
COP4020

Programming

Languages

Functional Programming

Prof. Chris Lacher

Modified from Robert van Engelen

COP4020 Fall 2013

Overview

 What is functional programming?

 Historical origins of functional programming

 Functional programming today

 Concepts of functional programming

 Functional programming with Scheme

 Learn (more) by example

COP4020 Fall 2013

What is Functional

Programming?

 Functional programming is a declarative programming

style (programming paradigm)

 Pro: flow of computation is declarative, i.e. more implicit

 Pro: promotes building more complex functions from other

functions that serve as building blocks (component reuse)

 Pro: behavior of functions defined by the values of input

arguments only (no side-effects via global/static variables)

 Cons: function composition is (considered to be) stateless

 Cons: programmers prefer imperative programming constructs

such as statement composition, while functional languages

emphasize function composition

COP4020 Fall 2013

Concepts of Functional

Programming

 Functional programming defines the outputs of a program purely as

a mathematical function of the inputs with no notion of internal state

(no side effects)

 A pure function can be counted on to return the same output each time

we invoke it with the same input parameter values

 No global (statically allocated) variables

 No explicit (pointer) assignments

 Dangling pointers and un-initialized variables cannot occur

 Example pure functional programming languages: Miranda, Haskell,

and Sisal

 Non-pure functional programming languages include “imperative

features” that cause side effects (e.g. destructive assignments to

global variables or assignments/changes to lists and data structures)

 Example: Lisp, Scheme, and ML

COP4020 Fall 2013

Functional Language

Constructs

 Building blocks are functions

 No statement composition

 Function composition

 No variable assignments

 But: can use local “variables” to

hold a value assigned once

 No loops

 Recursion

 List comprehensions in Miranda

and Haskell

 But: “do-loops” in Scheme

 Conditional flow with if-then-else

or argument patterns

 Functional languages can be

typed (Haskell) or untyped (Lisp)

 Haskell examples:
gcd a b

 | a == b = a

 | a > b = gcd (a-b) b

 | a < b = gcd a (b-a)

fac 0 = 1

fac n = n * fac (n-1)

member x [] = false

member x (y:xs)

 | x == y = true

 | x <> y = member x xs

COP4020 Fall 2013

Theory and Origin of Functional

Languages

 Church's thesis:

 All models of computation are equally powerful

 Turing's model of computation: Turing machine

 Reading/writing of values on an infinite tape by a finite state machine

 Church's model of computation: Lambda Calculus

 Functional programming languages implement Lambda Calculus

 Computability theory

 A program can be viewed as a constructive proof that some

mathematical object with a desired property exists

 A function is a mapping from inputs to output objects and computes

output objects from appropriate inputs

 For example, the proposition that every pair of nonnegative integers (the inputs) has

a greatest common divisor (the output object) has a constructive proof implemented

by Euclid's algorithm written as a "function"

COP4020 Fall 2013

Impact of Functional

Languages on Language Design

 Useful features are found in functional languages that

are often missing in procedural languages or have been

adopted by modern programming languages:

 First-class function values: the ability of functions to return newly

constructed functions

 Higher-order functions: functions that take other functions as

input parameters or return functions

 Polymorphism: the ability to write functions that operate on more

than one type of data

 Aggregate constructs for constructing structured objects: the

ability to specify a structured object in-line such as a complete

list or record value

 Garbage collection

COP4020 Fall 2013

Functional Programming Today

 Significant improvements in theory and practice of

functional programming have been made in recent years

 Strongly typed (with type inference)

 Modular

 Sugaring: imperative language features that are automatically

translated to functional constructs (e.g. loops by recursion)

 Improved efficiency

 Remaining obstacles to functional programming:

 Social: most programmers are trained in imperative

programming and aren’t used to think in terms of function

composition

 Commercial: not many libraries, not very portable, and no IDEs

COP4020 Fall 2013

Applications

 Many (commercial) applications are built with functional
programming languages based on the ability to
manipulate symbolic data more easily

 Examples:
 Computer algebra (e.g. Reduce system)

 Natural language processing

 Artificial intelligence

 Automatic theorem proving

 Algorithmic optimization of functional programs

COP4020 Fall 2013

LISP and Scheme

 The original functional language and implementation of

Lambda Calculus

 Lisp and dialects (Scheme, common Lisp) are still the

most widely used functional languages

 Simple and elegant design of Lisp:

 Homogeneity of programs and data: a Lisp program is a list and

can be manipulated in Lisp as a list

 Self-definition: a Lisp interpreter can be written in Lisp

 Interactive: user interaction via "read-eval-print" loop

COP4020 Fall 2013

Scheme

 Scheme is a popular Lisp dialect

 Lisp and Scheme adopt a form of prefix notation called
Cambridge Polish notation

 Scheme is case insensitive

 A Scheme expression is composed of
 Atoms, e.g. a literal number, string, or identifier name,

