisting of a finite number of straight
line segments) and that when cells share any portion of a boundary that portion consists entirely
of one of the straight line segments from the boundary of each cell. We refer to this as “sharing a
common face”. We also say that two cells sharing a common face either have a wall along that face
or no wall along that face, so that passage from one cell to the other is either possible (common face
has no wall) or not possible (comman face has a wall). When two cells share a common face with
no wall, we define these cells to be adjacent cells in the maze.

With those ground rules, we can map a maze to a graph as follows: Number the cells consequtively
as {c0 . . . cn−1} and an equal number or vertices {v0 . . . vn−1}. Moreover, put an edge ei,j = [vi, vj]
in the graph if and only if ci and cj are adjacent. Then the map

ci → vi

defines an isomorphism from the maze to the graph as constructed. �

Problem 3(c). Based on the technology for 2-D mazes of square cells, invent maze technology for
describing 3-D mazes of cubical cells. How would the isomorphism generalize to this case?

Solution.

const unsigned char Right = 0x01; // byte 00000001 = 1
const unsigned char Left = 0x02; // byte 00000010 = 2
const unsigned char Up = 0x04; // byte 00000100 = 4
const unsigned char Down = 0x08; // byte 00001000 = 8
const unsigned char Front = 0x10; // byte 00010000 = 16
const unsigned char Back = 0x20 // byte 00100000 = 32

cell |= Up; // add wall on up face of cell
cell &= ~Right; // remove wall on right face of cell
(cell & Front == 0) // front face of cell is open
cell = Right|Left|Up|Down|Front|Back; // decimal 63 - closed box

An isomorphism to graphs works the same as before if we define “share a comman face” appro-
priately. �

