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Overview 

 Abstractions and names 

 Binding time 

 Object lifetime 

 Object storage management 

 Static allocation 

 Stack allocation 

 Heap allocation 

 Scope rules 

 Static versus dynamic scoping 

 Reference environments 

 Overloading and polymorphism 
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Name = Abstraction 

 Names enable programmers to refer to variables, constants, 

operations, and types using identifier names 

 Names are control abstractions and data abstractions for program 

fragments and data structures 

 Control abstraction: 

 Subroutines (procedures and functions) allow programmers to focus on manageable 

subset of program text 

 Subroutine interface hides implementation details 

 Data abstraction: 

 Object-oriented classes hide data representation details behind a set of operations 

 Abstraction in the context of high-level programming languages refers to the degree 

or level of language features 

 Enhances the level of machine-independence 

 "Power" of constructs 
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Binding Time 

 A binding is an association between a name and an entity 

 Binding time is the time at which an implementation decision is 
made to create a name  entity binding: 

 Language design time: the design of specific program constructs 
(syntax), primitive types, and meaning (semantics) 

 Language implementation time: fixation of implementation constants 
such as numeric precision, run-time memory sizes, max identifier name 
length, number and types of built-in exceptions, etc. 

 Program writing time: the programmer's choice of algorithms and data 
structures 

 Compile time: the time of translation of high-level constructs to machine 
code and choice of memory layout for data objects 

 Link time: the time at which multiple object codes (machine code files) 
and libraries are combined into one executable 

 Load time: when the operating system loads the executable in memory 

 Run time: when a program executes 
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Binding Time Examples 

 Language design: 

 Syntax (names  grammar) 
 if (a>0) b:=a; (C syntax style) 

 if a>0 then b:=a end if (Ada syntax style) 

 Keywords (names  builtins) 
 class (C++ and Java), endif or end if (Fortran, space insignificant) 

 Reserved words (names  special constructs) 
 main (C), writeln (Pascal) 

 Meaning of operators (operator  operation) 
 + (add), % (mod), ** (power) 

 Built-in primitive types (type name  type) 

 float, short, int, long, string 

 Language implementation 

 Internal representation of types and literals (type  byte encoding) 

 3.1 (IEEE 754) and "foo bar” (\0 terminated or embedded string length) 

 Storage allocation method for variables (static/stack/heap) 
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Binding Time Examples (cont’d) 

 Compile time 

 The specific type of a variable in a declaration (nametype) 

 Storage allocation method for a global or local variable 
(nameallocation mechanism) 

 Linker 

 Linking calls to static library routines (functionaddress) 
 printf (in libc) 

 Merging and linking multiple object codes into one executable 

 Loader 

 Loading executable in memory and adjusting absolute addresses 

 Mostly in older systems that do not have virtual memory 

 Run time 

 Dynamic linking of libraries (library functionlibrary code) 

 DLL, dylib 

 Nonstatic allocation of space for variable (variableaddress) 

 Stack and heap 
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The Effect of Binding Time 

 Early binding times (before run time) are associated with 
greater efficiency and clarity of program code 
 Compilers make implementation decisions at compile time 

(avoiding to generate code that makes the decision at run time) 

 Syntax and static semantics checking is performed only once at 
compile time and does not impose any run-time overheads 

 Late binding times (at run time) are associated with 
greater flexibility (but may leave programmers 
sometimes guessing what’s going on) 
 Interpreters allow programs to be extended at run time 

 Languages such as Smalltalk-80 with polymorphic types allow 
variable names to refer to objects of multiple types at run time 

 Method binding in object-oriented languages must be late to 
support dynamic binding 
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Binding Lifetime versus 

Object Lifetime 

 Key events in object lifetime: 
 Object creation 

 Creation of bindings 

 The object is manipulated via its binding 

 Deactivation and reactivation of (temporarily invisible) bindings 

 Destruction of bindings 

 Destruction of objects 

 Binding lifetime: time between creation and destruction 
of binding to object 
 Example: a pointer variable is set to the address of an object 