 Lists, e.g. '(a b c)

 Function invocations written in list notation: the first list element
is the function (or operator) followed by the arguments to which it
is applied:

(function arg1 arg2 arg3 ... argn)

 For example, sin(x*x+1) is written as (sin (+ (* x x) 1))

COP4020 Fall 2013

Read-Eval-Print

 The "Read-eval-print" loop provides user interaction in Scheme

 An expression is read, evaluated, and the result printed

 Input: 9

 Output: 9

 Input: (+ 3 4)

 Output: 7

 Input: (+ (* 2 3) 1)

 Output: 7

 User can load a program from a file with the load function

(load "my_scheme_program")

Note: a file should use the .scm extension

COP4020 Fall 2013

Working with Data Structures

 An expression operates on values and compound data structures

built from atoms and lists

 A value is either an atom or a compound list

 Atoms are

 Numbers, e.g. 7 and 3.14

 Strings, e.g. "abc"

 Boolean values #t (true) and #f (false)

 Symbols, which are identifiers escaped with a single quote, e.g. 'y

 The empty list ()

 When entering a list as a literal value, escape it with a single quote

 Without the quote it is a function invocation!

 For example, '(a b c) is a list while (a b c) is a function application

 Lists can be nested and may contain any value, e.g. '(1 (a b) ''s'')

COP4020 Fall 2013

Checking the Type of a Value

 The type of a value can be checked with

 (boolean? x) ; is x a Boolean?

 (char? x) ; is x a character?

 (string? x) ; is x a string?

 (symbol? x) ; is x a symbol?

 (number? x) ; is x a number?

 (list? x) ; is x a list?

 (pair? x) ; is x a non-empty list?

 (null? x) ; is x an empty list?

 Examples

 (list? '(2))  #t

 (number? ''abc'')  #f

 Portability note: on some systems false (#f) is replaced with ()

COP4020 Fall 2013

Working with Lists

 (car xs) returns the head (first element) of list xs

 (cdr xs) (pronounced "coulder") returns the tail of list xs

 (cons x xs) joins an element x and a list xs to construct a new list

 (list x1 x2 … xn) generates a list from its arguments

 Examples:

 (car '(2 3 4))  2

 (car '(2))  2

 (car '())  Error

 (cdr '(2 3))  (3)

 (car (cdr '(2 3 4)))  3 ; also abbreviated as (cadr '(2 3 4))

 (cdr (cdr '(2 3 4)))  (4) ; also abbreviated as (cddr '(2 3 4))

 (cdr '(2))  ()

 (cons 2 '(3))  (2 3)

 (cons 2 '(3 4))  (2 3 4)

 (list 1 2 3)  (1 2 3)

COP4020 Fall 2013

The “if” Special Form

 Special forms resemble functions but have special
evaluation rules
 Evaluation of arguments depends on the special construct

 The “if” special form returns the value of thenexpr or
elseexpr depending on a condition

(if condition thenexpr elseexpr)

 Examples
 (if #t 1 2)  1

 (if #f 1 "a")  "a"

 (if (string? "s") (+ 1 2) 4)  3

 (if (> 1 2) "yes" "no")  "no"

COP4020 Fall 2013

The “cond” Special Form

 A more general if-then-else can be written using the
“cond” special form that takes a sequence of (condition
value) pairs and returns the first value xi for which
condition ci is true:

(cond (c1 x1) (c2 x2) … (else xn))

 Examples
 (cond (#f 1) (#t 2) (#t 3))  2

 (cond ((< 1 2) ''one'') ((>= 1 2) ''two''))  ''one''

 (cond ((< 2 1) 1) ((= 2 1) 2) (else 3))  3

 Note: “else” is used to return a default value

COP4020 Fall 2013

Logical Expressions

 Relations

 Numeric comparison operators <, <=, =, >, <=, and <>

 Boolean operators

 (and x1 x2 … xn), (or x1 x2 … xn)

 Other test operators

 (zero? x), (odd? x), (even? x)

 (eq? x1 x2) tests whether x1 and x2 refer to the same object
 (eq? 'a 'a)  #t
 (eq? '(a b) '(a b))  #f

 (equal? x1 x2) tests whether x1 and x2 are structurally equivalent
 (equal? 'a 'a)  #t
 (equal? '(a b) '(a b))  #t

