
COP4020

Programming

Languages

Exception Handling

Robert van Engelen & Chris Lacher

COP4020 Fall 2013

Overview

 Defensive programming

 Ways to catch and handle run-time errors in

programming languages that do not support exception

handling

 Exception handling in C++

 Exception handling in Java

COP4020 Fall 2013

Defensive Programming

 Defensive programming is a methodology that makes

programs more robust to failures

 Increases the quality of software

 Failures may be due to

 Erroneous user input (e.g. entering a date in the wrong format)

 File format and access problems (e.g. end of file or disk full)

 Networks failures

 Problems with arithmetic (e.g. overflow)

 Hardware and software interrupts (e.g. hitting the break key)

COP4020 Fall 2013

Exception Handling Principles

 The three purposes of an exception handler:

1. Recover from an exception to safely continue execution

2. If full recovery is not possible, display or log error message(s)

3. If the exception cannot be handled locally, clean up local resources and

re-raise the exception to propagate it to another handler

 Exception handling makes defensive programming easier

 An exception is an error condition, failure, or other special event

 Exceptions are handled by exception handlers to recover from failures

 Built-in exceptions are automatically detected by the run-time system

and handled by internal handlers or the program aborts

 Exceptions can be explicitly raised by the program

 Exception handlers can be user-defined routines that are executed

when an exception is raised

COP4020 Fall 2013

Signal Handlers

 UNIX signal handlers are a very simple form of exception handlers

 The signal() function allows signals to be caught or ignored:
signal(SIGINT, SIG_DFL); // default setting
signal(SIGINT, SIG_IGN); // ignore
signal(SIGINT, handle_quit); // use handler
…

void handle_quit(int sig)

{ … }

 Some useful signals:

 SIGINT interrupt program

 SIGFPE floating point exception

 SIGKILL kill program

 SIGBUS bus error

 SIGSEGV segmentation violation

 SIGPIPE write on pipe with no reader

 SIGALRM real-time timer expired

COP4020 Fall 2013

Catching Runtime Errors w/o

Exception Handlers

 C, Fortran 77, and Pascal do not support exception handling

 Other mechanisms to handle errors add "clutter” and obscures the
logic of a program

 Method 1: Functions return special error values

 Example in C:
int somefun(FILE *fd)

{ ...

 if (feof(fd)) return -1; // return error code -1 on end of file
 return value; // return normal (positive) value

}

 Every function return has to be tested for values indicating an error
int val;

val = somefun(fd);

if (val < 0) ...

 Forgetting to test can lead to disaster!

COP4020 Fall 2013

Catching Runtime Errors w/o

Exception Handlers (cont’d)

 Method 2: Functions and methods set global/object status variable

 Global variable holds error status, e.g. in C:
int somefun(FILE *fd)

{ errstat = 0; // reset status variable

 ...

 if (feof(fd)) errstat = -1; // error detected

 return value; // return a value anyway

}

 Another method is to include a status parameter, e.g. in C:
int somefun(FILE *fd, int *errstat)

{ *errstat = 0; // reset status parameter

 ...

 if (feof(fd)) *errstat = -1; // error detected

 return value; // return a value anyway

}

 Must to check status variable after each function call

COP4020 Fall 2013

Catching Runtime Errors w/o

Exception Handlers (cont’d)

 Method 3: Pass an error-handling function when invoking

a function or method

 Example in C:
int somefun(FILE *fd, void (*handler)(int))

{ ...

 if (feof(fd)) handler(-1); // error detected: invoke handler

 return value; // return a value

}

COP4020 Fall 2013

Catching Runtime Errors w/o

Exception Handlers (cont’d)

 Method 4: Use setjmp/longjmp in C to dynamically jump back out
through multiple function invocations

 Example:
#include <setjmp.h>

int main()

{ jmp_buf jbuf; // jump buffer holds execution context
 …

 if (setjmp(jbuf) != 0) // setjmp returns 0 on initialization of context
 … // handle longjmp’s error here
 …

 somefun();

}

int somefun()

{ …

 if (some_error)

 longjmp(jbuf, 10); // jump to the setjmp(), which returns 10
 …

}

 Warning: use longjmp in C only, because destructors of local
objects won’t be invoked

COP4020 Fall 2013

Exception Handling

Implementation

 In most programming languages, exception handlers are attached to

a specific collection of program statements that can raise

exception(s)

 When an exception occurs in this collection of statements, a handler

is selected and invoked that matches the exception

 If no handler can be found, the exception is propagated to exception

handlers of the outer scope of the statements, or if no handler exists

in the outer scope, to the caller of the subroutine/method

 When propagating the unhandled exception to the caller, the current

subroutine/method is cleaned up:

 Subroutine frames are removed and destructor functions are called to

deallocate objects

COP4020 Fall 2013

Exception Handling in C++

 C++ has no built-in exceptions:

 Exceptions are user-defined

 STL has some useful exceptions, I/O streams uses exceptions

 Exceptions have to be explicitly raised with throw

 An exception in C++ is a type (typically a class):
 class empty_queue

{ public empty_queue(queue q) { ... };

 ... // constructor that takes a queue object for diagnostics

};

declares an “empty queue” exception

 short int eof_condition;

declares a variable used to raise a "short int" exception

COP4020 Fall 2013

Exception Handling in C++

(cont’d)

 C++ exception handlers are attached to a block of statements with
the try-block and a set of catch-clauses (or catch-blocks):

try {

 …

 … throw eof_condition; // matches short int exception
 … throw empty_queue(myq); // matches the empty_queue exception and
 // passes the myq object to handler
 … throw 6; // matches int exception and sets n=6
 …

} catch (short int) {

 … // handle end of file (no exception parameter)
} catch (empty_queue e) {

 … // handle empty queue, where parameter e is the myq empty_queue object
} catch (int n) {

 … // handle exception of type int, where parameter n is set by the throw
} catch (...) {

 … // catch-all handler (ellipsis)
}

COP4020 Fall 2013

Exception Handling in C++

(cont’d)

 A catch-block is executed that matches the type/class of throw

 A catch specifies a type/class and an optional parameter

 Can pass the exception object by value or by reference

 The parameter has a local scope in the catch-block

 The catch(...) with ellipsis catches all remaining exceptions

 After an exception is handled:

 Execution continues with statements after the try-catch and all local
variables allocated in the try-block are deallocated

 If no handler matches an exception (and there is no catch with
ellipsis), the current function is terminated and the exception is
propagated to the caller of the function:
try {

 afun(); // may throw empty queue exception
} catch (empty_queue)

{ ... // handle empty queue exception here
}

COP4020 Fall 2013

Exception Handling in C++

(cont’d)

 C++ supports exception hierarchies:

 An exception handler for exception class X also catches derived
exceptions Y of base class X:
class X {…};

class Y: public X {…};

…

try {

 …

} catch (X& e) {

 … // handle exceptions X and Y
}

 In C++, functions and methods may list the types of exceptions they
may raise:
int afun() throw (int, empty_queue)

{ ... }

where afun can raise int and empty_queue exceptions, as well
as derived exception classes of empty_queue

COP4020 Fall 2013

Exception Handling in Java

 All Java exceptions are objects of classes that are descendants of
class Throwable

 Classes Error and Exception are descendants of Throwable

 Error: built-in exceptions such as "out of memory"

 Exception: all user-defined exceptions are derived from Exception

 RuntimeException: base class for built-in dynamic semantic errors,

such as IOException for I/O exceptions

 Example user-defined exception:
class MyException extends Exception

{ public MyException() {};

 public MyException(String msg)

 { super(msg); // class Exception handles the message

 }

}

COP4020 Fall 2013

Exception Handling in Java

(cont’d)

 An exception is explicitly raised with throw:

 Examples:
throw new MyException();

throw new MyException("some error message");

 The syntax of the catch-handlers in Java is the same as C++, but

Java also has an optional finally block:
try {

 ...

} catch (MyException e) {

 ... // catch exceptions that are (descendants of) MyException

} catch (Exception e) {

 ... // a catch-all handler: all exceptions are descendants of Exception

} finally {

 ... // always executed for clean-up operations

}

COP4020 Fall 2013

Exception Handling in Java

(cont’d)

 The finally block is always executed, even when a
break or return statement is executed in the try-block

 A catch-handler for an exception also handles
exceptions that are descendents of that exception class

 After an exception is handled in a catch-block:
 Execution continues with the statements in the finally block (if

any)

 And then the statements that follow the try-catch blocks

 If no handler matches the raised exception:
 The current method is terminated

 The finally block executed (if any)

 Exception is propagated to the caller

COP4020 Fall 2013

Exception Handling in Java

(cont’d)

 Java class methods must list the exceptions that they may raise:

 Those that can be raised by the system and are not locally caught

 Those that explicitly raised by throw and are not locally caught

 For example:
class GradeList

{ ...

 void BuildDist() throws IOException

 { ... // I/O operations here may raise IOException
 }

 ...

}

 The Java compiler will verify the list of exceptions for completeness

 The exception classes Error and RuntimeException and their
descendants are unchecked exceptions and are not verified by the
compiler and do not need to be listed

 There are no default exception handlers or catch-all handlers

 For a catch-all: Exception catches any exception