 Example: a formal argument is bound to an actual argument 

 Object lifetime: time between creation and destruction of 
an object 
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Binding Lifetime versus 

Object Lifetime (cont’d) 

 Bindings are temporarily invisible when code is executed where the 

binding (name  object) is out of scope 

 Memory leak: object never destroyed (binding to object may have 

been destroyed, rendering access impossible) 

 Dangling reference: object destroyed before binding is destroyed 

 Garbage collection prevents these allocation/deallocation problems  
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C++ Example 

 {  

  SomeClass* myobject = new SomeClass; 

  ... 

  {  

    OtherClass myobject; 

    ... // the myobject name is bound to other object 

    ... 

  } 

  ... // myobject binding is visible again 

  ... 

  myobject->action() // myobject in action(): 

                     // the name is not in scope 

                     // but object is bound to ‘this’ 

  delete myobject; 

  ... 

  ... // myobject is a dangling reference 

} 
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Object Storage 

 Objects (program data and code) have to be stored in memory 
during their lifetime 

 Static objects have an absolute storage address that is retained 
throughout the execution of the program 

 Global variables and data 

 Subroutine code and class method code 

 Stack objects are allocated in last-in first-out order, usually in 
conjunction with subroutine calls and returns 

 Actual arguments passed by value to a subroutine 

 Local variables of a subroutine 

 Heap objects may be allocated and deallocated at arbitrary times, 
but require an expensive storage management algorithm 

 Example: Lisp lists 

 Example: Java class instances are always stored on the heap 
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Typical Program and Data 

Layout in Memory 

 

 Program code is at the bottom 

of the memory region (code 

section) 

 The code section is protected 

from run-time modification by 

the OS 

 Static data objects are stored 

in the static region 

 Stack grows downward 

 Heap grows upward 
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Static Allocation 

 Program code is statically allocated in most implementations of 

imperative languages 

 Statically allocated variables are history sensitive 

 Global variables keep state during entire program lifetime 

 Static local variables in C functions keep state across function 

invocations 

 Static data members are “shared” by objects and keep state during 

program lifetime 

 Advantage of statically allocated object is the fast access due to 

absolute addressing of the object 

 So why not allocate local variables statically? 

 Problem: static allocation of local variables cannot be used for recursive 

subroutines: each new function instantiation needs fresh locals 
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Static Allocation in Fortran 77 

 Fortran 77 has no recursion 

 Global and local variables are 
statically allocated as decided by 
the compiler 

 Global and local variables are 
referenced at absolute addresses 

 Avoids overhead of creation and 
destruction of local objects for 
every subroutine call 

 Each subroutine in the program 
has a subroutine frame that is 
statically allocated 

 This subroutine frame stores all 
subroutine-relevant data that is 
needed to execute 

Typical static subroutine 

frame layout 

Temporary storage 

(e.g. for expression 

evaluation) 

Local variables 

Bookkeeping 

(e.g. saved CPU 

registers) 

Return address 

Subroutine 

arguments and 

returns 
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Stack Allocation 

 Each instance of a subroutine that is active has a 

subroutine frame (sometimes called activation record) on 

the run-time stack 

 Compiler generates subroutine calling sequence to setup frame, 

call the routine, and to destroy the frame afterwards 

 Method invocation works the same way, but in addition methods 

are typically dynamically bound 

 Subroutine frame layouts vary between languages, 

implementations, and machine platforms 
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Typical Stack-Allocated 

Subroutine Frame 

 

 A frame pointer (fp) points to 

the frame of the currently 

active subroutine at run time 

 Subroutine arguments, local 

variables, and return values 

are accessed by constant 

address offsets from the fp 

 

Typical subroutine 

frame layout 

Temporary storage 

(e.g. for expression 

evaluation) 

Local variables 

Bookkeeping 

(e.g. saved CPU 

registers) 

