
COP4020

Programming

Languages

Names, Scopes, and Bindings

Robert van Engelen & Chris Lacher

COP4020 Fall 2013

Overview

 Abstractions and names

 Binding time

 Object lifetime

 Object storage management

 Static allocation

 Stack allocation

 Heap allocation

 Scope rules

 Static versus dynamic scoping

 Reference environments

 Overloading and polymorphism

COP4020 Fall 2013

Name = Abstraction

 Names enable programmers to refer to variables, constants,

operations, and types using identifier names

 Names are control abstractions and data abstractions for program

fragments and data structures

 Control abstraction:

 Subroutines (procedures and functions) allow programmers to focus on manageable

subset of program text

 Subroutine interface hides implementation details

 Data abstraction:

 Object-oriented classes hide data representation details behind a set of operations

 Abstraction in the context of high-level programming languages refers to the degree

or level of language features

 Enhances the level of machine-independence

 "Power" of constructs

COP4020 Fall 2013

Binding Time

 A binding is an association between a name and an entity

 Binding time is the time at which an implementation decision is
made to create a name  entity binding:

 Language design time: the design of specific program constructs
(syntax), primitive types, and meaning (semantics)

 Language implementation time: fixation of implementation constants
such as numeric precision, run-time memory sizes, max identifier name
length, number and types of built-in exceptions, etc.

 Program writing time: the programmer's choice of algorithms and data
structures

 Compile time: the time of translation of high-level constructs to machine
code and choice of memory layout for data objects

 Link time: the time at which multiple object codes (machine code files)
and libraries are combined into one executable

 Load time: when the operating system loads the executable in memory

 Run time: when a program executes

COP4020 Fall 2013

Binding Time Examples

 Language design:

 Syntax (names  grammar)
 if (a>0) b:=a; (C syntax style)

 if a>0 then b:=a end if (Ada syntax style)

 Keywords (names  builtins)
 class (C++ and Java), endif or end if (Fortran, space insignificant)

 Reserved words (names  special constructs)
 main (C), writeln (Pascal)

 Meaning of operators (operator  operation)
 + (add), % (mod), ** (power)

 Built-in primitive types (type name  type)

 float, short, int, long, string

 Language implementation

 Internal representation of types and literals (type  byte encoding)

 3.1 (IEEE 754) and "foo bar” (\0 terminated or embedded string length)

 Storage allocation method for variables (static/stack/heap)

COP4020 Fall 2013

Binding Time Examples (cont’d)

 Compile time

 The specific type of a variable in a declaration (nametype)

 Storage allocation method for a global or local variable
(nameallocation mechanism)

 Linker

 Linking calls to static library routines (functionaddress)
 printf (in libc)

 Merging and linking multiple object codes into one executable

 Loader

 Loading executable in memory and adjusting absolute addresses

 Mostly in older systems that do not have virtual memory

 Run time

 Dynamic linking of libraries (library functionlibrary code)

 DLL, dylib

 Nonstatic allocation of space for variable (variableaddress)

 Stack and heap

COP4020 Fall 2013

The Effect of Binding Time

 Early binding times (before run time) are associated with
greater efficiency and clarity of program code
 Compilers make implementation decisions at compile time

(avoiding to generate code that makes the decision at run time)

 Syntax and static semantics checking is performed only once at
compile time and does not impose any run-time overheads

 Late binding times (at run time) are associated with
greater flexibility (but may leave programmers
sometimes guessing what’s going on)
 Interpreters allow programs to be extended at run time

 Languages such as Smalltalk-80 with polymorphic types allow
variable names to refer to objects of multiple types at run time

 Method binding in object-oriented languages must be late to
support dynamic binding

COP4020 Fall 2013

Binding Lifetime versus

Object Lifetime

 Key events in object lifetime:
 Object creation

 Creation of bindings

 The object is manipulated via its binding

 Deactivation and reactivation of (temporarily invisible) bindings

 Destruction of bindings

 Destruction of objects

 Binding lifetime: time between creation and destruction
of binding to object
 Example: a pointer variable is set to the address of an object

 Example: a formal argument is bound to an actual argument

 Object lifetime: time between creation and destruction of
an object

COP4020 Fall 2013

Binding Lifetime versus

Object Lifetime (cont’d)

 Bindings are temporarily invisible when code is executed where the

binding (name  object) is out of scope

 Memory leak: object never destroyed (binding to object may have

been destroyed, rendering access impossible)

 Dangling reference: object destroyed before binding is destroyed

 Garbage collection prevents these allocation/deallocation problems

COP4020 Fall 2013

C++ Example

 {

 SomeClass* myobject = new SomeClass;

 ...

 {

 OtherClass myobject;

 ... // the myobject name is bound to other object

 ...

 }

 ... // myobject binding is visible again

 ...

 myobject->action() // myobject in action():

 // the name is not in scope

 // but object is bound to ‘this’

 delete myobject;

 ...

 ... // myobject is a dangling reference

}

COP4020 Fall 2013

Object Storage

 Objects (program data and code) have to be stored in memory
during their lifetime

 Static objects have an absolute storage address that is retained
throughout the execution of the program

 Global variables and data

 Subroutine code and class method code

 Stack objects are allocated in last-in first-out order, usually in
conjunction with subroutine calls and returns

 Actual arguments passed by value to a subroutine

 Local variables of a subroutine

 Heap objects may be allocated and deallocated at arbitrary times,
but require an expensive storage management algorithm

 Example: Lisp lists

 Example: Java class instances are always stored on the heap

COP4020 Fall 2013

Typical Program and Data

Layout in Memory

 Program code is at the bottom

of the memory region (code

section)

 The code section is protected

from run-time modification by

the OS

 Static data objects are stored

in the static region

 Stack grows downward

 Heap grows upward

heap

stack

static data

code

0000

Upper addr

V
ir

tu
al

 m
em

o
ry

 a
d
d
re

ss
 s

p
ac

e

COP4020 Fall 2013

Static Allocation

 Program code is statically allocated in most implementations of

imperative languages

 Statically allocated variables are history sensitive

 Global variables keep state during entire program lifetime

 Static local variables in C functions keep state across function

invocations

 Static data members are “shared” by objects and keep state during

program lifetime

 Advantage of statically allocated object is the fast access due to

absolute addressing of the object

 So why not allocate local variables statically?

 Problem: static allocation of local variables cannot be used for recursive

subroutines: each new function instantiation needs fresh locals

COP4020 Fall 2013

Static Allocation in Fortran 77

 Fortran 77 has no recursion

 Global and local variables are
statically allocated as decided by
the compiler

 Global and local variables are
referenced at absolute addresses

 Avoids overhead of creation and
destruction of local objects for
every subroutine call

 Each subroutine in the program
has a subroutine frame that is
statically allocated

 This subroutine frame stores all
subroutine-relevant data that is
needed to execute

Typical static subroutine

frame layout

Temporary storage

(e.g. for expression

evaluation)

Local variables

Bookkeeping

(e.g. saved CPU

registers)

Return address

Subroutine

arguments and

returns

COP4020 Fall 2013

Stack Allocation

 Each instance of a subroutine that is active has a

subroutine frame (sometimes called activation record) on

the run-time stack

 Compiler generates subroutine calling sequence to setup frame,

call the routine, and to destroy the frame afterwards

 Method invocation works the same way, but in addition methods

are typically dynamically bound

 Subroutine frame layouts vary between languages,

implementations, and machine platforms

COP4020 Fall 2013

Typical Stack-Allocated

Subroutine Frame

 A frame pointer (fp) points to

the frame of the currently

active subroutine at run time

 Subroutine arguments, local

variables, and return values

are accessed by constant

address offsets from the fp

Typical subroutine

frame layout

Temporary storage

(e.g. for expression

evaluation)

Local variables

Bookkeeping

(e.g. saved CPU

registers)

Return address

Subroutine

arguments and

returns

fp

Lower addr

Higher addr

COP4020 Fall 2013

Subroutine Frames on the

Stack

 Subroutine frames are pushed
and popped onto/from the runtime
stack

 The stack pointer (sp) points to
the next available free space on
the stack to push a new frame
onto when a subroutine is called

 The frame pointer (fp) points to
the frame of the currently active
subroutine, which always the
topmost frame on the stack

 The fp of the previous active
frame is saved in the current
frame and restored after the call

 In this example:
M called A
A called B
B called A

Temporaries
Local variables

Bookkeeping
Return address

Arguments

A

Temporaries
Local variables

Bookkeeping
Return address

Arguments

B

Temporaries
Local variables

Bookkeeping
Return address

Arguments

A

Temporaries
Local variables

Bookkeeping
Return address

Arguments

M

fp

Higher addr

sp
Stack growth

COP4020 Fall 2013

Example Subroutine Frame

 The size of the types of local
variables and arguments
determines the fp offset in a frame

