CcCOP4020
Programming
Languages

Functional Programming

Prof. Chris Lacher
Modified from Robert van Engelen

w it

1 pune v

Overview

m What is functional programming?

Historical origins of functional programming
Functional programming today

Concepts of functional programming
Functional programming with Scheme
Learn (more) by example

COP4020 Fall 2013

What is Functional
Programming?

m Functional programming is a declarative programming
style (programming paradigm)

Pro: flow of computation is declarative, i.e. more implicit

Pro: promotes building more complex functions from other
functions that serve as building blocks (component reuse)

Pro: behavior of functions defined by the values of input
arguments only (no side-effects via global/static variables)

Cons: function composition is (considered to be) stateless

Cons: programmers prefer imperative programming constructs
such as statement composition, while functional languages
emphasize function composition

COP4020 Fall 2013

Concepts of Functional
Programming

m Functional programming defines the outputs of a program purely as
a mathematical function of the inputs with no notion of internal state
(no side effects)

A pure function can be counted on to return the same output each time
we invoke it with the same input parameter values
No global (statically allocated) variables
No explicit (pointer) assignments

m Dangling pointers and un-initialized variables cannot occur
Example pure functional programming languages: Miranda, Haskell,
and Sisal

m Non-pure functional programming languages include “imperative
features” that cause side effects (e.g. destructive assignments to
global variables or assignments/changes to lists and data structures)

Example: Lisp, Scheme, and ML

COP4020 Fall 2013

Functional Language
Constructs

Building blocks are functions

No statement composition
Function composition

No variable assignments

But: can use local “variables” to
hold a value assigned once

No loops
Recursion

List comprehensions in Miranda
and Haskell

But: “do-loops” in Scheme

Conditional flow with if-then-else
or argument patterns

Functional languages can be
typed (Haskell) or untyped (Lisp)

m Haskell examples:
ged a b

| a
I
I

a
a
fac O

fac n

member
member

COP4020 Fall 2013

>
<

X X XN

= a
b = ged (a-b) b
b = gcd a (b-a)
1
n * fac (n-1)

[] = false
(y:xs)

== y = true

<> y = member x xs

Theory and Origin of Functional
Languages

m Church's thesis:

All models of computation are equally powerful

Turing's model of computation: Turing machine

m Reading/writing of values on an infinite tape by a finite state machine

Church's model of computation: Lambda Calculus

Functional programming languages implement Lambda Calculus
m Computability theory

A program can be viewed as a constructive proof that some

mathematical object with a desired property exists

A function is a mapping from inputs to output objects and computes
output objects from appropriate inputs

m For example, the proposition that every pair of nonnegative integers (the inputs) has
a greatest common divisor (the output object) has a constructive proof implemented
by Euclid's algorithm written as a "function™

COP4020 Fall 2013

Impact of Functional
Languages on Language Design

m Useful features are found in functional languages that
are often missing in procedural languages or have been
adopted by modern programming languages:

First-class function values: the ability of functions to return newly
constructed functions

Higher-order functions: functions that take other functions as
Input parameters or return functions

Polymorphism: the ability to write functions that operate on more
than one type of data

Aggregate constructs for constructing structured objects: the
ability to specify a structured object in-line such as a complete
list or record value

Garbage collection

COP4020 Fall 2013

Functional Programming Today

m Significant improvements in theory and practice of
functional programming have been made in recent years
Strongly typed (with type inference)
Modular

Sugaring: imperative language features that are automatically
translated to functional constructs (e.g. loops by recursion)

Improved efficiency

m Remaining obstacles to functional programming:

Social: most programmers are trained in imperative
programming and aren’t used to think in terms of function
composition

Commercial: not many libraries, not very portable, and no IDEs

COP4020 Fall 2013

Applications

m Many (commercial) applications are built with functional
programming languages based on the ability to
manipulate symbolic data more easily

m Examples:
Computer algebra (e.g. Reduce system)
Natural language processing
Artificial intelligence
Automatic theorem proving
Algorithmic optimization of functional programs

COP4020 Fall 2013

LISP and Scheme

m The original functional language and implementation of
Lambda Calculus

m Lisp and dialects (Scheme, common Lisp) are still the
most widely used functional languages

m Simple and elegant design of Lisp:

Homogeneity of programs and data: a Lisp program is a list and
can be manipulated in Lisp as a list

