
COP4020

Programming

Languages

Introduction

Prof. Chris Lacher

Based on notes by Robert van Engelen

 Improve the background for choosing appropriate programming

languages

 Be able to program in procedural, object-oriented, functional, and

logical programming languages

 Understand the significance of the design of a programming

language and its implementation in a compiler or interpreter

 Enhance the ability to learn new programming languages

 Increase the capacity to express general programming concepts and

to choose among alternative ways to express things in a particular

programming language

 Simulate useful features in languages that lack them

 Understand how programs are parsed and translated by a compiler

 Be able, in principle, to design a new programming language

COP4020 Fall 2013

Course Objectives

1. Introduction: History, overview, and classification of programming languages

2. Functional Programming: Programming with Scheme and Haskell

3. Logic Programming: Programming with Prolog

4. Compilers and Interpreters: How programs are translated into machine code

5. Syntax: How syntax is defined and how syntax can impact ease-of-use

6. Semantics: How the meaning and behavior of programming constructs can be

defined and interpreted

7. Axiomatic Semantics: How programs can be analyzed and proven correct

8. Names, Scopes, and Bindings: How and when bindings for local names are

defined in languages with scoping rules

9. Control Flow: How programming constructs define control flow and how the

choice of constructs can affect programming style

10. Subroutines and Parameter Passing: How the subroutine calling mechanism

is implemented and how and when parameters are passed and evaluated

11. Exception Handling: How to improve the robustness of programs

COP4020 Fall 2013

Course Outline

Important Events in

Programming Language History

 1940s: The first electronic
computers were monstrous
contraptions

 Programmed in binary machine
code by hand via switches and
later by card readers and paper
tape readers

 Code is not reusable or relocatable

 Computation and machine
maintenance were difficult:
machines had short mean-time to
failure (MTTF) because vacuum
tubes regularly burned out

 The term “bug” originated from a
bug that reportedly roamed around
in a machine causing short circuits

COP4020 Fall 2013

ENIAC (1946)

 Assembly languages were invented to allow machine
operations to be expressed in mnemonic abbreviations
 Enables larger, reusable, and relocatable programs

 Actual machine code is produced by an assembler

 Early assemblers had a one-to-one correspondence between
assembly and machine instructions

 “Speedcoding”: expansion of macros into multiple
machine instructions to achieve a form of higher-level
programming

COP4020 Fall 2013

Assembly Languages

Assembly Language Example

 addiu sp,sp,-32

 sw ra,20(sp)

 jal getint

 nop

 jal getint

 sw v0,28(sp)

 lw a0,28(sp)

 move v1,v0

 beq a0,v0,D

 slt at,v1,a0

A: beq at,zero,B

 nop

 b C

 subu a0,a0,v1

B: subu v1,v1,a0

C: bne a0,v1,A

 slt at,v1,a0

D: jal putint

 nop

 lw ra,20(sp)

 addiu sp,sp,32

 jr ra

 move v0,zero

 Example MIPS assembly program

to compute GCD

 Example MIPS R4000 machine

code of the assembly program

27bdffd0 afbf0014 0c1002a8 00000000

0c1002a8 afa2001c 8fa4001c

00401825 10820008 0064082a 10200003

00000000 10000002 00832023

00641823 1483fffa 0064082a 0c1002b2

00000000 8fbf0014 27bd0020

03e00008 00001025

COP4020 Fall 2013

Actual MIPS R4400 IC

 Mid 1950s: development of FORTRAN (FORmula
TRANslator), the arguably first higher-level language
 Finally, programs could be developed that were machine

independent!

