
COP4020

Programming

Languages

Semantics

Robert van Engelen & Chris Lacher

COP4020 Fall 2013

Overview

 Static semantics

 Dynamic semantics

 Attribute grammars

 Abstract syntax trees

COP4020 Fall 2013

Static Semantics

 Syntax concerns the form of a valid program, while

semantics concerns its meaning

 Context-free grammars are not powerful enough to describe

certain rules, e.g. checking variable declaration with variable use

 Static semantic rules are enforced by a compiler at

compile time

 Implemented in semantic analysis phase of the compiler

 Examples:

 Type checking

 Identifiers are used in appropriate context

 Check subroutine call arguments

 Check labels

COP4020 Fall 2013

Dynamic Semantics

 Dynamic semantic rules are enforced by the compiler by
generating code to perform the checks at run-time

 Examples:
 Array subscript values are within bounds

 Arithmetic errors

 Pointers are not dereferenced unless pointing to valid object

 A variable is used but hasn't been initialized

 Some languages (Euclid, Eiffel) allow programmers to
add explicit dynamic semantic checks in the form of
assertions, e.g.
 assert denominator not= 0

 When a check fails at run time, an exception is raised

COP4020 Fall 2013

Attribute Grammars

 An attribute grammar “connects” syntax with semantics

 Each grammar production has a semantic rule with actions (e.g.

assignments) to modify values of attributes of (non)terminals

 A (non)terminal may have any number of attributes

 Attributes have values that hold information related to the (non)terminal

 General form:

 Semantic rules are used by a compiler to enforce static semantics

and/or to produce an abstract syntax tree while parsing tokens

 Can also be used to build simple language interpreters

production semantic rule

<A> ::= <C> A.a := ...; B.a := ...; C.a := ...

COP4020 Fall 2013

Example Attributed Grammar

 The val attribute of a (non)terminal holds the subtotal value of the
subexpression

 Nonterminals are indexed in the attribute grammar to distinghuish
multiple occurrences of the nonterminal in a production

production semantic rule

<E1> ::= <E2> + <T> E1.val := E2.val + T.val

<E1> ::= <E2> - <T> E1.val := E2.val - T.val

<E> ::= <T> E.val := T.val

<T1> ::= <T2> * <F> T1.val := T2.val * F.val

<T1> ::= <T2> / <F> T1.val := T2.val / F.val

<T> ::= <F> T.val := F.val

<F1> ::= - <F2> F1.val := -F2.val

<F> ::= (<E>) F.val := E.val

<F> ::= unsigned_int F.val := unsigned_int.val

COP4020 Fall 2013

Decorated Parse Trees

 A parser produces a parse tree

that is decorated with the attribute

values

 Example decorated parse tree of

(1+3)*2 with the val attributes

COP4020 Fall 2013

Synthesized Attributes

 Synthesized attributes of a node hold values that are

computed from attribute values of the child nodes in the

parse tree and therefore information flows upwards

production semantic rule

<E1> ::= <E2> + <T> E1.val := E2.val + T.val

COP4020 Fall 2013

Inherited Attributes

 Inherted attributes of child nodes are set by the parent

node and therefore information flows downwards

production semantic rule

<E> ::= <T> <TT> TT.st := T.val; E.val := TT.val

<TT1> ::= + <T> <TT2> TT2.st := TT1.st + T.val; TT1.val := TT2.val

<TT> ::= TT.val := TT.st

COP4020 Fall 2013

Attribute Flow

 An attribute flow algorithm propagates attribute values

through the parse tree by traversing the tree according to

the set (write) and use (read) dependencies (an attribute

must be set before it is used)

production semantic rule

<E> ::= <T> <TT> TT.st := T.val

COP4020 Fall 2013

Attribute Flow

 An attribute flow algorithm propagates attribute values

through the parse tree by traversing the tree according to

the set (write) and use (read) dependencies (an attribute

must be set before it is used)

production semantic rule

<TT1> ::= + <T> <TT2> TT2.st := TT1.st + T.val

COP4020 Fall 2013

Attribute Flow

 An attribute flow algorithm propagates attribute values

through the parse tree by traversing the tree according to

the set (write) and use (read) dependencies (an attribute

must be set before it is used)

production semantic rule

<TT> ::= TT.val := TT.st

COP4020 Fall 2013

Attribute Flow

 An attribute flow algorithm propagates attribute values

through the parse tree by traversing the tree according to

the set (write) and use (read) dependencies (an attribute

must be set before it is used)

production semantic rule

<TT1> ::= + <T> <TT2> TT1.val := TT2.val

COP4020 Fall 2013

Attribute Flow

 An attribute flow algorithm propagates attribute values

through the parse tree by traversing the tree according to

the set (write) and use (read) dependencies (an attribute

must be set before it is used)

production semantic rule

<E> ::= <T> <TT> E.val := TT.val

COP4020 Fall 2013

S- and L-Attributed Grammars

 A grammar is called S-attributed if all attributes are
synthesized

 A grammar is called L-attributed if the parse tree
traversal to update attribute values is always left-to-right
and depth-first
 Synthesized attributes always OK