Self-definition: a Lisp interpreter can be written in Lisp
Interactive: user interaction via "read-eval-print" loop

COP4020 Fall 2013

Scheme

m Scheme is a popular Lisp dialect

m Lisp and Scheme adopt a form of prefix notation called
Cambridge Polish notation

m Scheme Is case insensitive

m A Scheme expression is composed of
Atoms, e.g. a literal number, string, or identifier name,
Lists, e.g. '(a b c)

Function invocations written in list notation: the first list element
IS the function (or operator) followed by the arguments to which it
IS applied:

(function arg, arg, args ... arg,)

For example, sin(x*x+1) is written as (sin (+ (* x x) 1))

COP4020 Fall 2013

Read-Eval-Print

m The "Read-eval-print" loop provides user interaction in Scheme
m An expression is read, evaluated, and the result printed

Input: 9

Output: 9

Input: (+ 3 4)

Output: 7

Input: (+ (*2 3) 1)

Output: 7
m User can load a program from a file with the load function

(load "my_scheme_program")

Note: a file should use the .scm extension

COP4020 Fall 2013

Working with Data Structures

m An expression operates on values and compound data structures
built from atoms and lists

m A value is either an atom or a compound list

m Atoms are
Numbers, e.g. 7 and 3.14
Strings, e.g. "abc"
Boolean values #t (true) and #f (false)
Symbols, which are identifiers escaped with a single quote, e.g. 'y
The empty list ()

m When entering a list as a literal value, escape it with a single quote
Without the quote it is a function invocation!
For example, '(a b c) is a list while (a b c) is a function application
Lists can be nested and may contain any value, e.g. '(1 (a b) "s")

COP4020 Fall 2013

Checking the Type of a Value

m The type of a value can be checked with

(boolean? x) ; IS X a Boolean?
(char? x) ; IS X a character?
(string? x) ; IS X a string?
(symbol? x) ; IS X a symbol?
(number? x) ; IS X a number?

(list? X) ;IS x a list?

(pair? x) ; IS X a non-empty list?
(null? x) ; IS X an empty list?

m Examples
(list? '(2)) = #t
(number? "abc") = #f
m Portability note: on some systems false (#f) is replaced with ()

COP4020 Fall 2013

Working with Lists

(car xs) returns the head (first element) of list xs

(cdr xs) (pronounced "coulder") returns the tail of list xs

(cons X xs) joins an element x and a list xs to construct a new list
(list x; X, ... X,,) generates a list from its arguments

Examples:
(car'(234) =2
(car'(2)) = 2
(car'()) = Error
(cdr'(2 3)) = (3)
(car (cdr'(234) =3 ; also abbreviated as (cadr '(2 3 4))
(cdr (cdr'(234) = (4) ; also abbreviated as (cddr '(2 3 4))
(cdr'(2)) = ()
(cons 2'(3)) = (2 3)
(cons 2'(34)) = (23 4)
(list123)=(123)

COP4020 Fall 2013

The “if”’ Special Form

m Special forms resemble functions but have special
evaluation rules

Evaluation of arguments depends on the special construct

m The “if” special form returns the value of thenexpr or
elseexpr depending on a condition

(if condition thenexpr elseexpr)

m Examples
(if#t12) =1
(if #f 1 "a") = "a"
(if (string? "s") (+12) 4) = 3
(if (> 1 2) "yes" "no") = "no"

COP4020 Fall 2013

The “cond” Special Form

m A more general if-then-else can be written using the
“cond” special form that takes a sequence of (condition
value) pairs and returns the first value x; for which
condition ¢; Is true:

(cond (c, X;) (C, X5) ... (else x,))

m Examples
(cond (#f 1) (#t2) #t3)) = 2
(cond ((<12)"one") ((>=1 2) "two")) = "one"
(cond ((<21)1)((=21)2)(else 3)) = 3

m Note: “else” is used to return a default value

COP4020 Fall 2013

Logical Expressions

m Relations
Numeric comparison operators <, <=, =, >, <=, and <>
m Boolean operators
(and x; X, ... X,), (Or X; X, ... Xp,)
m Other test operators
(zero? x), (odd? x), (even? Xx)
(eq? X, X,) tests whether x, and x, refer to the same object
(eq? 'a'a) = #t
(eg? '(ab) '(a b)) = #f
(equal? x, Xx,) tests whether x; and x, are structurally equivalent
(equal? 'a'a) = #t
(equal? '(a b) '(a b)) = #t
(member x xs) returns the sublist of xs that starts with x, or returns ()