 Example Pascal procedure:

procedure P(a:integer,

 var b:real)

(* a is passed by value

 b is passed by reference,

 = pointer to b's value

*)

var

 foo:integer;(* 4 bytes *)

 bar:real; (* 8 bytes *)

 p:^integer; (* 4 bytes *)

begin

 ...

end

Temporaries

Bookkeeping

(16 bytes)

Return address
to the caller of P

(4 bytes)
fp

Lower addr

Higher addr

-36: foo (4 bytes)
-32: bar (8 bytes)
-24: p (4 bytes)

0: a (4 bytes)
4: b (4 bytes)

fp-32

fp+4

COP4020 Fall 2013

Heap Allocation

 Implicit heap allocation:

 Done automatically

 Java class instances are placed on the heap

 Scripting languages and functional languages make extensive

use of the heap for storing objects

 Some procedural languages allow array declarations with run-

time dependent array size

 Resizable character strings

 Explicit heap allocation:

 Statements and/or functions for allocation and deallocation

 Malloc/free, new/delete

COP4020 Fall 2013

Heap Allocation Algorithms

 Heap allocation is performed by searching the heap for
available free space

 For example, suppose we want to allocate a new object
E of 20 bytes, where would it fit?

 Deletion of objects leaves free blocks in the heap that
can be reused

 Internal heap fragmentation: if allocated object is smaller
than the free block the extra space is wasted

 External heap fragmentation: smaller free blocks cannot
always be reused resulting in wasted space

Object A Free Object B Object C Free Object D Free

30 bytes 8 bytes 10 bytes 24 bytes 24 bytes 8 bytes 20 bytes

COP4020 Fall 2013

Heap Allocation Algorithms

(cont’d)

 Maintain a linked list of free heap blocks

 First-fit: select the first block in the list that is large enough

 Best-fit: search the entire list for the smallest free block that is large
enough to hold the object

 If an object is smaller than the block, the extra space can be added
to the list of free blocks

 When a block is freed, adjacent free blocks are coalesced

 Buddy system: use heap pools of standard sized blocks of size 2k

 If no free block is available for object of size between 2k-1+1 and 2k then
find block of size 2k+1 and split it in half, adding the halves to the pool of
free 2k blocks, etc.

 Fibonacci heap: use heap pools of standard size blocks according to
Fibonacci numbers

 More complex but leads to slower internal fragmantation

COP4020 Fall 2013

Unlimited Extent

 An object declared in a local scope has unlimited extent

if its lifetime continues indefinitely

 A local stack-allocated variable has a lifetime limited to

the lifetime of the subroutine

 In C/C++ functions should never return pointers to local variables

 Unlimited extent requires static or heap allocation

 Issues with static: limited, no mechanism to allocate more

variables

 Issues with heap: should probably deallocate when no longer

referenced (no longer bound)

 Garbage collection

 Remove object when no longer bound (by any references)

COP4020 Fall 2013

Garbage Collection

 Explicit manual deallocation errors are among the most

expensive and hard to detect problems in real-world

applications

 If an object is deallocated too soon, a reference to the object

becomes a dangling reference

 If an object is never deallocated, the program leaks memory

 Automatic garbage collection removes all objects from

the heap that are not accessible, i.e. are not referenced

 Used in Lisp, Scheme, Prolog, Ada, Java, Haskell

 Disadvantage is GC overhead, but GC algorithm efficiency has

been improved

 Not always suitable for real-time processing

COP4020 Fall 2013

Storage Allocation Compared

 Static Stack Heap

Ada

N/A local variables and

subroutine arguments

of fixed size

implicit: local variables of variable

size;

explicit: new (destruction with

garbage collection or explicit with
unchecked deallocation)

C
global variables; static local

variables

local variables and

subroutine arguments

explicit with malloc and free

C++
Same as C, and static

class members

Same as C explicit with new and delete

Java
N/A only local variables of

primitive types

implicit: all class instances

(destruction with garbage collection)

Fortran77

global variables (in

common blocks), local

variables, and subroutine

arguments (implementation
dependent); SAVE forces

static allocation

local variables and

subroutine arguments

(implementation

dependent

N/A

Pascal

global variables (compiler

dependent)

global variables

(compiler dependent),

local variables, and

subroutine arguments

Explicit: new and dispose

COP4020 Fall 2013

Scope

 Scope is the textual region of a program in which a

name-to-object binding is active

 Statically scoped language: the scope of bindings is

determined at compile time

 Used by almost all but a few programming languages

 More intuitive to user compared to dynamic scoping

 Dynamically scoped language: the scope of bindings is

determined at run time

 Used in Lisp (early versions), APL, Snobol, and Perl (selectively)