Return address 

Subroutine 

arguments and 

returns 

fp 

Lower addr 

Higher addr 
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Subroutine Frames on the 

Stack 

 Subroutine frames are pushed 
and popped onto/from the runtime 
stack 

 The stack pointer (sp) points to 
the next available free space on 
the stack to push a new frame 
onto when a subroutine is called 

 The frame pointer (fp) points to 
the frame of the currently active 
subroutine, which always the 
topmost frame on the stack 

 The fp of the previous active 
frame is saved in the current 
frame and restored after the call 

 In this example: 
M called A  
A called B  
B called A 

Temporaries 
Local variables 

Bookkeeping 
Return address 

Arguments 

A 

Temporaries 
Local variables 

Bookkeeping 
Return address 

Arguments 

B 

Temporaries 
Local variables 

Bookkeeping 
Return address 

Arguments 

A 

Temporaries 
Local variables 

Bookkeeping 
Return address 

Arguments 

M 

fp 

Higher addr 

sp 
Stack growth 
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Example Subroutine Frame 

 The size of the types of local 
variables and arguments 
determines the fp offset in a frame 

 Example Pascal procedure: 
 
procedure P(a:integer, 

            var b:real) 

(* a is passed by value 

   b is passed by reference, 

     = pointer to b's value 

*) 

var 

  foo:integer;(* 4 bytes *) 

  bar:real;   (* 8 bytes *) 

  p:^integer; (* 4 bytes *) 

begin 

  ... 

end 

Temporaries 

Bookkeeping 

(16 bytes) 

Return address 
to the caller of P 

(4 bytes) 
fp 

Lower addr 

Higher addr 

-36: foo (4 bytes) 
-32: bar (8 bytes) 
-24: p (4 bytes) 

0: a (4 bytes) 
4: b (4 bytes) 

fp-32 

fp+4 
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Heap Allocation 

 Implicit heap allocation: 

 Done automatically 

 Java class instances are placed on the heap 

 Scripting languages and functional languages make extensive 

use of the heap for storing objects 

 Some procedural languages allow array declarations with run-

time dependent array size 

 Resizable character strings 

 Explicit heap allocation: 

 Statements and/or functions for allocation and deallocation 

 Malloc/free, new/delete 
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Heap Allocation Algorithms 

 Heap allocation is performed by searching the heap for 
available free space 

 For example, suppose we want to allocate a new object 
E of 20 bytes, where would it fit? 

 

 

 Deletion of objects leaves free blocks in the heap that 
can be reused 

 Internal heap fragmentation: if allocated object is smaller 
than the free block the extra space is wasted 

 External heap fragmentation: smaller free blocks cannot 
always be reused resulting in wasted space 

Object A Free Object B Object C Free Object D Free 

30 bytes 8 bytes 10 bytes 24 bytes 24 bytes 8 bytes 20 bytes 
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Heap Allocation Algorithms 

(cont’d) 

 Maintain a linked list of free heap blocks 

 First-fit: select the first block in the list that is large enough 

 Best-fit: search the entire list for the smallest free block that is large 
enough to hold the object 

 If an object is smaller than the block, the extra space can be added 
to the list of free blocks 

 When a block is freed, adjacent free blocks are coalesced 

 Buddy system: use heap pools of standard sized blocks of size 2k 

 If no free block is available for object of size between 2k-1+1 and 2k then 
find block of size 2k+1 and split it in half, adding the halves to the pool of 
free 2k blocks, etc. 