 Main computing activity in the 50s: solve numerical
problems in science and engineering

 Other high-level languages soon followed:
 Algol 58 was an improvement compared to Fortran

 COBOL for business computing

 Lisp for symbolic computing and artifical intelligence

 BASIC for "beginners"

 C for systems programming

COP4020 Fall 2013

The First High-Level

Programming Language

FORTRAN 77 Example

 PROGRAM GCD

C variable names that start with

C I,J,K,L,N,M are integers

C read the parameters

 READ (*, *) I, J

C loop while I!=J

10 IF I .NE. J THEN

 IF I .GT. J THEN

 I = I - J

 ELSE

 J = J - I

 ENDIF

 GOTO 10

 ENDIF

C write result

 WRITE (*, *) ’GCD =’, I

 END

 FORTRAN is still widely used for
scientific, engineering, and
numerical problems, mainly
because very good compilers exist

 In the early days skeptics wrongly
predicted that compilers could not
beat hand-written machine code

 FORTRAN 77 has

 Subroutines, if-then-else, do-loops

 Types (primitive and arrays)

 Variable names are upper case
and limited to 6 chars

 No recursion

 No structs/classes, unions

 No dynamic allocation

 No case-statements and no while-
loops

COP4020 Fall 2013

 1980s: Object-oriented programming

 Important innovation for software development

 Encapsulation and inheritance

 Dynamic binding

 The concept of a “class” is based on the notion of an “abstract

data type” (ADT) in Simula 67, a language for discrete event

simulation that has class-like types but no inheritance

COP4020 Fall 2013

Important Events in

Programming Language History

COP4020 Fall 2013

Genealogy of Programming

Languages

Overview: FORTRAN I,II,IV,77

 PROGRAM AVEX

 INTEGER INTLST(99)

 ISUM = 0

C read the length of the list

 READ (*, *) LSTLEN

 IF ((LSTLEN .GT. 0) .AND. (LSTLEN .LT. 100)) THEN

C read the input in an array

 DO 100 ICTR = 1, LSTLEN

 READ (*, *) INTLST(ICTR)

 ISUM = ISUM + INTLST(ICTR)

100 CONTINUE

C compute the average

 IAVE = ISUM / LSTLEN

C write the input values > average

 DO 110 ICTR = 1, LSTLEN

 IF (INTLST(ICTR) .GT. IAVE) THEN

 WRITE (*, *) INTLST(ICTR)

 END IF

110 CONTINUE

 ELSE

 WRITE (*, *) 'ERROR IN LIST LENGTH'

 END IF

 END

 FORTRAN had a

dramatic impact on

computing in early

days

 Still used for

numerical

computation

COP4020 Fall 2013

FORTRAN 90,95,HPF

 PROGRAM AVEX

 INTEGER INT_LIST(1:99)

 INTEGER LIST_LEN, COUNTER, AVERAGE

C read the length of the list

 READ (*, *) LISTLEN

 IF ((LIST_LEN > 0) .AND. (LIST_LEN < 100)) THEN

C read the input in an array

 DO COUNTER = 1, LIST_LEN

 READ (*, *) INT_LIST(COUNTER)

 END DO

C compute the average

 AVERAGE = SUM(INT_LIST(1:LIST_LEN)) / LIST_LEN

C write the input values > average

 DO COUNTER = 1, LIST_LEN

 IF (INT_LIST(COUNTER) > AVERAGE) THEN

 WRITE (*, *) INT_LIST(COUNTER)

 END IF

 END DO

 ELSE

 WRITE (*, *) 'ERROR IN LIST LENGTH'

 END IF

 END

 Major revisions

 Recursion

 Pointers

 Records

 New control constructs

 while-loop

 Extensive set of array

operations

 HPF (High-

Performance Fortran)

includes constructs for

parallel computation

COP4020 Fall 2013

Lisp

(DEFINE (avex lis)

 (filtergreater lis (/ (sum lis) (length lis)))

)

(DEFINE (sum lis)

 (COND

 ((NULL? lis) 0)

 (ELSE (+ (CAR lis) (sum (CDR lis))))

)

)

(DEFINE (filtergreater lis num)

 (COND

 ((NULL? lis) '())

 ((> (CAR lis) num) (CONS (CAR lis)

 (filtergreater (CDR lis) num)))