 (member x xs) returns the sublist of xs that starts with x, or returns ()
 (member 5 '(a b))  ()
 (member 5 '(1 2 3 4 5 6))  (5 6)

COP4020 Fall 2013

Lambda Calculus: Functions =

Lambda Abstractions

 A lambda abstraction is a nameless function (a mapping)
specified with the lambda special form:

(lambda args body)

where args is a list of formal arguments and body is an
expression that returns the result of the function
evaluation when applied to actual arguments

 A lambda expression is an unevaluated function

 Examples:
 (lambda (x) (+ x 1))

 (lambda (x) (* x x))

 (lambda (a b) (sqrt (+ (* a a) (* b b))))

COP4020 Fall 2013

Lambda Calculus: Invocation

= Beta Reduction

 A lambda abstraction is applied to actual arguments using the
familiar list notation

 (function arg1 arg2 ... argn)

where function is the name of a function or a lambda abstraction

 Beta reduction is the process of replacing formal arguments in the
lambda abstraction’s body with actuals

 Examples

 ((lambda (x) (* x x)) 3)  (* 3 3)  9

 ((lambda (f a) (f (f a))) (lambda (x) (* x x)) 3)
 (f (f 3)) where f = (lambda (x) (* x x))
 (f ((lambda (x) (* x x)) 3)) where f = (lambda (x) (* x x))
 (f 9) where f = (lambda (x) (* x x))
 ((lambda (x) (* x x)) 9)
 (* 9 9)
 81

COP4020 Fall 2013

Defining Global Names

 A global name is defined with the “define” special form

(define name value)

 Usually the values are functions (lambda abstractions)

 Examples:

 (define my-name ''foo'')

 (define determiners '(''a'' ''an'' ''the''))

 (define sqr (lambda (x) (* x x)))

 (define twice (lambda (f a) (f (f a))))

 (twice sqr 3)  ((lambda (f a) (f (f a))) (lambda (x) (* x x)) 3) 

…  81

COP4020 Fall 2013

Using Local Names

 The “let” special form (let-expression) provides a scope

construct for local name-to-value bindings

(let ((name1 x1) (name2 x2) … (namen xn)) expression)

where name1, name2, …, namen in expression are

substituted by x1, x2, …, xn

 Examples

 (let ((plus +) (two 2)) (plus two two))  4

 (let ((a 3) (b 4)) (sqrt (+ (* a a) (* b b))))  5

 (let ((sqr (lambda (x) (* x x))) (sqrt (+ (sqr 3) (sqr 4)))  5

COP4020 Fall 2013

Local Bindings with Self

References

 A global name can simply refer to itself (for recursion)

 (define fac (lambda (n) (if (zero? n) 1 (* n (fac (- n 1)))))

 A let-expression cannot refer to its own definitions

 Its definitions are not in scope, only outer definitions are visible

 Use the letrec special form for recursive local definitions

 (letrec ((name1 x1) (name2 x2) … (namen xn)) expr)

where namei in expr refers to xi

 Examples

 (letrec ((fac (lambda (n) (if (zero? n) 1 (* n (fac (- n 1)))))))

 (fac 5))  120

COP4020 Fall 2013

I/O

 (display x) prints value of x and returns an unspecified

value

 (display "Hello World!")

Displays: "Hello World!"

 (display (+ 2 3))

Displays: 5

 (newline) advances to a new line

 (read) returns a value from standard input

 (if (member (read) '(6 3 5 9)) "You guessed it!" "No luck")

Enter: 5

Displays: You guessed it!

COP4020 Fall 2013

Blocks

 (begin x1 x2 … xn) sequences a series of expressions xi, evaluates
them, and returns the value of the last one xn

 Examples:

 (begin
 (display "Hello World!")
 (newline)
)

 (let ((x 1)
 (y (read))
 (plus +)
)
 (begin
 (display (plus x y))
 (newline)
)
)

COP4020 Fall 2013

Do-loops

 The “do” special form takes a list of triples and a tuple with a

terminating condition and return value, and multiple expressions xi to

be evaluated in the loop

(do (triples) (condition ret-expr) x1 x2 … xn)

 Each triple contains the name of an iterator, its initial value, and the

update value of the iterator

 Example (displays values 0 to 9)

 (do ((i 0 (+ i 1)))

 ((>= i 10) "done")

 (display i)

 (newline)

)

COP4020 Fall 2013

Higher-Order Functions

 A function is a higher-order function (also called a functional form) if

 It takes a function as an argument, or

 It returns a newly constructed function as a result

 For example, a function that applies a function to an argument twice
is a higher-order function

 (define twice (lambda (f a) (f (f a))))

 Scheme has several built-in higher-order functions

 (apply f xs) takes a function f and a list xs and applies f to the elements
of the list as its arguments

