COP4020 Programming Languages

Prolog

Chris Lacher
Based on Robert van Engelen

Overview

- Logic programming principles
- Prolog

Logic Programming

- Logic programming is a form of declarative programming
- A program is a collection of axioms
- Each axiom is a Horn clause of the form:

$$
H:-B_{1}, B_{2}, \ldots, B_{n} .
$$

where H is the head term and B_{i} are the body terms

- Meaning: H is true if all B_{i} are true
- A user states a goal (a theorem) to be proven
- The logic programming system uses inference steps to prove the goal (theorem) is true, using a logical resolution strategy

Resolution Strategies

- To deduce a goal (theorem), the programming system searches axioms and combines sub-goals using a resolution strategy
- For example, given the axioms:
C :- A, B.
$D:-C$.
- Forward chaining deduces first that C is true:
C :- A, B
and then that D is true:
$D:-C$
- Backward chaining finds that D can be proven if sub-goal C is true:

D :- C
the system then deduces that the sub-goal is C is true:
C :- A, B
since the system could prove C it has proven D

Prolog

- Prolog uses backward chaining, which is more efficient than forward chaining for larger collections of axioms
- Prolog is interactive (mixed compiled/interpreted)
- Example applications:
\square Expert systems
\square Artificial intelligence
\square Natural language understanding
\square Logical puzzles and games
- Popular system: SWI-Prolog
\square Login linprog.cs.fsu.edu
\square pl (or swipl) to start SWI-Prolog
\square halt. to halt Prolog (period is the Prolog command terminator)

Definitions: Prolog Clauses

- A program consists of a collection of Horn clauses
- Each clause consists of a head predicate and body predicates:

$$
H:-B_{1}, B_{2}, \ldots, B_{n} .
$$

\square A clause is either a rule, e.g.

```
snowy (X) :- rainy(X) , cold(X).
```

meaning: "If X is rainy and X is cold then this implies that X is snowy"
\square Or a clause is a fact, e.g. rainy (rochester). meaning "Rochester is rainy."
\square This fact is identical to the rule with true as the body predicate: rainy(rochester) :- true.

- A predicate is a term (an atom or a structure), e.g.
\square rainy (rochester)
\square member (X, Y)
\square true

Definitions: Queries and Goals

- Queries are used to "execute" goals
- A query is interactively entered by a user after a program is loaded
\square A query has the form

$$
?-G_{1}, G_{2}, \ldots, G_{n}
$$

where G_{i} are goals (predicates)

- A goal is a predicate to be proven true by the programming system
\square Example program with two facts:
- rainy (seattle).
- rainy (rochester).
\square Query with one goal to find which city C is rainy (if any):
?- rainy (C).
\square Response by the interpreter:
C = seattle
\square Type a semicolon ; to get next solution:
C = rochester
\square Typing another semicolon does not return another solution

Example

- Consider a program with three facts and one rule:
- rainy(seattle).
- rainy(rochester).
- cold(rochester).
- snowy (X) :- rainy(X), cold(X).
\square Query and response:
?- snowy (rochester).
yes
\square Query and response:
?- snowy (seattle).
no
\square Query and response:
?- snowy (paris).
no
\square Query and response:
?- snowy (C).
C = rochester
because rainy (rochester) and cold (rochester) are sub-goals that are both true facts cop4020 Fall 2013

Backward Chaining with Backtracking

An unsuccessful match forces backtracking in which alternative clauses are searched that match (sub-)goals

- Consider again:
?- snowy (C) .
C = rochester
- The system first tries C=seattle:
rainy (seattle) cold (seattle) fail
- Then C=rochester:
rainy (rochester)
cold (rochester)
- When a goal fails, backtracking is used to search for solutions
- The system keeps this execution point in memory together with the current variable bindings
- Backtracking unwinds variable bindings to establish new bindings

Example: Family Relationships

- Facts:
\square male (albert).
\square male (edward).
\square female(alice).
\square female(victoria).
\square parents (edward, victoria, albert).
\square parents (alice, victoria, albert).
- Rule:

```
sister(X,Y) :- female(X), parents(X,M,F), parents(Y,M,F).
```