 (ELSE (filtergreater (CDR lis) num)

)

)

 Lisp (LIst Processing)

 The original functional
language developed by
McCarthy as a
realization of Church's
lambda calculus

 Many dialects exist,
including Common Lisp
and Scheme

 Very powerful for
symbolic computation
with lists

 Implicit memory
management with
garbage collection

 Influenced functional
programming
languages (ML,
Miranda, Haskell)

COP4020 Fall 2013

Algol 60

comment avex program

begin

 integer array intlist [1:99];

 integer listlen, counter, sum, average;

 sum := 0;

 comment read the length of the input list

 readint (listlen);

 if (listlen > 0) L (listlen < 100) then

 begin

 comment read the input into an array

 for counter := 1 step 1 until listlen do

 begin

 readint (intlist[counter]);

 sum := sum + intlist[counter]

 end;

 comment compute the average

 average := sum / listlen;

 comment write the input values > average

 for counter := 1 step 1 until listlen do

 if intlist[counter] > average then

 printint (intlist[counter])

 end

 else

 printstring ("Error in input list length")

end

 The original block-structured
language

 Local variables in a statement
block

 First use of Backus-Naur Form
(BNF) to formally define
language grammar

 All subsequent imperative
programming languages are
based on it

 No I/O and no character set

 Not widely used in the US

 Unsuccessful successor Algol
68 is large and relatively
complex

COP4020 Fall 2013

COBOL

IDENTIFICATION DIVISION.

PROGRAM-ID. EXAMPLE.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. IBM-370.

OBJECT-COMPUTER. IBM-370.

DATA DIVISION.

WORKING-STORAGE SECTION.

77 FAHR PICTURE 999.

77 CENT PICTURE 999.

PROCEDURE DIVISION.

DISPLAY 'Enter Fahrenheit ' UPON CONSOLE.

ACCEPT FAHR FROM CONSOLE.

COMPUTE CENT = (FAHR- 32) * 5 / 9.

DISPLAY 'Celsius is ' CENT UPON CONSOLE.

GOBACK.

 Originally developed by the

Department of Defense

 Intended for business data processing

 Extensive numerical formatting

features and decimal number storage

 Introduced the concept of records and

nested selection statement

 Programs organized in divisions:

IDENTIFICATION: Program

identification

ENVIRONMENT: Types of computers

used

DATA: Buffers, constants, work areas

PROCEDURE: The processing parts

(program logic).

COP4020 Fall 2013

BASIC

REM avex program

 DIM intlist(99)

 sum = 0

REM read the length of the input list

 INPUT listlen

 IF listlen > 0 AND listlen < 100 THEN

REM read the input into an array

 FOR counter = 1 TO listlen

 INPUT intlist(counter)

 sum = sum + intlist(counter)

 NEXT counter

REM compute the average

 average = sum / listlen

REM write the input values > average

 FOR counter = 1 TO listlen

 IF intlist(counter) > average THEN

 PRINT intlist(counter);

 NEXT counter

 ELSE

 PRINT "Error in input list length"

 END IF

END

 BASIC (Beginner’s All-Purpose

Symbolic Instruction Code)

 Intended for interactive use

(intepreted) and easy for

"beginners"

 Goals: easy to learn and use

for non-science students

 Structure of early basic

dialects were similar to Fortran

 Classic Basic

 QuickBasic (see example)

 MS Visual Basic is a popular

dialect

COP4020 Fall 2013

PL/I

AVEX: PROCEDURE OPTIONS (MAIN);

 DECLARE INTLIST (1:99) FIXED;

 DECLARE (LISTLEN, COUNTER, SUM, AVERAGE) FIXED;

 SUM = 0;

 /* read the input list length */

 GET LIST (LISTLEN);

 IF (LISTLEN > 0) & (LISTLEN < 100) THEN

 DO;

 /* read the input into an array */

 DO COUNTER = 1 TO LISTLEN;

 GET LIST (INTLIST(COUNTER));