 Fibonacci heap: use heap pools of standard size blocks according to 
Fibonacci numbers 

 More complex but leads to slower internal fragmantation 
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Unlimited Extent 

 An object declared in a local scope has unlimited extent 

if its lifetime continues indefinitely 

 A local stack-allocated variable has a lifetime limited to 

the lifetime of the subroutine 

 In C/C++ functions should never return pointers to local variables 

 Unlimited extent requires static or heap allocation 

 Issues with static: limited, no mechanism to allocate more 

variables 

 Issues with heap: should probably deallocate when no longer 

referenced (no longer bound) 

 Garbage collection 

 Remove object when no longer bound (by any references) 
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Garbage Collection 

 Explicit manual deallocation errors are among the most 

expensive and hard to detect problems in real-world 

applications 

 If an object is deallocated too soon, a reference to the object 

becomes a dangling reference 

 If an object is never deallocated, the program leaks memory 

 Automatic garbage collection removes all objects from 

the heap that are not accessible, i.e. are not referenced 

 Used in Lisp, Scheme, Prolog, Ada, Java, Haskell 

 Disadvantage is GC overhead, but GC algorithm efficiency has 

been improved 

 Not always suitable for real-time processing 
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Storage Allocation Compared 

 Static Stack Heap 

Ada 

N/A local variables and 

subroutine arguments 

of fixed size 

implicit: local variables of variable 

size; 

explicit: new (destruction with 

garbage collection or explicit with 
unchecked deallocation) 

C 
global variables; static local 

variables 

local variables and 

subroutine arguments 

explicit with malloc and free 

C++ 
Same as C, and static 

class members 

Same as C explicit with new and delete 

Java 
N/A only local variables of 

primitive types 

implicit: all class instances 

(destruction with garbage collection) 

Fortran77 

global variables (in 

common blocks), local 

variables, and subroutine 

arguments (implementation 
dependent); SAVE forces 

static allocation 

local variables and 

subroutine arguments 

(implementation 

dependent 

N/A 

Pascal 

global variables (compiler 

dependent) 

global variables 

(compiler dependent), 

local variables, and 

subroutine arguments 

Explicit: new and dispose 
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Scope 

 Scope is the textual region of a program in which a 

name-to-object binding is active 

 Statically scoped language: the scope of bindings is 

determined at compile time 

 Used by almost all but a few programming languages 

 More intuitive to user compared to dynamic scoping 

 Dynamically scoped language: the scope of bindings is 

determined at run time 

 Used in Lisp (early versions), APL, Snobol, and Perl (selectively) 
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Effect of Static Scoping 

 The following pseudo-code 

program demonstrates the 

effect of scoping on variable 

bindings: 

 a:integer 

procedure first 

  a:=1 

procedure second 

  a:integer 

  first() 

procedure main 

  a:=2 

  second() 

  write_integer(a) 

a:integer 

main()           

  a:=2           

  second()       

    a:integer     

    first()      

      a:=1 

  write_integer(a) 

Program execution: 

Program prints “1” 

binding 



COP4020 Fall 2013 

Effect of Dynamic Scoping 

 The following pseudo-code 

program demonstrates the 

effect of scoping on variable 

bindings: 

 a:integer 

procedure first 

  a:=1 

procedure second 

  a:integer 

  first() 

procedure main 

  a:=2 

  second() 

  write_integer(a) 

a:integer 

main()           

  a:=2           

  second()       

    a:integer     

    first()      

      a:=1 

  write_integer(a) 

Program execution: 

Program prints “2” 

binding 
Binding depends on execution 
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Static Scoping 

 The bindings between names and objects can be 

determined by examination of the program text 

 Scope rules of a program language define the scope of 

variables and subroutines, which is the region of 

program text in which a name-to-object binding is usable 

 Early Basic: all variables are global and visible everywhere 

 Fortran 77: the scope of a local variable is limited to a 

subroutine; the scope of a global variable is the whole program 

text unless it is hidden by a local variable declaration with the 

same variable name 

 Algol 60, Pascal, and Ada: these languages allow nested 

subroutines definitions and adopt the closest nested scope rule 

with slight variations in implementation 
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Closest Nested Scope Rule 

 

 To find the object 

referenced by a given 

name: 

 Look for a 

declaration in the 

current innermost 

scope 

 If there is none, look 

for a declaration in 

the immediately 

surrounding scope, 

etc. 