- Query: ?- sister(alice, Z).
- The system applies backward chaining to find the answer:

1. sister (alice, Z) matches 2nd rule: $\mathrm{X}=$ alice, $\mathrm{Y}=\mathrm{Z}$
2. New goals: female (alice), parents (alice, M, F) , parents (Z $, \mathbf{M}, F)$
3. female (alice) matches 3rd fact
4. parents (alice $, \mathbf{M}, F$) matches 2nd rule: M=victoria, F=albert
5. parents (Z,victoria, albert) matches 1st rule: $z=e d w a r d$

Example: Murder Mystery

\% the murderer had brown hair:
murderer (X) :- hair(X, brown).
\% mr_holman had a ring:
attire(mr_holman, ring).
\% mr_pope had a watch:
attire (mr_pope, watch).
\% If sir_raymond had tattered cuffs then mr_woodley had the pincenez:
attire(mr_woodley, pincenez) :-
attire(sir_raymond, tattered_cuffs).
\% and vice versa:
attire(sir_raymond,pincenez) :-
attire(mr_woodley, tattered_cuffs).
\% A person has tattered cuffs if he is in room 16:
attire (X, tattered_cuffs) :- room(X, 16).
\% A person has black hair if he is in room 14, etc:
hair (X, black) :- room(X, 14).
hair ($\mathrm{X}, \mathrm{grey}$) :- room(X, 12).
hair (X, brown) :- attire (X, pincenez).
hair(X, red) :- attire(X, tattered_cuffs).
\% mr_holman was in room 12, etc:
room(mr_holman, 12).
room(sir_raymond, 10).
room(mr_woodley, 16).
room(X, 14) :- attire(X, watch).

Example (cont'd)

- Question: who is the murderer?
?- murderer (X).
- Execution trace (indentation shows nesting depth): murderer (X)
hair (X, brown)
attire (X, pincenez)
X = mr_woodley
attire(sir_raymond, tattered_cuffs)
room(sir_raymond, 16)
FAIL (no facts or rules)
FAIL (no alternative rules)
REDO (found one alternative rule)
attire (X, pincenez)
$\mathrm{X}=$ sir_raymond
attire($\bar{m} r$ _woodley, tattered_cuffs)
room(mr_woodley, 16)
SUCCESS
SUCCESS: X = sir_raymond
SUCCESS: X = sir_raymond
SUCCESS: $\mathrm{x}=$ sir_raymond
SUCCESS: X = sir_raymond

Unification and Variable Instantiation

- In the previous examples we saw the use of variables, e.g. C and X
- A variable is instantiated to a term as a result of unification, which takes place when goals are matched to head predicates
\square Goal in query: rainy (C)
\square Fact: rainy (seattle)
\square Unification is the result of the goal-fact match: C=seattle
- Unification is recursive:
\square An uninstantiated variable unifies with anything, even with other variables which makes them identical (aliases)
\square An atom unifies with an identical atom
\square A constant unifies with an identical constant
\square A structure unifies with another structure if the functor and number of arguments are the same and the arguments unify recursively
- Once a variable is instantiated to a non-variable term, it cannot be changed: "proofs cannot be tampered with"

Examples of Unification

- The built-in predicate $=(A, B)$ succeeds if and only if A and B can be unified, where the goal $=(A, B)$ may be written as $A=B$
\square ?- a = a.
yes
\square ?- $a=5$. No
\square ?- $5=5.0$.
No
\square ?- $a=X$.
$\mathrm{X}=\mathrm{a}$
\square ?- $f \circ \circ(a, b)=f \circ \circ(a, b)$.
Yes
\square ?- $\mathrm{foO}(\mathrm{a}, \mathrm{b})=\mathrm{f} \circ \mathrm{O}(\mathrm{X}, \mathrm{b})$.
$\mathrm{X}=\mathrm{a}$
\square ?- foo $(X, b)=Y$.
$\mathrm{Y}=\mathrm{foo}(\mathrm{X}, \mathrm{b})$
\square ?- foo (Z,Z) = foo (a,b). no

