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Overview 

 Common compiler and interpreter configurations 

 Virtual machines 

 Integrated development environments 

 Compiler phases 

 Lexical analysis 

 Syntax analysis 

 Semantic analysis 

 Intermediate (machine-independent) code generation 

 Intermediate code optimization 

 Target (machine-dependent) code generation 

 Target code optimization 
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Compilers versus Interpreters 

 The compiler versus interpreter implementation is often fuzzy 

 One can view an interpreter as a virtual machine that executes high-
level code 

 Java is compiled to bytecode 

 Java bytecode is interpreted by the Java virtual machine (JVM) or 
translated to machine code by a just-in-time compiler (JIT) 

 A processor (CPU) can be viewed as an implementation in hardware of 
a virtual machine (e.g. bytecode can be executed in hardware) 

 Some programming languages cannot be purely compiled into 
machine code alone 

 Some languages allow programs to rewrite/add code to the code base 
dynamically 

 Some languages allow programs to translate data to code for execution 
(interpretation) 
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Compilers versus Interpreters 

 Compilers “try to be as smart as possible” to fix decisions that 
can be taken at compile time to avoid to generate code that 
makes this decision at run time 
 Type checking at compile time vs. runtime 

 Static allocation 

 Static linking 

 Code optimization 

 Compilation leads to better performance in general 
 Allocation of variables without variable lookup at run time 

 Aggressive code optimization to exploit hardware features 

 Interpretation facilitates interactive debugging and testing 
 Interpretation leads to better diagnostics of a programming problem 

 Procedures can be invoked from command line by a user 

 Variable values can be inspected and modified by a user 
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Compilation 

 Compilation is the conceptual process of translating 

source code into a CPU-executable binary target code 

 Compiler runs on the same platform X as the target code 
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Cross Compilation 

 Compiler runs on platform X, target code runs on 

platform Y 
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Interpretation 

 Interpretation is the conceptual process of running high-

level code by an interpreter 
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Virtual Machines 

 A virtual machine executes an instruction stream in 

software 

 Adopted by Pascal, Java, Smalltalk-80, C#, functional 

and logic languages, and some scripting languages 

 Pascal compilers generate P-code that can be interpreted or 

compiled into object code 

 Java compilers generate bytecode that is interpreted by the Java 

virtual machine (JVM) 

 The JVM may translate bytecode into machine code by just-in-

time (JIT) compilation 
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Compilation and Execution on 

Virtual Machines 

 Compiler generates intermediate program 

 Virtual machine interprets the intermediate program 
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Pure Compilation and Static 

Linking 

 Adopted by the typical Fortran implementation 

 Library routines are separately linked (merged) with the 

object code of the program 
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Compilation, Assembly, and 

Static Linking 

 Facilitates debugging of the compiler 
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Compilation, Assembly, and 

Dynamic Linking 

 Dynamic libraries (DLL, .so, .dylib) are linked at run-time 

by the OS (via stubs in the executable) 
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Preprocessing 

 Most C and C++ compilers use a preprocessor to 

expand macros 
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The CPP Preprocessor 

 Early C++ compilers used the CPP preprocessor to 

generated C code for compilation 
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Integrated Development 

Environments 

 Programming tools function together in concert 

 Editors 

 Compilers/preprocessors/interpreters 

 Debuggers 

 Emulators 

 Assemblers 

 Linkers 

 Advantages 

 Tools and compilation stages are hidden 

 Automatic source-code dependency checking 

 Debugging made simpler 

 Editor with search facilities 

 Examples 

 Smalltalk-80, Eclipse, MS VisualStudio, Borland 
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Compilation Phases and Passes 

 Compilation of a program proceeds through a fixed 

series of phases 

 Each phase use an (intermediate) form of the program produced 

by an earlier phase 

 Subsequent phases operate on lower-level code representations 

 Each phase may consist of a number of passes over the 

program representation 

 Pascal, FORTRAN, C languages designed for one-pass 

compilation, which explains the need for function prototypes 

 Single-pass compilers need less memory to operate 

 Java and ADA are multi-pass 
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Compiler Front- and Back-end 
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Scanner: Lexical Analysis 