procedure P1(A1:T1) 

var X:real; 

... 

  procedure P2(A2:T2); 

  ... 

    procedure P3(A3:T3); 

    ... 

    begin 

    (* body of P3: P3,A3,P2,A2,X of P1,P1,A1 are visible *) 

    end; 

  ... 

  begin 

  (* body of P2: P3,P2,A2,X of P1,P1,A1 are visible *) 

  end; 

  procedure P4(A4:T4); 

  ... 

    function F1(A5:T5):T6; 

    var X:integer; 

    ... 

    begin 

    (* body of F1: X of F1,F1,A5,P4,A4,P2,P1,A1 are visible *) 

    end; 

  ... 

  begin 

  (* body of P4: F1,P4,A4,P2,X of P1,P1,A1 are visible *) 

  end; 

... 

begin 

(* body of P1: X of P1,P1,A1,P2,P4 are visible *) 

end 
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Static Scope Implementation 

with Static Links 

 Scope rules are designed so that we can only refer to 

variables that are alive: the variable must have been 

stored in the frame of a subroutine 

 If a variable is not in the local scope, we are sure there is 

a frame for the surrounding scope somewhere below on 

the stack: 

 The current subroutine can only be called when it was visible 

 The current subroutine is visible only when the surrounding 

scope is active 

 Each frame on the stack contains a static link pointing to 

the frame of the static parent 
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Example Static Links 

 Subroutines C and D are 

declared nested in B 

 B is static parent of C and D 

 B and E are nested in A 

 A is static parent of B and E 

 The fp points to the frame at 

the top of the stack to access 

locals 

 The static link in the frame 

points to the frame of the static 

parent 
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Static Chains 

 How do we access non-local objects? 

 The static links form a static chain, which is a linked list 

of static parent frames 

 When a subroutine at nesting level j has a reference to 

an object declared in a static parent at the surrounding 

scope nested at level k, then j-k static links forms a static 

chain that is traversed to get to the frame containing the 

object 

 The compiler generates code to make these traversals 

over frames to reach non-local objects 
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Example Static Chains 

 Subroutine A is at nesting level 

1 and C at nesting level 3 

 When C accesses an object of 

A, 2 static links are traversed 

to get to A's frame that 

contains that object 
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Out of Scope 

 Non-local objects can be hidden by local name-to-object 

bindings and the scope is said to have a hole in which 

the non-local binding is temporarily inactive but not 

destroyed 

 Some languages, notably Ada and C++ use qualifiers or 

scope resolution operators to access non-local objects 

that are hidden 

 P1.X in Ada to access variable X of P1 and ::X to access global 

variable X in C++ 
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Out of Scope Example 

 P2 is nested in P1 

 P1 has a local variable X 

 P2 has a local variable X that 

hides X in P1 

 When P2 is called, no extra 

code is executed to inactivate 

the binding of X to P1 

procedure P1; 

var X:real; 

  procedure P2; 

  var X:integer 

  begin 

    ... (* X of P1 is hidden *) 

  end; 

begin 

  ... 

end 
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Dynamic Scope 

 Scope rule: the "current" binding for a given name is the one 
encountered most recently during execution 

 Typically adopted in (early) functional languages that are interpreted 

 Perl v5 allows you to choose scope method for each variable 
separately 

 With dynamic scope: 

 Name-to-object bindings cannot be determined by a compiler in general 

 Easy for interpreter to look up name-to-object binding in a stack of 
declarations 

 Generally considered to be "a bad programming language feature" 

 Hard to keep track of active bindings when reading a program text 

 Most languages are now compiled, or a compiler/interpreter mix 

 Sometimes useful: 

 Unix environment variables have dynamic scope 
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Dynamic Scoping Problems 

 In this example, function scaled_score probably does not do what 
the programmer intended: with dynamic scoping, max_score in 
scaled_score is bound to foo's local variable max_score after 
foo calls scaled_score, which was the most recent binding 
during execution: 
 
max_score:integer 

function scaled_score(raw_score:integer):real 

  return raw_score/max_score*100 

  ... 