 SUM = SUM + INTLIST(COUNTER);

 END;

 /* compute the average */

 AVERAGE = SUM / LISTLEN;

 /* write the input values > average */

 DO COUNTER = 1 TO LISTLEN;

 IF INTLIST(COUNTER) > AVERAGE THEN

 PUT LIST (INTLIST(COUNTER));

 END;

 ELSE

 PUT SKIP LIST ('ERROR IN INPUT LIST LENGTH');

END AVEX;

 Developed by IBM

 Intended to replace

FORTRAN, COBOL, and

Algol

 Introduced exception

handling

 First language with pointer

data type

 Poorly designed, too large,

too complex

COP4020 Fall 2013

Ada and Ada95

with TEXT_IO;

use TEXT_IO;

procedure AVEX is

 package INT_IO is new INTEGER_IO (INTEGER);

 use INT_IO;

 type INT_LIST_TYPE is array (1..99) of INTEGER;

 INT_LIST : INT_LIST_TYPE;

 LIST_LEN, SUM, AVERAGE : INTEGER;

 begin

 SUM := 0;

 -- read the length of the input list

 GET (LIST_LEN);

 if (LIST_LEN > 0) and (LIST_LEN < 100) then

 -- read the input into an array

 for COUNTER := 1 .. LIST_LEN loop

 GET (INT_LIST(COUNTER));

 SUM := SUM + INT_LIST(COUNTER);

 end loop;

 -- compute the average

 AVERAGE := SUM / LIST_LEN;

 -- write the input values > average

 for counter := 1 .. LIST_LEN loop

 if (INT_LIST(COUNTER) > AVERAGE) then

 PUT (INT_LIST(COUNTER));

 NEW_LINE;

 end if

 end loop;

 else

 PUT_LINE ("Error in input list length");

 end if;

 end AVEX;

 Originally intended to be the
standard language for all
software commissioned by the
US Department of Defense

 Very large

 Elaborate support for
packages, exception handling,
generic program units,
concurrency

 Ada 95 is a revision developed
under government contract by
a team at Intermetrics, Inc.

 Adds objects, shared-memory
synchronization, and several
other features

COP4020 Fall 2013

Smalltalk-80

class name Avex

superclass Object

instance variable names intlist

"Class methods"

"Create an instance"

 new

 ^ super new

"Instance methods"

"Initialize"

 initialize

 intlist <- Array new: 0

"Add int to list"

 add: n | oldintlist |

 oldintlist <- intlist.

 intlist <- Array new: intlist size + 1.

 intlist <- replaceFrom: 1 to: intlist size with: oldintlist.

 ^ intlist at: intlist size put: n

"Calculate average"

 average | sum |

 sum <- 0.

 1 to: intlist size do:

 [:index | sum <- sum + intlist at: index].

 ^ sum // intlist size

"Filter greater than average"

 filtergreater: n | oldintlist i |

 oldintlist <- intlist.

 i <- 1.

 1 to: oldintlist size do:

 [:index | (oldintlist at: index) > n

 ifTrue: [oldintlist at: i put: (oldintlist at: index)]]

 intlist <- Array new: oldintlist size.

 intlist replaceFrom: 1 to: oldintlist size with: oldintlist

 Developed by XEROX
PARC: first IDE with
windows-based graphical
user interfaces (GUIs)

 The first full
implementation of an
object-oriented language

 Example run:

av <- Avex new

av initialize

av add: 1

1

av add: 2

2

av add: 3

3

av filtergreater: av average

av at: 1

3

COP4020 Fall 2013

Prolog

avex(IntList, GreaterThanAveList) :-

 sum(IntList, Sum),

 length(IntList, ListLen),

 Average is Sum / ListLen,

 filtergreater(IntList, Average, GreaterThanAveList).

% sum(+IntList, -Sum)

% recursively sums integers of IntList

sum([Int | IntList], Sum) :-

 sum(IntList, ListSum),

 Sum is Int + ListSum.

sum([], 0).

