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Overview 

 What is functional programming? 

 Historical origins of functional programming 

 Functional programming today 

 Concepts of functional programming 

 Functional programming with Scheme 

 Learn (more) by example 
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What is Functional 

Programming? 

 Functional programming is a declarative programming 

style (programming paradigm) 

 

 Pro: flow of computation is declarative, i.e. more implicit 

 Pro: promotes building more complex functions from other 

functions that serve as building blocks (component reuse) 

 Pro: behavior of functions defined by the values of input 

arguments only (no side-effects via global/static variables) 

 

 Cons: function composition is (considered to be) stateless 

 Cons: programmers prefer imperative programming constructs 

such as statement composition, while functional languages 

emphasize function composition 
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Concepts of Functional 

Programming 

 Functional programming defines the outputs of a program purely as 

a mathematical function of the inputs with no notion of internal state 

(no side effects) 

 A pure function can be counted on to return the same output each time 

we invoke it with the same input parameter values 

 No global (statically allocated) variables 

 No explicit (pointer) assignments 

 Dangling pointers and un-initialized variables cannot occur 

 Example pure functional programming languages: Miranda, Haskell, 

and Sisal 

 Non-pure functional programming languages include “imperative 

features” that cause side effects (e.g. destructive assignments to 

global variables or assignments/changes to lists and data structures) 

 Example: Lisp, Scheme, and ML 
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Functional Language 

Constructs 

 Building blocks are functions 

 No statement composition 

 Function composition 

 No variable assignments 

 But: can use local “variables” to 

hold a value assigned once 

 No loops 

 Recursion 

 List comprehensions in Miranda 

and Haskell 

 But: “do-loops” in Scheme 

 Conditional flow with if-then-else 

or argument patterns 

 Functional languages can be 

typed (Haskell) or untyped (Lisp) 

 Haskell examples: 
gcd a b 

  | a == b = a 

  | a >  b = gcd (a-b) b 

  | a <  b = gcd a (b-a) 

 

fac 0 = 1 

fac n = n * fac (n-1) 

 

member x []   = false 

member x (y:xs) 

     | x == y = true 

     | x <> y = member x xs 
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Theory and Origin of Functional 

Languages 

 Church's thesis: 

 All models of computation are equally powerful 

 Turing's model of computation: Turing machine 

 Reading/writing of values on an infinite tape by a finite state machine 

 Church's model of computation: Lambda Calculus 

 Functional programming languages implement Lambda Calculus 

 Computability theory 

 A program can be viewed as a constructive proof that some 

mathematical object with a desired property exists 

 A function is a mapping from inputs to output objects and computes 

output objects from appropriate inputs 

 For example, the proposition that every pair of nonnegative integers (the inputs) has 

a greatest common divisor (the output object) has a constructive proof implemented 

by Euclid's algorithm written as a "function" 
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Impact of Functional 

Languages on Language Design 

 Useful features are found in functional languages that 

are often missing in procedural languages or have been 

adopted by modern programming languages: 

 First-class function values: the ability of functions to return newly 

constructed functions 

 Higher-order functions: functions that take other functions as 

input parameters or return functions 

 Polymorphism: the ability to write functions that operate on more 

than one type of data 

 Aggregate constructs for constructing structured objects: the 

ability to specify a structured object in-line such as a complete 

list or record value 

 Garbage collection 
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Functional Programming Today 

 Significant improvements in theory and practice of 

functional programming have been made in recent years 

 Strongly typed (with type inference) 

 Modular 

 Sugaring: imperative language features that are automatically 

translated to functional constructs (e.g. loops by recursion) 

 Improved efficiency 

 Remaining obstacles to functional programming: 

 Social: most programmers are trained in imperative 

programming and aren’t used to think in terms of function 

composition 

 Commercial: not many libraries, not very portable, and no IDEs 
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Applications 

 Many (commercial) applications are built with functional 
programming languages based on the ability to 
manipulate symbolic data more easily 

 

 Examples: 
 Computer algebra (e.g. Reduce system) 

 Natural language processing 

 Artificial intelligence 

 Automatic theorem proving 

 Algorithmic optimization of functional programs 



COP4020 Fall 2013 

LISP and Scheme 

 The original functional language and implementation of 

Lambda Calculus 

 Lisp and dialects (Scheme, common Lisp) are still the 

most widely used functional languages 

 Simple and elegant design of Lisp: 

 Homogeneity of programs and data: a Lisp program is a list and 

can be manipulated in Lisp as a list 

 Self-definition: a Lisp interpreter can be written in Lisp 

 Interactive: user interaction via "read-eval-print" loop 
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Scheme 

 Scheme is a popular Lisp dialect 

 Lisp and Scheme adopt a form of prefix notation called 
Cambridge Polish notation 