COP4020 Fall 2013

Effect of Static Scoping

 The following pseudo-code

program demonstrates the

effect of scoping on variable

bindings:

 a:integer

procedure first

 a:=1

procedure second

 a:integer

 first()

procedure main

 a:=2

 second()

 write_integer(a)

a:integer

main()

 a:=2

 second()

 a:integer

 first()

 a:=1

 write_integer(a)

Program execution:

Program prints “1”

binding

COP4020 Fall 2013

Effect of Dynamic Scoping

 The following pseudo-code

program demonstrates the

effect of scoping on variable

bindings:

 a:integer

procedure first

 a:=1

procedure second

 a:integer

 first()

procedure main

 a:=2

 second()

 write_integer(a)

a:integer

main()

 a:=2

 second()

 a:integer

 first()

 a:=1

 write_integer(a)

Program execution:

Program prints “2”

binding
Binding depends on execution

COP4020 Fall 2013

Static Scoping

 The bindings between names and objects can be

determined by examination of the program text

 Scope rules of a program language define the scope of

variables and subroutines, which is the region of

program text in which a name-to-object binding is usable

 Early Basic: all variables are global and visible everywhere

 Fortran 77: the scope of a local variable is limited to a

subroutine; the scope of a global variable is the whole program

text unless it is hidden by a local variable declaration with the

same variable name

 Algol 60, Pascal, and Ada: these languages allow nested

subroutines definitions and adopt the closest nested scope rule

with slight variations in implementation

COP4020 Fall 2013

Closest Nested Scope Rule

 To find the object

referenced by a given

name:

 Look for a

declaration in the

current innermost

scope

 If there is none, look

for a declaration in

the immediately

surrounding scope,

etc.

procedure P1(A1:T1)

var X:real;

...

 procedure P2(A2:T2);

 ...

 procedure P3(A3:T3);

 ...

 begin

 (* body of P3: P3,A3,P2,A2,X of P1,P1,A1 are visible *)

 end;

 ...

 begin

 (* body of P2: P3,P2,A2,X of P1,P1,A1 are visible *)

 end;

 procedure P4(A4:T4);

 ...

 function F1(A5:T5):T6;

 var X:integer;

 ...

 begin

 (* body of F1: X of F1,F1,A5,P4,A4,P2,P1,A1 are visible *)

 end;

 ...

 begin

 (* body of P4: F1,P4,A4,P2,X of P1,P1,A1 are visible *)

 end;

...

begin

(* body of P1: X of P1,P1,A1,P2,P4 are visible *)

end

COP4020 Fall 2013

Static Scope Implementation

with Static Links

 Scope rules are designed so that we can only refer to

variables that are alive: the variable must have been

stored in the frame of a subroutine

 If a variable is not in the local scope, we are sure there is

a frame for the surrounding scope somewhere below on

the stack:

 The current subroutine can only be called when it was visible

 The current subroutine is visible only when the surrounding

scope is active

 Each frame on the stack contains a static link pointing to

the frame of the static parent

COP4020 Fall 2013

Example Static Links

 Subroutines C and D are

declared nested in B

 B is static parent of C and D

 B and E are nested in A

 A is static parent of B and E

 The fp points to the frame at

the top of the stack to access

locals

 The static link in the frame

points to the frame of the static

parent

COP4020 Fall 2013

Static Chains

 How do we access non-local objects?

 The static links form a static chain, which is a linked list

of static parent frames

 When a subroutine at nesting level j has a reference to

an object declared in a static parent at the surrounding

scope nested at level k, then j-k static links forms a static

chain that is traversed to get to the frame containing the

object

 The compiler generates code to make these traversals

over frames to reach non-local objects

COP4020 Fall 2013

Example Static Chains

 Subroutine A is at nesting level

1 and C at nesting level 3

 When C accesses an object of

A, 2 static links are traversed

to get to A's frame that

contains that object

COP4020 Fall 2013

Out of Scope

 Non-local objects can be hidden by local name-to-object

bindings and the scope is said to have a hole in which

the non-local binding is temporarily inactive but not

destroyed

 Some languages, notably Ada and C++ use qualifiers or

scope resolution operators to access non-local objects

that are hidden

 P1.X in Ada to access variable X of P1 and ::X to access global

variable X in C++

COP4020 Fall 2013

Out of Scope Example

 P2 is nested in P1

 P1 has a local variable X

 P2 has a local variable X that

hides X in P1

 When P2 is called, no extra

code is executed to inactivate

the binding of X to P1

procedure P1;

var X:real;

 procedure P2;

 var X:integer

 begin

 ... (* X of P1 is hidden *)

 end;

begin

 ...