procedure foo 

  max_score:real := 0 

  ... 

  foreach student in class 

    student.percent := scaled_score(student.points) 

    if student.percent > max_score 

       max_score := student.percent 
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Dynamic Scope Implementation 

with Bindings Stacks 

 Each time a subroutine is called, its local variables are 

pushed on a stack with their name-to-object binding 

 When a reference to a variable is made, the stack is 

searched top-down for the variable's name-to-object 

binding 

 After the subroutine returns, the bindings of the local 

variables are popped 

 Different implementations of a binding stack are used in 

programming languages with dynamic scope, each with 

advantages and disadvantages 
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Referencing Environments 

 If a subroutine is passed as an argument to another subroutine, 

when are the static/dynamic scoping rules applied? 

 When the reference to the subroutine is first created (i.e. when it is 

passed as an argument) 

 Or when the argument subroutine is finally called 

 That is, what is the referencing environment of a subroutine passed 

as an argument? 

 Eventually the subroutine passed as an argument is called and may 

access non-local variables which by definition are in the referencing 

environment of usable bindings 

 The choice is fundamental in languages with dynamic scope 

 The choice is limited in languages with static scope 
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Effect of Deep Binding in 

Dynamically-Scoped Languages 

 The following program 

demonstrates the difference 

between deep and shallow binding: 
 

function older(p:person):boolean 

  return p.age>thres 

procedure show(p:person,c:function) 

  thres:integer 

  thres := 20 

  if c(p) 

    write(p) 

procedure main(p) 

  thres:integer 

  thres := 35 

  show(p,older) 

main(p)           

  thres:integer 

  thres := 35           

  show(p,older)       

    thres:integer     

    thres := 20 

    older(p)      

      return p.age>thres 

    if return value is true 

      write(p) 

binding 

Program execution: 

Program prints persons 

older than 35 
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Effect of Shallow Binding in 

Dynamically-Scoped Languages 

 The following program 

demonstrates the difference 

between deep and shallow binding: 
 

function older(p:person):boolean 

  return p.age>thres 

procedure show(p:person,c:function) 

  thres:integer 

  thres := 20 

  if c(p) 

    write(p) 

procedure main(p) 

  thres:integer 

  thres := 35 

  show(p,older) 

main(p)           

  thres:integer 

  thres := 35           

  show(p,older)       

    thres:integer     

    thres := 20 

    older(p)      

      return p.age>thres 

    if return value is true 

      write(p) 

binding 

Program execution: 

Program prints persons 

older than 20 
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Implementing Deep Bindings 

with Subroutine Closures 

 

 The referencing environment is bundled with the 

subroutine as a closure and passed as an argument 

 A subroutine closure contains 

 A pointer to the subroutine code 

 The current set of name-to-object bindings 

 Depending on the implementation, the whole current set 

of bindings may have to be copied or the head of a list is 

copied if linked lists are used to implement a stack of 

bindings 
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Statement Blocks 

 In Algol, C, and Ada local 
variables are declared in a 
block or compound statement 

 In C++, Java, and C# 
declarations may appear 
anywhere statements can be 
used and the scope extends to 
the end of the block 

 Local variables declared in 
nested blocks in a single 
function are all stored in the 
subroutine frame for that 
function (most programming 
languages, e.g. C/C++, Ada, 
Java)  

{ int t = a; 

  a = b; 

  b = t; 

} 

declare t:integer 

begin 

  t := a; 

  a := b; 

  b := t; 

end; 

{ int a,b; 

  ... 

  int t; 

  t=a; 

  a=b; 

  b=t; 

  ... 