 Scheme is case insensitive 

 A Scheme expression is composed of 
 Atoms, e.g. a literal number, string, or identifier name, 

 Lists, e.g. '(a b c) 

 Function invocations written in list notation: the first list element 
is the function (or operator) followed by the arguments to which it 
is applied: 
 
(function arg1 arg2 arg3 ... argn) 

 

 For example, sin(x*x+1) is written as (sin (+ (* x x) 1)) 
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Read-Eval-Print 

 The "Read-eval-print" loop provides user interaction in Scheme 

 An expression is read, evaluated, and the result printed 

 Input: 9 

 Output: 9 

 Input: (+ 3 4) 

 Output: 7 

 Input: (+ (* 2 3) 1) 

 Output: 7 

 User can load a program from a file with the load function 

 

(load "my_scheme_program") 

 

Note: a file should use the .scm extension 
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Working with Data Structures 

 An expression operates on values and compound data structures 

built from atoms and lists 

 A value is either an atom or a compound list 

 Atoms are 

 Numbers, e.g. 7 and 3.14 

 Strings, e.g. "abc" 

 Boolean values #t (true) and #f (false) 

 Symbols, which are identifiers escaped with a single quote, e.g. 'y 

 The empty list () 

 When entering a list as a literal value, escape it with a single quote 

 Without the quote it is a function invocation! 

 For example, '(a b c) is a list while (a b c) is a function application 

 Lists can be nested and may contain any value, e.g. '(1 (a b) ''s'') 
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Checking the Type of a Value 

 The type of a value can be checked with 

 (boolean? x) ; is x a Boolean? 

 (char? x)  ; is x a character? 

 (string? x)  ; is x a string? 

 (symbol? x) ; is x a symbol? 

 (number? x) ; is x a number? 

 (list? x)  ; is x a list? 

 (pair? x)  ; is x a non-empty list? 

 (null? x)  ; is x an empty list? 

 Examples 

 (list? '(2))  #t 

 (number? ''abc'')  #f 

 Portability note: on some systems false (#f) is replaced with () 
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Working with Lists 

 (car xs) returns the head (first element) of list xs 

 (cdr xs) (pronounced "coulder") returns the tail of list xs 

 (cons x xs) joins an element x and a list xs to construct a new list 

 (list x1 x2 … xn) generates a list from its arguments 

 Examples: 

 (car '(2 3 4))  2 

 (car '(2))  2 

 (car '())  Error 

 (cdr '(2 3))  (3) 

 (car (cdr '(2 3 4)))  3 ; also abbreviated as (cadr '(2 3 4)) 

 (cdr (cdr '(2 3 4)))  (4) ; also abbreviated as (cddr '(2 3 4)) 

 (cdr '(2))  () 

 (cons 2 '(3))  (2 3) 

 (cons 2 '(3 4))  (2 3 4) 

 (list 1 2 3)  (1 2 3) 
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The “if” Special Form 

 Special forms resemble functions but have special 
evaluation rules 
 Evaluation of arguments depends on the special construct 

 The “if” special form returns the value of thenexpr or 
elseexpr depending on a condition 
 
(if condition thenexpr elseexpr) 

 

 Examples 
 (if #t 1 2)  1 

 (if #f 1 "a")  "a" 

 (if (string? "s") (+ 1 2) 4)  3 

 (if (> 1 2) "yes" "no")  "no" 
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The “cond” Special Form 

 A more general if-then-else can be written using the 
“cond” special form that takes a sequence of (condition 
value) pairs and returns the first value xi for which 
condition ci is true: 
 
(cond (c1 x1) (c2 x2) … (else xn) ) 

 

 Examples 
 (cond (#f 1) (#t 2) (#t 3) )  2 

 (cond ((< 1 2) ''one'') ((>= 1 2) ''two'') )  ''one'' 

 (cond ((< 2 1) 1) ((= 2 1) 2) (else 3) )  3 

 Note: “else” is used to return a default value 
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Logical Expressions 

 Relations 

 Numeric comparison operators <, <=, =, >, <=, and <> 

 Boolean operators 

 (and x1 x2 … xn), (or x1 x2 … xn) 

 Other test operators 

 (zero? x), (odd? x), (even? x) 

 (eq? x1 x2) tests whether x1 and x2 refer to the same object 
 (eq? 'a 'a)  #t 
 (eq? '(a b) '(a b))  #f 

 (equal? x1 x2) tests whether x1 and x2 are structurally equivalent 
 (equal? 'a 'a)  #t 
 (equal? '(a b) '(a b))  #t 

 (member x xs) returns the sublist of xs that starts with x, or returns () 
 (member 5 '(a b))  () 
 (member 5 '(1 2 3 4 5 6))  (5 6) 
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Lambda Calculus: Functions = 

