COP 4530 Term Exam 5
Fall 2001
Professor Chris Lacher

Name:
SSN:
CS Username: \qquad
Score:
/100

This test contains 3 questions (10 subquestions) on 2 pages. Each subquestion is worth 10 points.

1. You are given the declarations:
```
TBinaryTree <int>
bt;
TBinaryTreeInorderIterator <int>
I;
```

a. What loop defines an inorder traversal of bt?

Define an edge move to be a call to any of the following TBinaryTree<>: : Navigator operations: Initialize(), ++(), ++(int), --(), or --(int).
b. For the bt $=$ tree 1 illustrated, show the number of edge moves for each step in an inorder traversal (insert as many rows as necessary to complete the traversal):

step	no. of edge moves	tree1
I.Initialize (tree1);		
++ I;		
++ I;		

c. What, for a general bt, should the sum of all these edge moves be?
d. What does this calculation illustrate about the computational cost of the iterator increment operator TBinaryTreeInorderIterator<>: :++()?
2. Suppose that you want to save a binary search tree to file and later reconstruct the tree exactly using TBinarySearchTree::Insert (const T\& t).
a. How would you save the file?
b. Why does your method of saving result in correct reconstruction of the tree?
3. An implementation of binary search tree uses a predicate object LessThan on elements to structure the tree according to a certain order property.
a. Name the order property used to define a binary search tree.
b. Define the order property used to define a binary search tree.
c. Given the binary search tree tree 2 illustrated, trace the path of the search for the element 15:
d. Given the binary search tree tree3 illustrated, trace the path of the search for the element 25 :