 Values of inherited attributes must be passed down to children
from left to right

 Semantic rules can be applied immediately during parsing and
parse trees do not need to be kept in memory

 This is an essential grammar property for a one-pass compiler

 An S-attributed grammar is a special case of an L-
attributed grammar

COP4020 Fall 2013

Example L-Attributed Grammar

 Implements a calculator

production semantic rule

<E> ::= <T> <TT>

<TT1> ::= + <T> <TT2>

<TT1> ::= - <T> <TT2>

<TT> ::=

<T> ::= <F> <FT>

<FT1> ::= * <F> <FT2>

<FT1> ::= / <F> <FT2>

<FT> ::=

<F1> ::= - <F2>

<F> ::= (<E>)

<F> ::= unsigned_int

TT.st := T.val; E.val := TT.val

TT2.st := TT1.st + T.val; TT1.val := TT2.val

TT2.st := TT1.st - T.val; TT1.val := TT2.val

TT.val := TT.st

FT.st := F.val; T.val := FT.val

FT2.st := FT1.st * F.val; FT1.val := FT2.val

FT2.st := FT1.st / F.val; FT1.val := FT2.val

FT.val := FT.st

F1.val := -F2.val

F.val := E.val

F.val := unsigned_int.val

COP4020 Fall 2013

Example Decorated Parse Tree

 Fully decorated parse tree of (1+3)*2

COP4020 Fall 2013

Recursive Descent Parsing with

L-Attributed Grammars

 Semantic rules are added to the bodies of the recursive

descent functions and placed appropriately between the

function calls

 Inherited attribute values are input arguments to the

functions

 Argument passing flows downwards in call graphs

 Synthesized attribute values are returned by functions

 Return values flow upwards in call graphs

COP4020 Fall 2013

Example

production semantic rule

<E> ::= <T> <TT>

<TT1> ::= + <T> <TT2>

<TT1> ::= - <T> <TT2>

<TT> ::=

TT.st := T.val; E.val := TT.val

TT2.st := TT1.st + T.val; TT1.val := TT2.val

TT2.st := TT1.st - T.val; TT1.val := TT2.val

TT.val := TT.st

procedure E()

 Tval = T();

 Eval = TT(Tval);

 return Eval;

procedure TT(TTst)

 case (input_token())

 of '+': match('+');

 Tval = T();

 TTval = TT(TTst + Tval);

 of '-': match('-');

 Tval = T();

 TTval = TT(TTst - Tval);

 otherwise: TTval = TTst;

 return TTval;

COP4020 Fall 2013

Constructing Abstract Syntax

Trees with Attribute Grammars

 Three operations to create nodes for an AST tree that

represents expressions:

 mk_bin_op(op, left, right): constructs a new node that contains a

binary operator op and AST sub-trees left and right representing

the operator’s operands and returns pointer to the new node

 mk_un_op(op, node): constructs a new node that contains a

unary operator op and sub-tree node representing the operator’s

operand and returns pointer to the new node

 mk_leaf(value): constructs an AST leaf that contains a value and

returns pointer to the new node

COP4020 Fall 2013

An L-Attributed Grammar to

Construct ASTs

 Semantic rules to build up an AST

production semantic rule

<E> ::= <T> <TT>

<TT1> ::= + <T> <TT2>

<TT1> ::= - <T> <TT2>

<TT> ::=

<T> ::= <F> <FT>

<FT1> ::= * <F> <FT2>

<FT1> ::= / <F> <FT2>

<FT> ::=

<F1> ::= - <F2>

<F> ::= (<E>)

<F> ::= unsigned_int

TT.st := T.ptr; E.ptr := TT.ptr

TT2.st := mk_bin_op("+", TT1.st, T.ptr); TT1.ptr := TT2.ptr

TT2.st := mk_bin_op("-", TT1.st, T.ptr); TT1.ptr := TT2.ptr

TT.ptr := TT.st

FT.st := F.ptr; T.ptr := FT.ptr

FT2.st := mk_bin_op("*", FT1.st, F.ptr); FT1.ptr := FT2.ptr

FT2.st := mk_bin_op("/", FT1.st, F.ptr); FT1.ptr := FT2.ptr

FT.ptr := FT.st

F1.ptr := mk_un_op("-", F2.ptr)

F.ptr := E.ptr

F.ptr := mk_leaf(unsigned_int.val)

COP4020 Fall 2013

Example Decorated Parse Tree

with AST

 Decorated parse tree of (1+3)*2 with AST