% filtergreater(+IntList, +Int, -GreaterThanIntList)

% recursively remove all integers <= Int from IntList

filtergreater([AnInt | IntList], Int, [AnInt |

GreaterThanIntList]) :-

 AnInt > Int, !,

 filtergreater(IntList, Int, GreaterThanIntList).

filtergreater([AnInt | IntList], Int, GreaterThanIntList) :-

 filtergreater(IntList, Int, GreaterThanIntList).

filtergreater([], Int, []).

 The most widely

used logic

programming

language

 Declarative: states

what you want, not

how to get it

 Based on formal logic

COP4020 Fall 2013

Pascal

program avex(input, output);

 type

 intlisttype = array [1..99] of integer;

 var

 intlist : intlisttype;

 listlen, counter, sum, average : integer;

begin

 sum := 0;

 (* read the length of the input list *)

 readln(listlen);

 if ((listlen > 0) and (listlen < 100)) then

 begin

 (* read the input into an array *)

 for counter := 1 to listlen do

 begin

 readln(intlist[counter]);

 sum := sum + intlist[counter]

 end;

 (* compute the average *)

 average := sum / listlen;

 (* write the input values > average *)

 for counter := 1 to listlen do

 if (intlist[counter] > average) then

 writeln(intlist[counter])

 end

 else

 writeln('Error in input list length')

end.

 Designed by Swiss professor

Niklaus Wirth

 Designed for teaching

"structured programming"

 Small and simple

 Had a strong influence on

subsequent high-level

languages Ada, ML, Modula

COP4020 Fall 2013

Haskell

sum [] = 0

sum (a:x) = a + sum x

avex [] = []

avex (a:x) = [n | n <- a:x, n > sum (a:x) / length (a:x)]

 The leading purely functional

language, based on Miranda

 Includes curried functions,

higher-order functions, non-

strict semantics, static

polymorphic typing, pattern

matching, list comprehensions,

modules, monadic I/O, and

layout (indentation)-based

syntactic grouping

COP4020 Fall 2013

C (ANSI C, K&R C)

main()

{ int intlist[99], listlen, counter, sum, average;

 sum = 0;

 /* read the length of the list */

 scanf("%d", &listlen);

 if (listlen > 0 && listlen < 100)

 { /* read the input into an array */

 for (counter = 0; counter < listlen; counter++)

 { scanf("%d", &intlist[counter]);

 sum += intlist[counter];

 }

 /* compute the average */

 average = sum / listlen;

 /* write the input values > average */

 for (counter = 0; counter < listlen; counter++)

 if (intlist[counter] > average)

 printf("%d\n", intlist[counter]);

 }

 else

 printf("Error in input list length\n");

}

 One of the most

successful

programming

languages

 Primarily designed for

systems programming

but more broadly used

 Powerful set of

operators, but weak

type checking and no

dynamic semantic

checks

COP4020 Fall 2013

C++

main()

{ std::vector<int> intlist;

 int listlen;

 /* read the length of the list */

 std::cin >> listlen;

 if (listlen > 0 && listlen < 100)

 { int sum = 0;

 /* read the input into an STL vector */

 for (int counter = 0; counter < listlen; counter++)

 { int value;

 std::cin >> value;

 intlist.push_back(value);

 sum += value;

 }

 /* compute the average */

 int average = sum / listlen;

 /* write the input values > average */

 for (std::vector<int>::const_iterator it = intlist.begin();

 it != intlist.end(); ++it)

 if ((*it) > average)

 std::cout << (*it) << std::endl;

 }

 else

 std::cerr << "Error in input list length" << std::endl;

}

 The most successful of

several object-oriented

successors of C

 Evolved from C and

Simula 67

 Large and complex,

partly because it

supports both

procedural and object-

oriented programming

COP4020 Fall 2013

Java

import java.io;

class Avex

{ public static void main(String args[]) throws IOException

 { DataInputStream in = new DataInputStream(System.in);

 int listlen, counter, sum = 0, average;

 int [] intlist = int[100];