end

COP4020 Fall 2013

Dynamic Scope

 Scope rule: the "current" binding for a given name is the one
encountered most recently during execution

 Typically adopted in (early) functional languages that are interpreted

 Perl v5 allows you to choose scope method for each variable
separately

 With dynamic scope:

 Name-to-object bindings cannot be determined by a compiler in general

 Easy for interpreter to look up name-to-object binding in a stack of
declarations

 Generally considered to be "a bad programming language feature"

 Hard to keep track of active bindings when reading a program text

 Most languages are now compiled, or a compiler/interpreter mix

 Sometimes useful:

 Unix environment variables have dynamic scope

COP4020 Fall 2013

Dynamic Scoping Problems

 In this example, function scaled_score probably does not do what
the programmer intended: with dynamic scoping, max_score in
scaled_score is bound to foo's local variable max_score after
foo calls scaled_score, which was the most recent binding
during execution:

max_score:integer

function scaled_score(raw_score:integer):real

 return raw_score/max_score*100

 ...

procedure foo

 max_score:real := 0

 ...

 foreach student in class

 student.percent := scaled_score(student.points)

 if student.percent > max_score

 max_score := student.percent

COP4020 Fall 2013

Dynamic Scope Implementation

with Bindings Stacks

 Each time a subroutine is called, its local variables are

pushed on a stack with their name-to-object binding

 When a reference to a variable is made, the stack is

searched top-down for the variable's name-to-object

binding

 After the subroutine returns, the bindings of the local

variables are popped

 Different implementations of a binding stack are used in

programming languages with dynamic scope, each with

advantages and disadvantages

COP4020 Fall 2013

Referencing Environments

 If a subroutine is passed as an argument to another subroutine,

when are the static/dynamic scoping rules applied?

 When the reference to the subroutine is first created (i.e. when it is

passed as an argument)

 Or when the argument subroutine is finally called

 That is, what is the referencing environment of a subroutine passed

as an argument?

 Eventually the subroutine passed as an argument is called and may

access non-local variables which by definition are in the referencing

environment of usable bindings

 The choice is fundamental in languages with dynamic scope

 The choice is limited in languages with static scope

COP4020 Fall 2013

Effect of Deep Binding in

Dynamically-Scoped Languages

 The following program

demonstrates the difference

between deep and shallow binding:

function older(p:person):boolean

 return p.age>thres

procedure show(p:person,c:function)

 thres:integer

 thres := 20

 if c(p)

 write(p)

procedure main(p)

 thres:integer

 thres := 35

 show(p,older)

main(p)

 thres:integer

 thres := 35

 show(p,older)

 thres:integer

 thres := 20

 older(p)

 return p.age>thres

 if return value is true

 write(p)

binding

Program execution:

Program prints persons

older than 35

COP4020 Fall 2013

Effect of Shallow Binding in

Dynamically-Scoped Languages

 The following program

demonstrates the difference

between deep and shallow binding:

function older(p:person):boolean

 return p.age>thres

procedure show(p:person,c:function)

 thres:integer

 thres := 20

 if c(p)

 write(p)

procedure main(p)

 thres:integer

 thres := 35

 show(p,older)

main(p)

 thres:integer

 thres := 35

 show(p,older)

 thres:integer

 thres := 20

 older(p)

 return p.age>thres

 if return value is true

 write(p)

binding

Program execution:

Program prints persons

older than 20

COP4020 Fall 2013

Implementing Deep Bindings

with Subroutine Closures

 The referencing environment is bundled with the

subroutine as a closure and passed as an argument

 A subroutine closure contains

 A pointer to the subroutine code

 The current set of name-to-object bindings

 Depending on the implementation, the whole current set

of bindings may have to be copied or the head of a list is

copied if linked lists are used to implement a stack of

bindings

COP4020 Fall 2013

Statement Blocks

 In Algol, C, and Ada local
variables are declared in a
block or compound statement

 In C++, Java, and C#
declarations may appear
anywhere statements can be
used and the scope extends to
the end of the block

 Local variables declared in
nested blocks in a single
function are all stored in the
subroutine frame for that
function (most programming
languages, e.g. C/C++, Ada,
Java)

{ int t = a;

 a = b;

 b = t;

}

declare t:integer

begin

 t := a;

 a := b;

 b := t;

end;

{ int a,b;

 ...

 int t;

 t=a;

 a=b;

 b=t;

 ...

