
COP4020

Programming

Languages

Compilers and Interpreters

Robert van Engelen & Chris Lacher

COP4020 Fall 2013

Overview

 Common compiler and interpreter configurations

 Virtual machines

 Integrated development environments

 Compiler phases

 Lexical analysis

 Syntax analysis

 Semantic analysis

 Intermediate (machine-independent) code generation

 Intermediate code optimization

 Target (machine-dependent) code generation

 Target code optimization

COP4020 Fall 2013

Compilers versus Interpreters

 The compiler versus interpreter implementation is often fuzzy

 One can view an interpreter as a virtual machine that executes high-
level code

 Java is compiled to bytecode

 Java bytecode is interpreted by the Java virtual machine (JVM) or
translated to machine code by a just-in-time compiler (JIT)

 A processor (CPU) can be viewed as an implementation in hardware of
a virtual machine (e.g. bytecode can be executed in hardware)

 Some programming languages cannot be purely compiled into
machine code alone

 Some languages allow programs to rewrite/add code to the code base
dynamically

 Some languages allow programs to translate data to code for execution
(interpretation)

COP4020 Fall 2013

Compilers versus Interpreters

 Compilers “try to be as smart as possible” to fix decisions that
can be taken at compile time to avoid to generate code that
makes this decision at run time
 Type checking at compile time vs. runtime

 Static allocation

 Static linking

 Code optimization

 Compilation leads to better performance in general
 Allocation of variables without variable lookup at run time

 Aggressive code optimization to exploit hardware features

 Interpretation facilitates interactive debugging and testing
 Interpretation leads to better diagnostics of a programming problem

 Procedures can be invoked from command line by a user

 Variable values can be inspected and modified by a user

COP4020 Fall 2013

Compilation

 Compilation is the conceptual process of translating

source code into a CPU-executable binary target code

 Compiler runs on the same platform X as the target code

Target

Program

Compiler
Source

Program
Target

Program

Input Output

Run on X

Compile on X

Debug on X

COP4020 Fall 2013

Cross Compilation

 Compiler runs on platform X, target code runs on

platform Y

Target

Program

Cross

Compiler

Source

Program
Target

Program

Input Output

Run on Y

Compile on X
Copy to Y

Debug on X

(= emulate Y)

COP4020 Fall 2013

Interpretation

 Interpretation is the conceptual process of running high-

level code by an interpreter

Interpreter

Source

Program

Input

Output

COP4020 Fall 2013

Virtual Machines

 A virtual machine executes an instruction stream in

software

 Adopted by Pascal, Java, Smalltalk-80, C#, functional

and logic languages, and some scripting languages

 Pascal compilers generate P-code that can be interpreted or

compiled into object code

 Java compilers generate bytecode that is interpreted by the Java

virtual machine (JVM)

 The JVM may translate bytecode into machine code by just-in-

time (JIT) compilation

COP4020 Fall 2013

Compilation and Execution on

Virtual Machines

 Compiler generates intermediate program

 Virtual machine interprets the intermediate program

Virtual

Machine

Compiler
Source

Program
Intermediate

Program

Input Output

Run on VM
Compile on X

Run on X, Y, Z, …

COP4020 Fall 2013

Pure Compilation and Static

Linking

 Adopted by the typical Fortran implementation

 Library routines are separately linked (merged) with the

object code of the program

Compiler
Source

Program
Incomplete

Object Code

Linker
Static Library

Object Code

_printf

_fget

_fscan

…

extern printf();

Binary

Executable

COP4020 Fall 2013

Compilation, Assembly, and

Static Linking

 Facilitates debugging of the compiler

Compiler
Source

Program
Assembly

Program

Linker
Static Library

Object Code

Binary

Executable

Assembler

COP4020 Fall 2013

Compilation, Assembly, and

Dynamic Linking

 Dynamic libraries (DLL, .so, .dylib) are linked at run-time

by the OS (via stubs in the executable)

Compiler
Source

Program
Assembly

Program

Incomplete

Executable
Input

Output

Assembler

Shared Dynamic Libraries

COP4020 Fall 2013

Preprocessing

 Most C and C++ compilers use a preprocessor to

expand macros

Compiler

Preprocessor
Source

Program
Modified Source

Program

Assembly or

Object Code

COP4020 Fall 2013

The CPP Preprocessor

 Early C++ compilers used the CPP preprocessor to

generated C code for compilation

C Compiler

C++

Preprocessor

C++

Source

Code

C Source

Code

Assembly or

Object Code

COP4020 Fall 2013

Integrated Development

Environments

 Programming tools function together in concert

 Editors

 Compilers/preprocessors/interpreters

 Debuggers

 Emulators

 Assemblers

 Linkers

 Advantages

 Tools and compilation stages are hidden

 Automatic source-code dependency checking

 Debugging made simpler

 Editor with search facilities

 Examples

 Smalltalk-80, Eclipse, MS VisualStudio, Borland

COP4020 Fall 2013

Compilation Phases and Passes

 Compilation of a program proceeds through a fixed

series of phases

 Each phase use an (intermediate) form of the program produced

by an earlier phase

 Subsequent phases operate on lower-level code representations

 Each phase may consist of a number of passes over the

program representation

 Pascal, FORTRAN, C languages designed for one-pass

compilation, which explains the need for function prototypes

 Single-pass compilers need less memory to operate

 Java and ADA are multi-pass

COP4020 Fall 2013

Compiler Front- and Back-end

Semantic Analysis

and Intermediate

Code Generation

Scanner

(lexical analysis)