 // read the length of the list

 listlen = Integer.parseInt(in.readLine());

 if (listlen > 0 && listlen < 100)

 { // read the input into an array

 for (counter = 0; counter < listlen; counter++)

 { intlist[counter] =

Integer.valueOf(in.readline()).intValue();

 sum += intlist[counter];

 }

 // compute the average

 average = sum / listlen;

 // write the input values > average

 for (counter = 0; counter < listlen; counter++)

 { if (intlist[counter] > average)

 System.out.println(intlist[counter] + "\n");

 }

 }

 else

 System.out.println("Error in input length\n");

 }

}

 Developed by Sun

Microsystems

 Based on C++, but

significantly simplified

 Supports only object-

oriented programming

 Safe language (e.g. no

pointers but references,

strongly typed, and

implicit garbage

collection)

 Portable and machine-

independent with Java

virtual machine (JVM)

COP4020 Fall 2013

 C#

 Similar to Java, but platform dependent (MS .NET)

 Common Language Runtime (CLR) manages objects that can be
shared among the different languages in .NET

 Simula 67

 Based on Algol 60

 Primarily designed for discrete-event simulation

 Introduced concept of coroutines and the class concept for data
abstraction

 APL

 Intended for interactive use ("throw-away" programming)

 Highly expressive functional language makes programs short, but hard
to read

 Scripting languages

 Perl, Python, Ruby, …

COP4020 Fall 2013

Other Notable Languages

 Evolution

 Design considerations: What is a good or bad programming construct?

 Early 70s: structured programming in which goto-based control flow was
replaced by high-level constructs (e.g. while loops and case statements)

 Late 80s: nested block structure gave way to object-oriented structures

 Special Purposes

 Many languages were designed for a specific problem domain, e.g:

 Scientific applications

 Business applications

 Artificial intelligence

 Systems programming

 Internet programming

 Personal Preference

 The strength and variety of personal preference makes it unlikely that
anyone will ever develop a universally accepted programming language

COP4020 Fall 2013

Why are There so Many

Programming Languages?

 Expressive Power

 Theoretically, all languages are equally powerful (Turing complete)

 Language features have a huge impact on the programmer's ability to read,
write, maintain, and analyze programs

 Abstraction facilities enhance expressive power

 Ease of Use for Novice

 Low learning curve and often interpreted, e.g. Basic and Logo

 Ease of Implementation

 Runs on virtually everything, e.g. Basic, Pascal, and Java

 Open Source

 Freely available, e.g. Java

 Excellent Compilers and Tools

 Fortran has extremely good compilers

 Supporting tools to help the programmer manage very large projects

 Economics, Patronage, and Inertia

 Powerful sponsor: Cobol, PL/I, Ada

 Some languages remain widely used long after "better" alternatives

COP4020 Fall 2013

What Makes a Programming

Language Successful?

COP4020 Fall 2013

Classification of Programming

Languages

Classification of Programming

Languages

COP4020 Fall 2013

Declarative

Implicit solution

"What the computer should

do”

Functional

(Lisp, Scheme, ML, Haskell)

Logical

(Prolog)

Dataflow

Imperative

Explicit solution

"How the computer should

do it”

Procedural

"von Neumann" (Fortran, C)

Object-oriented

(Smalltalk, C++, Java)

Contrasting Examples

COP4020 Fall 2013

Functional (Haskell):
gcd a b

 | a == b = a

 | a > b = gcd (a-b) b

 | a < b = gcd a (b-a)

Logical (Prolog):
gcd(A, A, A).

gcd(A, B, G) :- A > B, N is A-B, gcd(N, B, G).

gcd(A, B, G) :- A < B, N is B-A, gcd(A, N, G).

Procedural (C):
int gcd(int a, int b)

{ while (a != b)

 if (a > b) a = a-b; else b = b-a;

 return a;

}

