
COP4020

Programming

Languages

Functional Programming

Prof. Chris Lacher

Modified from Robert van Engelen

COP4020 Fall 2013

Overview

 What is functional programming?

 Historical origins of functional programming

 Functional programming today

 Concepts of functional programming

 Functional programming with Scheme

 Learn (more) by example

COP4020 Fall 2013

What is Functional

Programming?

 Functional programming is a declarative programming

style (programming paradigm)

 Pro: flow of computation is declarative, i.e. more implicit

 Pro: promotes building more complex functions from other

functions that serve as building blocks (component reuse)

 Pro: behavior of functions defined by the values of input

arguments only (no side-effects via global/static variables)

 Cons: function composition is (considered to be) stateless

 Cons: programmers prefer imperative programming constructs

such as statement composition, while functional languages

emphasize function composition

COP4020 Fall 2013

Concepts of Functional

Programming

 Functional programming defines the outputs of a program purely as

a mathematical function of the inputs with no notion of internal state

(no side effects)

 A pure function can be counted on to return the same output each time

we invoke it with the same input parameter values

 No global (statically allocated) variables

 No explicit (pointer) assignments

 Dangling pointers and un-initialized variables cannot occur

 Example pure functional programming languages: Miranda, Haskell,

and Sisal

 Non-pure functional programming languages include “imperative

features” that cause side effects (e.g. destructive assignments to

global variables or assignments/changes to lists and data structures)

 Example: Lisp, Scheme, and ML

COP4020 Fall 2013

Functional Language

Constructs

 Building blocks are functions

 No statement composition

 Function composition

 No variable assignments

 But: can use local “variables” to

hold a value assigned once

 No loops

 Recursion

 List comprehensions in Miranda

and Haskell

 But: “do-loops” in Scheme

 Conditional flow with if-then-else

or argument patterns

 Functional languages can be

typed (Haskell) or untyped (Lisp)

 Haskell examples:
gcd a b

 | a == b = a

 | a > b = gcd (a-b) b

 | a < b = gcd a (b-a)

fac 0 = 1

fac n = n * fac (n-1)

member x [] = false

member x (y:xs)

 | x == y = true

 | x <> y = member x xs

COP4020 Fall 2013

Theory and Origin of Functional

Languages

 Church's thesis:

 All models of computation are equally powerful

 Turing's model of computation: Turing machine

 Reading/writing of values on an infinite tape by a finite state machine

 Church's model of computation: Lambda Calculus

 Functional programming languages implement Lambda Calculus

 Computability theory

 A program can be viewed as a constructive proof that some

mathematical object with a desired property exists

 A function is a mapping from inputs to output objects and computes

output objects from appropriate inputs

 For example, the proposition that every pair of nonnegative integers (the inputs) has

a greatest common divisor (the output object) has a constructive proof implemented

by Euclid's algorithm written as a "function"

COP4020 Fall 2013

Impact of Functional

Languages on Language Design

 Useful features are found in functional languages that

are often missing in procedural languages or have been

adopted by modern programming languages:

 First-class function values: the ability of functions to return newly

constructed functions

 Higher-order functions: functions that take other functions as

input parameters or return functions

 Polymorphism: the ability to write functions that operate on more

than one type of data

 Aggregate constructs for constructing structured objects: the

ability to specify a structured object in-line such as a complete

list or record value

 Garbage collection

COP4020 Fall 2013

Functional Programming Today

 Significant improvements in theory and practice of

functional programming have been made in recent years

 Strongly typed (with type inference)

 Modular

 Sugaring: imperative language features that are automatically

translated to functional constructs (e.g. loops by recursion)

 Improved efficiency

 Remaining obstacles to functional programming:

 Social: most programmers are trained in imperative

programming and aren’t used to think in terms of function

composition

 Commercial: not many libraries, not very portable, and no IDEs

COP4020 Fall 2013

Applications

 Many (commercial) applications are built with functional
programming languages based on the ability to
manipulate symbolic data more easily

 Examples:
 Computer algebra (e.g. Reduce system)

 Natural language processing

 Artificial intelligence

 Automatic theorem proving

 Algorithmic optimization of functional programs

COP4020 Fall 2013

LISP and Scheme

 The original functional language and implementation of

Lambda Calculus

 Lisp and dialects (Scheme, common Lisp) are still the

most widely used functional languages

 Simple and elegant design of Lisp:

 Homogeneity of programs and data: a Lisp program is a list and

can be manipulated in Lisp as a list

 Self-definition: a Lisp interpreter can be written in Lisp

 Interactive: user interaction via "read-eval-print" loop

COP4020 Fall 2013

Scheme

 Scheme is a popular Lisp dialect

 Lisp and Scheme adopt a form of prefix notation called
Cambridge Polish notation

 Scheme is case insensitive

 A Scheme expression is composed of
 Atoms, e.g. a literal number, string, or identifier name,

 Lists, e.g. '(a b c)

 Function invocations written in list notation: the first list element
is the function (or operator) followed by the arguments to which it
is applied:

(function arg1 arg2 arg3 ... argn)

 For example, sin(x*x+1) is written as (sin (+ (* x x) 1))

COP4020 Fall 2013

Read-Eval-Print

 The "Read-eval-print" loop provides user interaction in Scheme

 An expression is read, evaluated, and the result printed

 Input: 9

 Output: 9

 Input: (+ 3 4)

 Output: 7

 Input: (+ (* 2 3) 1)

 Output: 7

 User can load a program from a file with the load function

(load "my_scheme_program")

Note: a file should use the .scm extension

COP4020 Fall 2013

Working with Data Structures

 An expression operates on values and compound data structures

built from atoms and lists

 A value is either an atom or a compound list

 Atoms are

 Numbers, e.g. 7 and 3.14

 Strings, e.g. "abc"

 Boolean values #t (true) and #f (false)

 Symbols, which are identifiers escaped with a single quote, e.g. 'y

 The empty list ()

 When entering a list as a literal value, escape it with a single quote

 Without the quote it is a function invocation!

 For example, '(a b c) is a list while (a b c) is a function application

 Lists can be nested and may contain any value, e.g. '(1 (a b) ''s'')

COP4020 Fall 2013

Checking the Type of a Value

 The type of a value can be checked with

 (boolean? x) ; is x a Boolean?

 (char? x) ; is x a character?

 (string? x) ; is x a string?

 (symbol? x) ; is x a symbol?

 (number? x) ; is x a number?

 (list? x) ; is x a list?

 (pair? x) ; is x a non-empty list?

 (null? x) ; is x an empty list?

 Examples

 (list? '(2)) #t

 (number? ''abc'') #f

 Portability note: on some systems false (#f) is replaced with ()

COP4020 Fall 2013

Working with Lists

 (car xs) returns the head (first element) of list xs

 (cdr xs) (pronounced "coulder") returns the tail of list xs

 (cons x xs) joins an element x and a list xs to construct a new list

 (list x1 x2 … xn) generates a list from its arguments

 Examples:

 (car '(2 3 4)) 2

 (car '(2)) 2

 (car '()) Error

 (cdr '(2 3)) (3)

 (car (cdr '(2 3 4))) 3 ; also abbreviated as (cadr '(2 3 4))

 (cdr (cdr '(2 3 4))) (4) ; also abbreviated as (cddr '(2 3 4))

 (cdr '(2)) ()

 (cons 2 '(3)) (2 3)

 (cons 2 '(3 4)) (2 3 4)

 (list 1 2 3) (1 2 3)

COP4020 Fall 2013

The “if” Special Form

 Special forms resemble functions but have special
evaluation rules
 Evaluation of arguments depends on the special construct

 The “if” special form returns the value of thenexpr or
elseexpr depending on a condition

(if condition thenexpr elseexpr)

 Examples
 (if #t 1 2) 1

 (if #f 1 "a") "a"

 (if (string? "s") (+ 1 2) 4) 3

 (if (> 1 2) "yes" "no") "no"

COP4020 Fall 2013

The “cond” Special Form

 A more general if-then-else can be written using the
“cond” special form that takes a sequence of (condition
value) pairs and returns the first value xi for which
condition ci is true:

(cond (c1 x1) (c2 x2) … (else xn))

 Examples
 (cond (#f 1) (#t 2) (#t 3)) 2

 (cond ((< 1 2) ''one'') ((>= 1 2) ''two'')) ''one''