}

C

Ada

C++

Java

C#

COP4020 Fall 2013

Modules and Module Scope

 Modules are the most important feature of a programming language
that supports the construction of large applications

 Teams of programmers can work on separate modules in a project

 No language support for modules in C and Pascal

 Modula-2 modules, Ada packages, C++ namespaces

 Java packages

 Scoping: modules encapsulate variables, data types, and
subroutines in a package

 Objects inside are visible to each other

 Objects inside are not visible outside unless exported

 Objects outside are not visible inside unless imported

 A module interface specifies exported variables, data types, and
subroutines

 The module implementation is compiled separately and
implementation details are hidden from the user of the module

COP4020 Fall 2013

First, Second, and Third-Class

Subroutines

 First-class object: an object entity that can be passed as a
parameter, returned from a subroutine, and assigned to a variable

 Primitive types such as integers in most programming languages

 Second-class object: an object that can be passed as a parameter,
but not returned from a subroutine or assigned to a variable

 Fixed-size arrays in C/C++

 Third-class object: an object that cannot be passed as a parameter,
cannot be returned from a subroutine, and cannot be assigned to a
variable

 Labels of goto-statements and subroutines in Ada 83

 Functions in Lisp, ML, and Haskell are unrestricted first-class
objects

 With certain restrictions, subroutines are first-class objects in
Modula-2 and 3, Ada 95, (C and C++ use function pointers)

COP4020 Fall 2013

First-Class Subroutine

Implementation Requirements

 Problem: subroutine returned as
object may lose part of its
reference environment in its
closure!

 Procedure print_int uses
argument port of
new_int_printer, which is in
the referencing environment of
print_int

 After the call to
new_int_printer, argument
port should be kept alive
somehow (it is normally removed
from the run-time stack and it will
become a dangling reference)

function new_int_printer(port:integer):procedure

 procedure print_int(val:int)

 begin

 write(port, val)

 end

begin

 return print_int

end

procedure main

begin

 myprint:procedure

 myprint := new_int_printer(80)

 myprint(7)

end

COP4020 Fall 2013

First-Class Subroutine

Implementations

 In functional languages, local objects have unlimited

extent: their lifetime continue indefinitely

 Local objects are allocated on the heap

 Garbage collection will eventually remove unused objects

 In imperative languages, local objects have limited

extent with stack allocation

 To avoid the problem of dangling references, alternative

mechanisms are used:

 C, C++, and Java: no nested subroutine scopes

 Modula-2: only outermost routines are first-class

 Ada 95 "containment rule": can return an inner subroutine under

certain conditions

COP4020 Fall 2013

Overloaded Bindings

 A name that can refer to more than one object is said to be

overloaded

 Example: + (addition) is used for integer and and floating-point addition

in most programming languages

 Semantic rules of a programming language require that the context

of an overloaded name should contain sufficient clues to deduce the

intended binding

 Semantic analyzer of compiler uses type checking to resolve

bindings

 Ada and C++ function overloading enables programmer to define

alternative implementations depending on argument types

 Ada, C++, and Fortran 90 allow built-in operators to be overloaded

with user-defined functions, which enhances expressiveness but

may mislead programmers that are unfamiliar with the code

COP4020 Fall 2013

Overloaded Bindings Example

 Example in C++:

struct complex {...};

enum base {dec, bin, oct, hex};

void print_num(int n) { ... }

void print_num(int n, base b) { ... }

void print_num(struct complex c) { ... }

COP4020 Fall 2013

Dynamic Bindings

 Polymorphic functions and
operators based on overloading
are statically bound by the
compiler based on type
information

 Polymorphism with dynamic
bindings is supported by class
inheritance (C++ virtual methods)

 Each class has a virtual method
table (VMT) with pointers to
methods, where each method is
indexed into the table

 Method invocation proceeds by
getting the class VMT from the
object and indexing it to select the
method to invoke

Object data

VMT pointer

Base Class

VMT Method #4

Method code

Derived Class

VMT

Method #4

Overridden

Method code