 Lexical analysis breaks up a program into tokens 

program gcd (input, output); 

var i, j : integer; 

begin 

  read (i, j); 

  while i <> j do 

    if i > j then i := i - j else j := j - i; 

  writeln (i) 

end. 

program  gcd   (    input  ,    output    )      ; 

var      i     ,    j      :    integer   ;      begin 

read     (     i    ,      j    )         ;      while 

i        <>    j    do     if   i         >      j 

then     i     :=   i      -    j         else   j 

:=       i     -    i      ;    writeln   (      i 

)        end   . 
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Context-Free Grammars 

 A context-free grammar defines the syntax of a programming 
language 

 The syntax defines the syntactic categories for language constructs 

 Statements 

 Expressions 

 Declarations 

 Categories are subdivided into more detailed categories 

 A Statement is a 

 For-statement 

 If-statement 

 Assignment 

 

 

 

 

<statement> ::= <for-statement> | <if-statement> | <assignment> 
<for-statement> ::= for ( <expression> ; <expression> ; <expression> ) <statement> 

<assignment> ::= <identifier> := <expression> 
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Example: Micro Pascal 

<Program> ::= program <id> ( <id> <More_ids> ) ; <Block> . 

<Block>  ::= <Variables> begin <Stmt> <More_Stmts> end 

<More_ids> ::= , <id> <More_ids> 

  |  
<Variables> ::= var <id> <More_ids> : <Type> ; <More_Variables> 

  |  

<More_Variables> ::= <id> <More_ids> : <Type> ; <More_Variables> 

  |  

<Stmt>  ::=  <id> := <Exp> 
  | if <Exp> then <Stmt> else <Stmt> 

  | while <Exp> do <Stmt> 

  | begin <Stmt> <More_Stmts> end 

<Exp>  ::= <num> 

  | <id> 

  | <Exp> + <Exp> 
  | <Exp> - <Exp> 
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Parser: Syntax Analysis 

 Parsing organizes tokens into a hierarchy called a parse 

tree (more about this later) 

 Essentially, a grammar of a language defines the 

structure of the parse tree, which in turn describes the 

program structure 

 A syntax error is produced by a compiler when the parse 

tree cannot be constructed for a program 
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Semantic Analysis 

 Semantic analysis is applied by a compiler to discover the meaning 
of a program by analyzing its parse tree or abstract syntax tree 

 Static semantic checks are performed at compile time 

 Type checking 

 Every variable is declared before used 

 Identifiers are used in appropriate contexts 

 Check subroutine call arguments 

 Check labels 

 Dynamic semantic checks are performed at run time, and the 
compiler produces code that performs these checks 

 Array subscript values are within bounds 

 Arithmetic errors, e.g. division by zero 

 Pointers are not dereferenced unless pointing to valid object 

 A variable is used but hasn't been initialized 

 When a check fails at run time, an exception is raised 
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Semantic Analysis and Strong 

Typing 

 A language is strongly typed "if (type) errors are always 
detected" 
 Errors are either detected at compile time or at run time 

 Examples of such errors are listed on previous slide 

 Languages that are strongly typed are Ada, Java, ML, Haskell 

 Languages that are not strongly typed are Fortran, Pascal, 
C/C++, Lisp 

 Strong typing makes language safe and easier to use, 
but potentially slower because of dynamic semantic 
checks 

 In some languages, most (type) errors are detected late 
at run time which is detrimental to reliability e.g. early 
Basic, Lisp, Prolog, some script languages 
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Code Generation and 

Intermediate Code Forms 

 A typical intermediate form of 

code produced by the 

semantic analyzer is an 

abstract syntax tree (AST) 

 The AST is annotated with 

useful information such as 

pointers to the symbol table 

entry of identifiers 

Example AST for the 

gcd program in Pascal 
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Target Code Generation and 

Optimization 

 The AST with the annotated information is traversed by 

the compiler to generate a low-level intermediate form of 

code, close to assembly 

 This machine-independent intermediate form is 

optimized 

 From the machine-independent form assembly or object 

code is generated by the compiler 

 This machine-specific code is optimized to exploit 

specific hardware features 