 (cond ((< 2 1) 1) ((= 2 1) 2) (else 3)) 3

 Note: “else” is used to return a default value

COP4020 Fall 2013

Logical Expressions

 Relations

 Numeric comparison operators <, <=, =, >, <=, and <>

 Boolean operators

 (and x1 x2 … xn), (or x1 x2 … xn)

 Other test operators

 (zero? x), (odd? x), (even? x)

 (eq? x1 x2) tests whether x1 and x2 refer to the same object
 (eq? 'a 'a) #t
 (eq? '(a b) '(a b)) #f

 (equal? x1 x2) tests whether x1 and x2 are structurally equivalent
 (equal? 'a 'a) #t
 (equal? '(a b) '(a b)) #t

 (member x xs) returns the sublist of xs that starts with x, or returns ()
 (member 5 '(a b)) ()
 (member 5 '(1 2 3 4 5 6)) (5 6)

COP4020 Fall 2013

Lambda Calculus: Functions =

Lambda Abstractions

 A lambda abstraction is a nameless function (a mapping)
specified with the lambda special form:

(lambda args body)

where args is a list of formal arguments and body is an
expression that returns the result of the function
evaluation when applied to actual arguments

 A lambda expression is an unevaluated function

 Examples:
 (lambda (x) (+ x 1))

 (lambda (x) (* x x))

 (lambda (a b) (sqrt (+ (* a a) (* b b))))

COP4020 Fall 2013

Lambda Calculus: Invocation

= Beta Reduction

 A lambda abstraction is applied to actual arguments using the
familiar list notation

 (function arg1 arg2 ... argn)

where function is the name of a function or a lambda abstraction

 Beta reduction is the process of replacing formal arguments in the
lambda abstraction’s body with actuals

 Examples

 ((lambda (x) (* x x)) 3) (* 3 3) 9

 ((lambda (f a) (f (f a))) (lambda (x) (* x x)) 3)
 (f (f 3)) where f = (lambda (x) (* x x))
 (f ((lambda (x) (* x x)) 3)) where f = (lambda (x) (* x x))
 (f 9) where f = (lambda (x) (* x x))
 ((lambda (x) (* x x)) 9)
 (* 9 9)
 81

COP4020 Fall 2013

Defining Global Names

 A global name is defined with the “define” special form

(define name value)

 Usually the values are functions (lambda abstractions)

 Examples:

 (define my-name ''foo'')

 (define determiners '(''a'' ''an'' ''the''))

 (define sqr (lambda (x) (* x x)))

 (define twice (lambda (f a) (f (f a))))

 (twice sqr 3) ((lambda (f a) (f (f a))) (lambda (x) (* x x)) 3)

… 81

COP4020 Fall 2013

Using Local Names

 The “let” special form (let-expression) provides a scope

construct for local name-to-value bindings

(let ((name1 x1) (name2 x2) … (namen xn)) expression)

where name1, name2, …, namen in expression are

substituted by x1, x2, …, xn

 Examples

 (let ((plus +) (two 2)) (plus two two)) 4

 (let ((a 3) (b 4)) (sqrt (+ (* a a) (* b b)))) 5

 (let ((sqr (lambda (x) (* x x))) (sqrt (+ (sqr 3) (sqr 4))) 5

COP4020 Fall 2013

Local Bindings with Self

References

 A global name can simply refer to itself (for recursion)

 (define fac (lambda (n) (if (zero? n) 1 (* n (fac (- n 1)))))

 A let-expression cannot refer to its own definitions

 Its definitions are not in scope, only outer definitions are visible

 Use the letrec special form for recursive local definitions

 (letrec ((name1 x1) (name2 x2) … (namen xn)) expr)

where namei in expr refers to xi

 Examples

 (letrec ((fac (lambda (n) (if (zero? n) 1 (* n (fac (- n 1)))))))

 (fac 5)) 120

COP4020 Fall 2013

I/O

 (display x) prints value of x and returns an unspecified

value

 (display "Hello World!")

Displays: "Hello World!"

 (display (+ 2 3))

Displays: 5

 (newline) advances to a new line

 (read) returns a value from standard input

 (if (member (read) '(6 3 5 9)) "You guessed it!" "No luck")

Enter: 5

Displays: You guessed it!