 (apply '+ '(3 4))  7

 (apply (lambda (x) (* x x)) '(3))

 (map f xs) takes a function f and a list xs and returns a list with the
function applied to each element of xs

 (map odd? '(1 2 3 4))  (#t #f #t #f)

 (map (lambda (x) (* x x)) '(1 2 3 4))  (1 4 9 16)

COP4020 Fall 2013

Non-Pure Constructs

 Assignments are considered non-pure in functional programming
because they can change the global state of the program and
possibly influence function outcomes

 The value of a pure function only depends on its arguments

 (set! name x) re-assigns x to local or global name

 (define a 0)
(set! a 1) ; overwrite with 1

 (let ((a 0))
 (begin
 (set! a (+ a 1)) ; increment a by 1
 (display a) ; shows 1
)
)

 (set-car! x xs) overwrites the head of a list xs with x

 (set-cdr! xs ys) overwrites the tail of a list xs with ys

COP4020 Fall 2013

Example 1

 Recursive factorial:
(define fact
 (lambda (n)
 (if (zero? n) 1 (* n (fact (- n 1))))
)
)

 (fact 2)  (if (zero? 2) 1 (* 2 (fact (- 2 1))))
  (* 2 (fact 1))
  (* 2 (if (zero? 1) 1 (* 1 (fact (- 1 1)))))
  (* 2 (* 1 (fact 0)))
  (* 2 (* 1 (if (zero? 0) 1 (* 0 (fact (- 0 1))))
  (* 2 (* 1 1))
  2

COP4020 Fall 2013

Example 2

 Iterative factorial

(define iterfact

 (lambda (n)

 (do ((i 1 (+ i 1)) ; i runs from 1 updated by 1

 (f 1 (* f i)) ; f from 1, multiplied by i

)

 ((> i n) f) ; until i > n, return f

 ; loop body is omitted

)

)

)

COP4020 Fall 2013

Example 3

 Sum the elements of a list
(define sum
 (lambda (lst)
 (if (null? lst)
 0
 (+ (car lst) (sum (cdr lst)))
)
)
)

 (sum '(1 2 3))  (+ 1 (sum (2 3))
  (+ 1 (+ 2 (sum (3))))
  (+ 1 (+ 2 (+ 3 (sum ()))))
  (+ 1 (+ 2 (+ 3 0)))

COP4020 Fall 2013

Example 4

 Generate a list of n copies of x

(define fill

 (lambda (n x)

 (if (= n 0)

 ()

 (cons x (fill (- n 1) x)))

)

)

 (fill 2 'a)  (cons a (fill 1 a))

  (cons a (cons a (fill 0 a)))

  (cons a (cons a ()))

  (a a)

COP4020 Fall 2013

Example 5

 Replace x with y in list xs

(define subst

 (lambda (x y xs)

 (cond

 ((null? xs) ())

 ((eq? (car xs) x) (cons y (subst x y (cdr xs))))

 (else (cons (car xs) (subst x y (cdr xs))))

)

)

)

 (subst 3 0 '(8 2 3 4 3 5))  '(8 2 0 4 0 5)

COP4020 Fall 2013

Example 6

 Higher-order reductions
(define reduce
 (lambda (op xs)
 (if (null? (cdr xs))
 (car xs)
 (op (car xs) (reduce op (cdr xs)))
)
)
)

 (reduce and '(#t #t #f))  (and #t (and #t #f))  #f

 (reduce * '(1 2 3))  (* 1 (* 2 3))  6

 (reduce + '(1 2 3))  (+ 1 (+ 2 3))  6

COP4020 Fall 2013

Example 7

 Higher-order filter operation: keep elements of a list for
which a condition is true
(define filter
 (lambda (op xs)
 (cond
 ((null? xs) ())
 ((op (car xs)) (cons (car xs) (filter op (cdr xs))))
 (else (filter op (cdr xs)))
)
)
)

 (filter odd? '(1 2 3 4 5))  (1 3 5)

 (filter (lambda (n) (<> n 0)) '(0 1 2 3 4))  (1 2 3 4)

COP4020 Fall 2013

Example 8

 Binary tree insertion, where () are leaves and (val left right) is a node

(define insert

 (lambda (n T)

 (cond

 ((null? T) (list n () ()))

 ((= (car T) n) T)

 ((> (car T) n) (list (car T) (insert n (cadr T)) (caddr T)))

 ((< (car T) n) (list (car T) (cadr T) (insert n (caddr T))))

)

)

)

 (insert 1 '(3 () (4 () ())))  (3 (1 () ()) (4 () ()))