(member 5'(@ab)) = ()
(member5'(123456)) = (56)

COP4020 Fall 2013

Lambda Calculus: Functions =
Lambda Abstractions

m A lambda abstraction is a nameless function (a mapping)
specified with the lambda special form:

(lambda args body)

where args is a list of formal arguments and body is an
expression that returns the result of the function
evaluation when applied to actual arguments

m A lambda expression is an unevaluated function

m Examples:
(lambda (x) (+ x 1))
(lambda (x) (* x x))
(lambda (a b) (sqrt (+ (*a a) (* b b))))

COP4020 Fall 2013

Lambda Calculus: Invocation
= Beta Reduction

m A lambda abstraction is applied to actual arguments using the
familiar list notation

(function arg, arg, ... arg,)

where function is the name of a function or a lambda abstraction

m Beta reduction is the process of replacing formal arguments in the
lambda abstraction’s body with actuals
m Examples
((lambda (x) (*xx))3) = (*33) =9
((lambda (f a) (f (f a))) (lambda (x) (* x x)) 3)

= (f (f 3)) where f = (lambda (x) (* X X))
= (f ((lambda (x) (* x X)) 3)) where f = (lambda (X) (* X X))
= (f 9) where f = (lambda (x) (* X X))
= ((lambda (x) (*x x)) 9)

= (*99)

— 81
COP4020 Fall 2013

Defining Global Names

m A global name is defined with the “define” special form

(define name value)

m Usually the values are functions (lambda abstractions)

m Examples:
(define my-name "foo")
(define determiners '("a" "an" "the"))
(define sgr (lambda (x) (* x x)))
(define twice (lambda (f a) (f (f a))))
(twice sgr 3) = ((lambda (f a) (f (f a))) (lambda (x) (* x X)) 3) =
...=> 81

COP4020 Fall 2013

Using Local Names

m The “let” special form (let-expression) provides a scope
construct for local name-to-value bindings

(let ((name, X,) (name, X,) ... (hame, X,)) expression)

where name,, hame,, ..., hame, in expression are
substituted by X4, X,, ..., X,
m Examples

(let ((plus +) (two 2)) (plus two two)) = 4
(let((a3)(b4)) (sart(+ (*faa) (*bhb))) =5
(let ((sgr (lambda (x) (* x X))) (sqrt (+ (sqr 3) (sqgr4))) = 5

COP4020 Fall 2013

Local Bindings with Self
References

m A global name can simply refer to itself (for recursion)
(define fac (lambda (n) (if (zero? n) 1 (* n (fac (- n 1)))))

m A let-expression cannot refer to its own definitions
Its definitions are not in scope, only outer definitions are visible

m Use the letrec special form for recursive local definitions
(letrec ((name, X,) (name, X,) ... (hame, X,)) expr)

where name; in expr refers to x;

m Examples

(letrec ((fac (lambda (n) (if (zero? n) 1 (* n (fac (- n 1)))))))
(fac 5)) = 120

COP4020 Fall 2013

1/0

m (display x) prints value of x and returns an unspecified
value

(display "Hello World!")
Displays: "Hello World!"

(display (+ 2 3))
Displays: 5
m (newline) advances to a new line

m (read) returns a value from standard input

(if (member (read) '(6 35 9)) "You guessed it!" "No luck")
Enter: 5
Displays: You guessed it!

COP4020 Fall 2013

Blocks

m (begin x; X, ... X)) sequences a series of expressions Xx;, evaluates
them, and returns the value of the last one X,

m Examples:
(begin
(display "Hello World!")
(newline)

)
(let ((x 1)
(y (read))
(plus +)
)
(begin
(display (plus x y))
(newline)
)
)

COP4020 Fall 2013

Do-loops

m The “do” special form takes a list of triples and a tuple with a
terminating condition and return value, and multiple expressions x; to
be evaluated in the loop

(do (triples) (condition ret-expr) X; X, ... X;,)

m Each triple contains the name of an iterator, its initial value, and the
update value of the iterator

m Example (displays values 0O to 9)

(do((i0(+il))
((>=110) "done")

(display 1)
(newline)

COP4020 Fall 2013

Higher-Order Functions

m A function is a higher-order function (also called a functional form) if
It takes a function as an argument, or
It returns a newly constructed function as a result
m For example, a function that applies a function to an argument twice
IS a higher-order function
(define twice (lambda (f a) (f (f a))))
m Scheme has several built-in higher-order functions