Parser

(syntax analysis)

Machine-

Independent Code

Improvement

Target Code

Generation

Machine-Specific

Code Improvement

Source program (character stream)

Tokens

Parse tree

Abstract syntax tree or

other intermediate form

Modified intermediate form

Assembly or object code

Modified assembly or object code

Abstract syntax tree or

other intermediate form

F
ro

n
t

en
d

a
n

a
ly

si
s

B
a
ck

 e
n

d

sy
n

th
es

is

COP4020 Fall 2013

Scanner: Lexical Analysis

 Lexical analysis breaks up a program into tokens

program gcd (input, output);

var i, j : integer;

begin

 read (i, j);

 while i <> j do

 if i > j then i := i - j else j := j - i;

 writeln (i)

end.

program gcd (input , output) ;

var i , j : integer ; begin

read (i , j) ; while

i <> j do if i > j

then i := i - j else j

:= i - i ; writeln (i

) end .

COP4020 Fall 2013

Context-Free Grammars

 A context-free grammar defines the syntax of a programming
language

 The syntax defines the syntactic categories for language constructs

 Statements

 Expressions

 Declarations

 Categories are subdivided into more detailed categories

 A Statement is a

 For-statement

 If-statement

 Assignment

<statement> ::= <for-statement> | <if-statement> | <assignment>
<for-statement> ::= for (<expression> ; <expression> ; <expression>) <statement>

<assignment> ::= <identifier> := <expression>

COP4020 Fall 2013

Example: Micro Pascal

<Program> ::= program <id> (<id> <More_ids>) ; <Block> .

<Block> ::= <Variables> begin <Stmt> <More_Stmts> end

<More_ids> ::= , <id> <More_ids>

 | 
<Variables> ::= var <id> <More_ids> : <Type> ; <More_Variables>

 | 

<More_Variables> ::= <id> <More_ids> : <Type> ; <More_Variables>

 | 

<Stmt> ::= <id> := <Exp>
 | if <Exp> then <Stmt> else <Stmt>

 | while <Exp> do <Stmt>

 | begin <Stmt> <More_Stmts> end

<Exp> ::= <num>

 | <id>

 | <Exp> + <Exp>
 | <Exp> - <Exp>

COP4020 Fall 2013

Parser: Syntax Analysis

 Parsing organizes tokens into a hierarchy called a parse

tree (more about this later)

 Essentially, a grammar of a language defines the

structure of the parse tree, which in turn describes the

program structure

 A syntax error is produced by a compiler when the parse

tree cannot be constructed for a program

COP4020 Fall 2013

Semantic Analysis

 Semantic analysis is applied by a compiler to discover the meaning
of a program by analyzing its parse tree or abstract syntax tree

 Static semantic checks are performed at compile time

 Type checking

 Every variable is declared before used

 Identifiers are used in appropriate contexts

 Check subroutine call arguments

 Check labels

 Dynamic semantic checks are performed at run time, and the
compiler produces code that performs these checks

 Array subscript values are within bounds

 Arithmetic errors, e.g. division by zero

 Pointers are not dereferenced unless pointing to valid object

 A variable is used but hasn't been initialized

 When a check fails at run time, an exception is raised

COP4020 Fall 2013

Semantic Analysis and Strong

Typing

 A language is strongly typed "if (type) errors are always
detected"
 Errors are either detected at compile time or at run time

 Examples of such errors are listed on previous slide

 Languages that are strongly typed are Ada, Java, ML, Haskell

 Languages that are not strongly typed are Fortran, Pascal,
C/C++, Lisp

 Strong typing makes language safe and easier to use,
but potentially slower because of dynamic semantic
checks

 In some languages, most (type) errors are detected late
at run time which is detrimental to reliability e.g. early
Basic, Lisp, Prolog, some script languages

COP4020 Fall 2013

Code Generation and

Intermediate Code Forms

 A typical intermediate form of

code produced by the

semantic analyzer is an

abstract syntax tree (AST)

 The AST is annotated with

useful information such as

pointers to the symbol table

entry of identifiers

Example AST for the

gcd program in Pascal

COP4020 Fall 2013

Target Code Generation and

Optimization

 The AST with the annotated information is traversed by

the compiler to generate a low-level intermediate form of

code, close to assembly

 This machine-independent intermediate form is

optimized

 From the machine-independent form assembly or object

code is generated by the compiler

 This machine-specific code is optimized to exploit

specific hardware features