Definitions: Prolog Terms

- Terms are symbolic expressions that are Prolog's building blocks
- A Prolog program consists of Horn clauses (axioms) that are terms
- Data structures processed by a Prolog program are terms
- A term is either
\square a variable: a name beginning with an upper case letter
\square a constant: a number or string
\square an atom: a symbol or a name beginning with a lower case letter
\square a structure of the form:
functor($\left.\arg _{1}, \arg _{2}, \ldots, \arg _{n}\right)$
where functor is an atom and $\arg _{i}$ are terms
- Examples:
$\square \mathbf{X}, \mathbf{Y}, \mathrm{ABC}$, and Alice are variables
\square 7, 3.14, and "hello" are constants
\square foo, barFly, and + are atoms
\square bin_tree (foo, bin_tree (bar, glarch)) and ${ }^{-}(3,4)$ are structures

Term Manipulation

- Terms can be analyzed and constructed
\square Built-in predicates functor and arg, for example:
- ?- functor (foo (a,b,c), foo, 3). yes
- ?- functor (bar (a,b,c), F, N).

F = bar
$\mathrm{N}=3$

- ?- functor (T, bee, 2). T = bee (_G1,_G2)
- ?- functor (T, bee, 2), $\arg (1, T, a), \arg (2, T, b)$. $T=$ bee (a,b)
\square The "univ" operator = . .
- ?- foo (a,b,c) =. . L $L=[f \circ o, a, b, c]$
- ?- T =. . [bee, a,b] $T=b e e(a, b)$

Prolog Lists

- A list is of the form:

$$
\left[e l t_{1}, e l t_{2}, \ldots, e l t_{n}\right]
$$

where elt ${ }_{i}$ are terms

- The special list form

$$
\left[e l t_{1}, e l t_{2}, \ldots, e l t_{n} \mid \text { tai }\right]
$$

denotes a list whose tail list is tail

- Examples
\square ?- $[a, b, c]=[a \mid T]$.
T $=[\mathrm{b}, \mathrm{c}]$
\square ?- $[a, b, c]=[a, b \mid T]$.
T $=$ [c]
\square ?- $[a, b, c]=[a, b, c \mid T]$.
T $=$ []

List Operations: List Membership

- List membership definitions: member ($\mathrm{X}, \quad[\mathrm{X} \mid \mathrm{T}]$). member ($\mathrm{X},[\mathrm{H} \mid \mathrm{T}]$) :- member (X, T).
- ?- member (b, [a,b,c]).
\square Execution:
member ($\mathrm{b},[\mathrm{a}, \mathrm{b}, \mathrm{c}]$) does not match member ($\mathrm{X},[\mathrm{X} \mid \mathrm{T}]$)
\square member ($b,[a, b, c]$) matches predicate member $\left(X_{1},\left[H_{1} \mid T_{1}\right]\right)$ with $\mathrm{X}_{1}=\mathrm{b}, \mathrm{H}_{1}=\mathrm{a}$, and $\mathrm{T}_{1}=[\mathrm{b}, \mathrm{c}]$
\square Sub-goal to prove: member (b, [b, c])
\square member ($\mathrm{b},[\mathrm{b}, \mathrm{c}]$) matches predicate member ($\mathrm{X}_{2},\left[\mathrm{X}_{2} \mid \mathrm{T}_{2}\right]$) with $\mathrm{X}_{2}=\mathrm{b}$ and $\mathrm{T}_{2}=$ [c]
\square The sub-goal is proven, so member ($b,[a, b, c]$) is proven (deduced)
\square Note: variables can be "local" to a clause (like the formal arguments of a function)
\square Local variables such as X_{1} and \mathbf{x}_{2} are used to indicate a match of a (sub)-goal and a head predicate of a clause

Predicates and Relations

- Predicates are not functions with distinct inputs and outputs
- Predicates are more general and define relationships between objects (terms)
\square member ($\mathrm{b},[\mathrm{a}, \mathrm{b}, \mathrm{c}]$) relates term b to the list that contains b
\square ?- member (X, [a,b,c]).
$\mathrm{X}=\mathrm{a}$; $\%$ type '; to try to find more solutions
$\mathrm{X}=\mathrm{b}$; $\%$... try to find more solutions
$\mathrm{X}=\mathrm{c}$; \quad ㅇ ... try to find more solutions
no
\square ?- member (b, [a,Y,c]).
$\mathbf{Y}=\mathrm{b}$
\square ?- member (b, L).
$\mathrm{L}=$ [b|_G255]
where L is a list with b as head and _G255 as tail, where _G255 is a new variable