(apply f xs) takes a function f and a list xs and applies f to the elements
of the list as its arguments

(apply '+ '(34)) =7

(apply (lambda (x) (* x x)) '(3))

(map f xs) takes a function f and a list xs and returns a list with the
function applied to each element of xs

(map odd? '(1 2 3 4)) = (#t #f #t #f)
(map (lambda (x) (*xx))'(1234))= (149 16)

COP4020 Fall 2013

Non-Pure Constructs

m Assignments are considered non-pure in functional programming
because they can change the global state of the program and
possibly influence function outcomes

The value of a pure function only depends on its arguments

(set! name x) re-assigns x to local or global name

(define a 0)
(set! a 1) ; overwrite with 1

(let ((a0))

(begin
(set'!a(+al));incrementabyl
(display a) : shows 1

)

)

(set-car! x xs) overwrites the head of a list xs with x
(set-cdr! xs ys) overwrites the tail of a list xs with ys

COP4020 Fall 2013

Example 1

m Recursive factorial:
(define fact
(lambda (n)
(if (zero? n) 1 (* n (fact (- n 1))))
)
)
m (fact2) = (if (zero? 2) 1 (* 2 (fact (- 2 1))))
= (* 2 (fact 1))
= (*2 (if (zero? 1) 1 (* 1 (fact (- 1 1)))))
= (*2 (* 1 (fact 0)))
= (*2(*1(f (zero? 0) 1 (* 0 (fact (- 0 1))))
= (*2(*11))
= 2

COP4020 Fall 2013

Example 2

m [terative factorial
(define iterfact
(lambda (n)
(do((i1(+i1))
(f1(*f1))
)
(>1n)f)

, 1 runs from 1 updated by 1
; f from 1, multiplied by |

;until 1 > n, return f
; loop body is omitted

COP4020 Fall 2013

Example 3

m Sum the elements of a list
(define sum
(lambda (Ist)
(if (null? |st)
0
(+ (car Ist) (sum (cdr Ist)))

)
))
m (sum'(123)) = (+ 1 (sum (2 3))
= (+ 1 (+ 2 (sum (3))))
= (+1(+ 2 (+ 3 (sum ()))))
= (+1(+2(+30))

COP4020 Fall 2013

Example 4

m Generate a list of n copies of x

(define fill
(lambda (n x)
(if (=n 0)
0
(cons x (fill (- n 1) x)))
)
)
m (fill 2 'a) = (cons a (fill 1 a))

= (cons a (cons a (fill 0 a)))
= (cons a (cons a ()))
= (aa)

COP4020 Fall 2013

Example 5

m Replace x with y in list xs
(define subst
(lambda (X y xs)
(cond
((null? xs))
((eq? (car xs) X) (consy (subst x y (cdr xs))))
(else (cons (car xs) (subst x y (cdr xs))))

)
)
)
m (Subst30'(823435)="'820405)

COP4020 Fall 2013

Example 6

m Higher-order reductions
(define reduce
(lambda (op xs)
(if (null? (cdr xs))
(car xs)
(op (car xs) (reduce op (cdr xs)))

)
))
m (reduce and '(#t #t #f)) = (and #t (and #t #f)) = #f

m (reduce*'(123)=(*1(*23)) =6
m (reduce+'(123)=(+1(+23)) =6

COP4020 Fall 2013

Example 7

m Higher-order filter operation: keep elements of a list for
which a condition is true
(define filter
(lambda (op xs)
(cond

((null? xs))
((op (car xs)) (cons (car xs) (filter op (cdr xs))))
(else (filter op (cdr xs)))

)
))
m (filter odd? '(1 2 3 4 5)) = (1 3 5)

m (filter (lambda (n) (<>n 0)) (012 3 4)) = (1 2 3 4)

COP4020 Fall 2013

Example 8

m Binary tree insertion, where () are leaves and (val left right) is a node
(define insert
(lambda (n T)
(cond

((null? T) (listn () ()))

(=(carT)n) T

((> (carT) n) (list (car T) (insert n (cadr T)) (caddr T)))
((<(carT)n) (list (car T) (cadr T) (insert n (caddr T))))

)
)
)

m (nsert1'3() (4 00)))=E@100)“00)

COP4020 Fall 2013