} 

C 

Ada 

C++ 

Java 

C# 
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Modules and Module Scope 

 Modules are the most important feature of a programming language 
that supports the construction of large applications 

 Teams of programmers can work on separate modules in a project 

 No language support for modules in C and Pascal 

 Modula-2 modules, Ada packages, C++ namespaces 

 Java packages 

 Scoping: modules encapsulate variables, data types, and 
subroutines in a package 

 Objects inside are visible to each other 

 Objects inside are not visible outside unless exported 

 Objects outside are not visible inside unless imported 

 A module interface specifies exported variables, data types, and 
subroutines 

 The module implementation is compiled separately and 
implementation details are hidden from the user of the module 
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First, Second, and Third-Class 

Subroutines 

 First-class object: an object entity that can be passed as a 
parameter, returned from a subroutine, and assigned to a variable 

 Primitive types such as integers in most programming languages 

 Second-class object: an object that can be passed as a parameter, 
but not returned from a subroutine or assigned to a variable 

 Fixed-size arrays in C/C++ 

 Third-class object: an object that cannot be passed as a parameter, 
cannot be returned from a subroutine, and cannot be assigned to a 
variable 

 Labels of goto-statements and subroutines in Ada 83 

 

 Functions in Lisp, ML, and Haskell are unrestricted first-class 
objects 

 With certain restrictions, subroutines are first-class objects in 
Modula-2 and 3, Ada 95, (C and C++ use function pointers) 
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First-Class Subroutine 

Implementation Requirements 

 

 

 Problem: subroutine returned as 
object may lose part of its 
reference environment in its 
closure! 

 Procedure print_int uses 
argument port of 
new_int_printer, which is in 
the referencing environment of 
print_int 

 After the call to 
new_int_printer, argument 
port should be kept alive 
somehow (it is normally removed 
from the run-time stack and it will 
become a dangling reference) 

function new_int_printer(port:integer):procedure 

  procedure print_int(val:int) 

  begin 

    write(port, val) 

  end 

begin 

  return print_int 

end 

 

procedure main 

begin 

  myprint:procedure 

  myprint := new_int_printer(80) 

  myprint(7) 

end 
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First-Class Subroutine 

Implementations 

 In functional languages, local objects have unlimited 

extent: their lifetime continue indefinitely 

 Local objects are allocated on the heap 

 Garbage collection will eventually remove unused objects 

 In imperative languages, local objects have limited 

extent with stack allocation 

 To avoid the problem of dangling references, alternative 

mechanisms are used: 

 C, C++, and Java: no nested subroutine scopes 

 Modula-2: only outermost routines are first-class 

 Ada 95 "containment rule": can return an inner subroutine under 

certain conditions 
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Overloaded Bindings 

 A name that can refer to more than one object is said to be 

overloaded 

 Example: + (addition) is used for integer and and floating-point addition 

in most programming languages 

 Semantic rules of a programming language require that the context 

of an overloaded name should contain sufficient clues to deduce the 

intended binding 

 Semantic analyzer of compiler uses type checking to resolve 

bindings 

 Ada and C++ function overloading enables programmer to define 

alternative implementations depending on argument types 

 Ada, C++, and Fortran 90 allow built-in operators to be overloaded 

with user-defined functions, which enhances expressiveness but 

may mislead programmers that are unfamiliar with the code 
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Overloaded Bindings Example 

 Example in C++: 
 
struct complex {...}; 

enum base {dec, bin, oct, hex}; 

 

void print_num(int n) { ... } 

void print_num(int n, base b) { ... } 

void print_num(struct complex c) { ... } 
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Dynamic Bindings 

 Polymorphic functions and 
operators based on overloading 
are statically bound by the 
compiler based on type 
information 

 Polymorphism with dynamic 
bindings is supported by class 
inheritance (C++ virtual methods) 

 Each class has a virtual method 
table (VMT) with pointers to 
methods, where each method is 
indexed into the table 

 Method invocation proceeds by 
getting the class VMT from the 
object and indexing it to select the 
method to invoke 

Object data 

VMT pointer 

Base Class 

VMT Method #4 

Method code 

Derived Class 

VMT 

Method #4 

Overridden 

Method code 