List Operations: List Append

- List append predicate definitions:

```
append([], A, A).
append([H|T], A, [H|L]) :- append(T, A, L).
```

- ?- append ([a,b,c], [d,e], X). $X=[a, b, c, d, e]$
- ?- append (Y, [d,e], [a,b,c,d,e]). $Y=[a, b, c]$
■ ?- append ([a,b,c], Z, [a,b,c,d,e]). $z=[d, e]$
■ ?- append ([a,b],[],[a,b,c]). No
- ?- append([a,b],[X|Y],[a,b,c]).
$\mathrm{X}=\mathrm{c}$
$\mathbf{Y}=$ []

Example: Bubble Sort

```
bubble(List, Sorted) :-
    append(InitList, [B,A|Tail], List),
        A < B,
        append(InitList, [A,B|Tail], NewList),
        bubble(NewList, Sorted).
bubble(List, List).
```

?- bubble([2,3,1], L).
append $([],[2,3,1],[2,3,1])$,
$3<2$,
append $([2],[3,1],[2,3,1])$,
$1<3$,
append $([2],[1,3]$, NewList1),$\quad \%$ this makes: NewList1=[2,1,3]
bubble([2,1,3], L).
append([], [2,1,3], [2,1,3]),
$1<2$,
append([], [1,2,3], NewList2), 응 this makes: NewList2=[1,2,3]
bubble ([1,2,3], L).
append([], [1,2,3], [1,2,3]),
$2<1$, \quad fails: backtrack
append([1], [2,3], [1,2,3]),
$3<2$, \quad fails: backtrack
append([1,2], [3], [1,2,3]), \% does not unify: backtrack
bubble([1,2,3], L). \% try second bubble-clause which makes $L=[1,2,3]$
bubble([2,1,3], [1,2,3]).
bubble([2,3,1], [1,2,3]).

Imperative Features

- Prolog offers built-in constructs to support a form of control-flow
$\square \backslash+G$ negates a (sub-)goal G
$\square!($ cut terminates backtracking for a predicate
\square fail always fails to trigger backtracking
- Examples
\square ?- \+ member (b, [a,b,c]).
no
\square ?- \+ member (b, []).
yes
\square Define:
if (Cond, Then, Else) :- Cond, !, Then.
if (Cond, Then, Else) :- Else.
\square ?- if(true, $X=a, X=b)$.
$\mathrm{X}=\mathrm{a}$; \% type ';' to try to find more solutions no
\square ?- if(fail, $X=a$, $X=b$).
$\mathrm{X}=\mathrm{b}$; \% type ';' to try to find more solutions no

Example: Tic-Tac-Toe

- Rules to find line of three (permuted) cells:
\square line (A,B,C) :ordered_line (A,B,C).
\square line (A,B,C) :ordered_line (A,C,B).
\square line (A,B,C) :ordered_line (B, A, C).
\square line (A, B, C) :ordered_line (B, C, A).
\square line (A,B,C) :ordered_line ($\mathrm{C}, \mathrm{A}, \mathrm{B}$).
\square line (A,B,C) :ordered_line (C, B, A).

Example: Tic-Tac-Toe

- Facts:
\square ordered_line(1,5,9).
\square ordered_line $(3,5,7)$.
\square ordered_line(1,2,3).
\square ordered_line(4,5,6).
\square ordered_line $(7,8,9)$.
\square ordered_line(1,4,7).
\square ordered_line $(2,5,8)$.
\square ordered_line(3,6,9).

Example: Tic-Tac-Toe

- How to make a good move to a cell:
move (A) :- good (A), empty (A).
- Which cell is empty?
\square empty (A) : - \+ full (A).
- Which cell is full?
\square full (A) :- $x(A)$.
\square full (A) :- O(A).