Lambda Abstractions 

 A lambda abstraction is a nameless function (a mapping) 
specified with the lambda special form: 
 
(lambda args body) 
 
where args is a list of formal arguments and body is an 
expression that returns the result of the function 
evaluation when applied to actual arguments 

 A lambda expression is an unevaluated function 

 Examples: 
 (lambda (x) (+ x 1)) 

 (lambda (x) (* x x)) 

 (lambda (a b) (sqrt (+ (* a a) (* b b)))) 
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Lambda Calculus: Invocation 

= Beta Reduction 

 A lambda abstraction is applied to actual arguments using the 
familiar list notation 
 
 (function arg1 arg2 ... argn) 
 
where function is the name of a function or a lambda abstraction 

 Beta reduction is the process of replacing formal arguments in the 
lambda abstraction’s body with actuals 

 Examples 

 ( (lambda (x) (* x x)) 3 )  (* 3 3)  9 

 ( (lambda (f a) (f (f a))) (lambda (x) (* x x)) 3 ) 
 (f (f 3))    where f = (lambda (x) (* x x)) 
 (f ( (lambda (x) (* x x)) 3 )) where f = (lambda (x) (* x x)) 
 (f 9)    where f = (lambda (x) (* x x)) 
 ( (lambda (x) (* x x)) 9 ) 
 (* 9 9) 
 81 
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Defining Global Names 

 A global name is defined with the “define” special form 

 

(define name value) 

 

 Usually the values are functions (lambda abstractions) 

 Examples: 

 (define my-name ''foo'') 

 (define determiners '(''a'' ''an'' ''the'')) 

 (define sqr (lambda (x) (* x x))) 

 (define twice (lambda (f a) (f (f a)))) 

 (twice sqr 3)  ((lambda (f a) (f (f a))) (lambda (x) (* x x)) 3)  

…  81 
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Using Local Names 

 The “let” special form (let-expression) provides a scope 

construct for local name-to-value bindings 

 

(let ( (name1 x1) (name2 x2) … (namen xn) ) expression) 

 

where name1, name2, …, namen in expression are 

substituted by x1, x2, …, xn  

 Examples 

 (let ( (plus +) (two 2) ) (plus two two))  4 

 (let ( (a 3) (b 4) ) (sqrt (+ (* a a) (* b b))))  5 

 (let ( (sqr (lambda (x) (* x x)) ) (sqrt (+ (sqr 3) (sqr 4)))  5 
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Local Bindings with Self 

References 

 A global name can simply refer to itself (for recursion) 

 (define fac (lambda (n) (if (zero? n) 1 (* n (fac (- n 1))))) 

 A let-expression cannot refer to its own definitions 

 Its definitions are not in scope, only outer definitions are visible 

 Use the letrec special form for recursive local definitions 

 

 (letrec ( (name1 x1) (name2 x2) … (namen xn) ) expr) 

 

where namei in expr refers to xi 

 Examples 

 (letrec ( (fac (lambda (n) (if (zero? n) 1 (* n (fac (- n 1)))))) ) 

  (fac 5))  120 
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I/O 

 (display x) prints value of x and returns an unspecified 

value 

 (display "Hello World!") 

Displays: "Hello World!" 

 (display (+ 2 3)) 

Displays: 5 

 (newline) advances to a new line 

 (read) returns a value from standard input 

 (if (member (read) '(6 3 5 9)) "You guessed it!" "No luck") 

Enter: 5 

Displays: You guessed it! 
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Blocks 

 (begin x1 x2 … xn) sequences a series of expressions xi, evaluates 
them, and returns the value of the last one xn 

 Examples: 

 (begin  
  (display "Hello World!")  
  (newline)  
)  

 (let ( (x 1)  
        (y (read))  
        (plus +)  
      )  
      (begin  
         (display (plus x y))  
         (newline)  
      )  
) 
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Do-loops 

 The “do” special form takes a list of triples and a tuple with a 

terminating condition and return value, and multiple expressions xi to 

be evaluated in the loop 

 

(do (triples) (condition ret-expr) x1 x2 … xn)  

 

 Each triple contains the name of an iterator, its initial value, and the 

update value of the iterator 

 Example (displays values 0 to 9) 

 (do ( (i 0 (+ i 1)) )  

      ( (>= i 10) "done" )  

      (display i)  

      (newline)  

) 
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Higher-Order Functions 

 A function is a higher-order function (also called a functional form) if 

 It takes a function as an argument, or 

 It returns a newly constructed function as a result 

 For example, a function that applies a function to an argument twice 
is a higher-order function 

 (define twice (lambda (f a) (f (f a)))) 

 Scheme has several built-in higher-order functions 

 (apply f xs) takes a function f and a list xs and applies f to the elements 
of the list as its arguments 