Example: Tic-Tac-Toe

- Which cell is best to move to? (check this in this order
$\square \operatorname{good}(A) \quad:-$ win(A).
\% a cell where we win
$\square \operatorname{good}(A):-b l o c k _w i n(A)$. $\%$ a cell where we block the opponent from a win
$\square \operatorname{good}(A) \quad:-\operatorname{split}(A)$.
\% a cell where we can make a split to win
$\square \operatorname{good}(A):-b l o c k$ split(A). $\%$ a cell where we block the opponent from a split
$\square \operatorname{good}(A) \quad:-\quad$ build(A).
$\square \operatorname{good}(5)$.
$\square \operatorname{good}(1)$.
$\square \operatorname{good}(3)$.good (7) .good (9) .good (2) .
good (4).good (6).
$\square \operatorname{good}(8)$.

Example: Tic-Tac-Toe

- How to find a winning cell:

\square win (A) :- $\mathbf{x}(B), \quad x(C)$, line (A, $B, C)$.
- Choose a cell to block the opponent from choosing a winning cell:
\square block_win(A) :- o(B), o(C), line (A,B,C).
- Choose a cell to split for a win later:
\square split (A) : $-\mathbf{x}(B), \quad x(C), \quad \backslash+(B=C)$, line (A, B, D), line (A,C,E), empty (D), empty (E).
- Choose a cell to block the opponent from making a split:
\square block_split(A) : - o (B), o(C), $\backslash+(B=C)$, line ($\bar{A}, B, D)$, line (A,C,E), empty (D), empty (E).
- Choose a cell to get a line:
\square build (A) :- x (B) , line (A,B,C), empty (C).

Example: Tic-Tac-Toe

- Board positions are stored as facts:
$\square \mathbf{x}(7)$.
\square ○(5).
$\square \mathbf{x}(4)$.
\square O (1).
- Move query:
\square ?- move (A). $A=9$

Prolog Arithmetic

- Arithmetic is needed for computations in Prolog
- Arithmetic is not relational
- The is predicate evaluates an arithmetic expression and instantiates a variable with the result
- For example
$\square \mathrm{X}$ is $2 * \sin (1)+1$ instantiates X with the results of $2 * \sin (1)+1$

Examples with Arithmetic

- A predicate to compute the length of a list:
\square length ([], 0).
\square length ([H|T], N) :- length (T, K), N is K + 1 .
- where the first argument of length is a list and the second is the computed length
- Example query:
\square ?- length ([1,2,3], X). $\mathrm{x}=3$
- Defining a predicate to compute GCD:
$\square \operatorname{gcd}(\mathrm{A}, \mathrm{A}, \mathrm{A})$.
$\square \operatorname{gcd}(A, B, G):-A>B, N$ is $A-B, \operatorname{gcd}(N, B, G)$.
$\square \operatorname{gcd}(A, B, G):-A<B, N$ is $B-A, \operatorname{gcd}(A, N, G)$.

Database Manipulation

- Prolog programs (facts+rules) are stored in a database
- A Prolog program can manipulate the database
\square Adding a clause with assert, for example: assert(rainy (syracuse))
\square Retracting a clause with retract, for example: retract (rainy (rochester))
\square Checking if a clause is present with clause (Head, Body) for example:
clause (rainy (rochester), true)
- Prolog is fully reflexive
\square A program can reason about all if its aspects (code+data)
\square A meta-level (or metacircular) interpreter is a Prolog program that executes (another) Prolog program, e.g. a tracer can be written in Prolog

A Meta-level Interpeter

- clause_tree(G) :- write_ln(G), fail. \% just show goal
clause_tree (true) :- !.
clause_tree((G,R)) :-
!,
clause_tree (G),
clause_tree(R).
clause_tree ((G;R)) :-
!,
(clause_tree (G)
; clause_tree(R)
).
clause_tree(G) :-
(predicate_property (G,built_in)
; predicate_property (G,compiled)
), !
call(G). \% let Prolog do it
clause_tree (G) :- clause (G,Body), clause_tree (Body).
- ?- clause_tree($(X$ is $3, X<1$; $X=4)$).
_G324 is $\overline{3}, \quad$ G324<1 ; _G324=4
_G324 is 3, _G324<1
G324 is 3
$\overline{3}<1$
G324=4
$\overline{\mathrm{X}}=4$