 (apply '+ '(3 4))  7 

 (apply (lambda (x) (* x x)) '(3)) 

 (map f xs) takes a function f and a list xs and returns a list with the 
function applied to each element of xs 

 (map odd? '(1 2 3 4))  (#t #f #t #f) 

 (map (lambda (x) (* x x)) '(1 2 3 4))  (1 4 9 16) 
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Non-Pure Constructs 

 Assignments are considered non-pure in functional programming 
because they can change the global state of the program and 
possibly influence function outcomes 

 The value of a pure function only depends on its arguments 

 (set! name x) re-assigns x to local or global name 

 (define a 0) 
(set! a 1) ; overwrite with 1 

 (let ( (a 0) ) 
      (begin 
        (set! a (+ a 1)) ; increment a by 1 
        (display a) ; shows 1 
      )  
) 

 (set-car! x xs) overwrites the head of a list xs with x 

 (set-cdr! xs ys) overwrites the tail of a list xs with ys 
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Example 1 

 Recursive factorial: 
(define fact  
  (lambda (n)  
    (if (zero? n) 1 (* n (fact (- n 1))))  
  )  
) 

 (fact 2)  (if (zero? 2) 1 (* 2 (fact (- 2 1)))) 
   (* 2 (fact 1)) 
   (* 2 (if (zero? 1) 1 (* 1 (fact (- 1 1))))) 
   (* 2 (* 1 (fact 0))) 
   (* 2 (* 1 (if (zero? 0) 1 (* 0 (fact (- 0 1)))) 
   (* 2 (* 1 1)) 
   2 
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Example 2 

 Iterative factorial 

(define iterfact  

  (lambda (n)  

    (do ( (i 1 (+ i 1)) ; i runs from 1 updated by 1  

            (f 1 (* f i))  ; f from 1, multiplied by i 

          )  

          ( (> i n) f )  ; until i > n, return f 

             ; loop body is omitted  

    ) 

  ) 

) 
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Example 3 

 Sum the elements of a list 
(define sum  
  (lambda (lst)   
    (if (null? lst)  
      0  
      (+ (car lst) (sum (cdr lst))) 
    )  
  )  
) 

 (sum '(1 2 3))  (+ 1 (sum (2 3)) 
    (+ 1 (+ 2 (sum (3)))) 
    (+ 1 (+ 2 (+ 3 (sum ())))) 
    (+ 1 (+ 2 (+ 3 0))) 
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Example 4 

 Generate a list of n copies of x 

(define fill 

  (lambda (n x) 

    (if (= n 0) 

      () 

      (cons x (fill (- n 1) x))) 

  ) 

) 

 (fill 2 'a)   (cons a (fill 1 a)) 

    (cons a (cons a (fill 0 a))) 

    (cons a (cons a ())) 

    (a a) 
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Example 5 

 Replace x with y in list xs 

(define subst 

  (lambda (x y xs) 

    (cond 

      ((null? xs)       ()) 

      ((eq? (car xs) x)   (cons y (subst x y (cdr xs)))) 

      (else        (cons (car xs) (subst x y (cdr xs)))) 

    ) 

  ) 

) 

 (subst 3 0 '(8 2 3 4 3 5))  '(8 2 0 4 0 5) 
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Example 6 

 Higher-order reductions 
(define reduce 
  (lambda (op xs) 
    (if (null? (cdr xs))  
      (car xs)  
      (op (car xs) (reduce op (cdr xs)))  
    ) 
  ) 
) 

 (reduce and '(#t #t #f))  (and #t (and #t #f))  #f 

 (reduce * '(1 2 3))  (* 1 (* 2 3))  6 

 (reduce + '(1 2 3))  (+ 1 (+ 2 3))  6 
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Example 7 

 Higher-order filter operation: keep elements of a list for 
which a condition is true 
(define filter  
  (lambda (op xs)  
    (cond  
      ((null? xs) ())  
      ((op (car xs)) (cons (car xs) (filter op (cdr xs))))  
      (else  (filter op (cdr xs)))  
    )  
  )  
) 

 (filter odd? '(1 2 3 4 5))  (1 3 5) 

 (filter (lambda (n) (<> n 0)) '(0 1 2 3 4))  (1 2 3 4) 
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Example 8 

 Binary tree insertion, where () are leaves and (val left right) is a node 

(define insert 

  (lambda (n T) 

    (cond 

      ((null? T)  (list n () ())) 

      ((= (car T) n) T) 

      ((> (car T) n) (list (car T) (insert n (cadr T)) (caddr T))) 

      ((< (car T) n) (list (car T) (cadr T) (insert n (caddr T)))) 

    ) 

  ) 

) 

 (insert 1 '(3 () (4 () ())))  (3 (1 () ()) (4 () ())) 