COP4020 Fall 2013

Blocks

 (begin x1 x2 … xn) sequences a series of expressions xi, evaluates
them, and returns the value of the last one xn

 Examples:

 (begin
 (display "Hello World!")
 (newline)
)

 (let ((x 1)
 (y (read))
 (plus +)
)
 (begin
 (display (plus x y))
 (newline)
)
)

COP4020 Fall 2013

Do-loops

 The “do” special form takes a list of triples and a tuple with a

terminating condition and return value, and multiple expressions xi to

be evaluated in the loop

(do (triples) (condition ret-expr) x1 x2 … xn)

 Each triple contains the name of an iterator, its initial value, and the

update value of the iterator

 Example (displays values 0 to 9)

 (do ((i 0 (+ i 1)))

 ((>= i 10) "done")

 (display i)

 (newline)

)

COP4020 Fall 2013

Higher-Order Functions

 A function is a higher-order function (also called a functional form) if

 It takes a function as an argument, or

 It returns a newly constructed function as a result

 For example, a function that applies a function to an argument twice
is a higher-order function

 (define twice (lambda (f a) (f (f a))))

 Scheme has several built-in higher-order functions

 (apply f xs) takes a function f and a list xs and applies f to the elements
of the list as its arguments

 (apply '+ '(3 4)) 7

 (apply (lambda (x) (* x x)) '(3))

 (map f xs) takes a function f and a list xs and returns a list with the
function applied to each element of xs

 (map odd? '(1 2 3 4)) (#t #f #t #f)

 (map (lambda (x) (* x x)) '(1 2 3 4)) (1 4 9 16)

COP4020 Fall 2013

Non-Pure Constructs

 Assignments are considered non-pure in functional programming
because they can change the global state of the program and
possibly influence function outcomes

 The value of a pure function only depends on its arguments

 (set! name x) re-assigns x to local or global name

 (define a 0)
(set! a 1) ; overwrite with 1

 (let ((a 0))
 (begin
 (set! a (+ a 1)) ; increment a by 1
 (display a) ; shows 1
)
)

 (set-car! x xs) overwrites the head of a list xs with x

 (set-cdr! xs ys) overwrites the tail of a list xs with ys

COP4020 Fall 2013

Example 1

 Recursive factorial:
(define fact
 (lambda (n)
 (if (zero? n) 1 (* n (fact (- n 1))))
)
)

 (fact 2) (if (zero? 2) 1 (* 2 (fact (- 2 1))))
 (* 2 (fact 1))
 (* 2 (if (zero? 1) 1 (* 1 (fact (- 1 1)))))
 (* 2 (* 1 (fact 0)))
 (* 2 (* 1 (if (zero? 0) 1 (* 0 (fact (- 0 1))))
 (* 2 (* 1 1))
 2

COP4020 Fall 2013

Example 2

 Iterative factorial

(define iterfact

 (lambda (n)

 (do ((i 1 (+ i 1)) ; i runs from 1 updated by 1

 (f 1 (* f i)) ; f from 1, multiplied by i

)

 ((> i n) f) ; until i > n, return f

 ; loop body is omitted

)

)

)

COP4020 Fall 2013

Example 3

 Sum the elements of a list
(define sum
 (lambda (lst)
 (if (null? lst)
 0
 (+ (car lst) (sum (cdr lst)))
)
)
)

 (sum '(1 2 3)) (+ 1 (sum (2 3))
 (+ 1 (+ 2 (sum (3))))
 (+ 1 (+ 2 (+ 3 (sum ()))))
 (+ 1 (+ 2 (+ 3 0)))

COP4020 Fall 2013

Example 4

 Generate a list of n copies of x

(define fill

 (lambda (n x)

 (if (= n 0)

 ()

 (cons x (fill (- n 1) x)))

)

)

 (fill 2 'a) (cons a (fill 1 a))

 (cons a (cons a (fill 0 a)))

 (cons a (cons a ()))

 (a a)

COP4020 Fall 2013

Example 5

 Replace x with y in list xs

(define subst

 (lambda (x y xs)

 (cond

 ((null? xs) ())

 ((eq? (car xs) x) (cons y (subst x y (cdr xs))))

 (else (cons (car xs) (subst x y (cdr xs))))

)

)

)

 (subst 3 0 '(8 2 3 4 3 5)) '(8 2 0 4 0 5)

COP4020 Fall 2013

Example 6

 Higher-order reductions
(define reduce
 (lambda (op xs)
 (if (null? (cdr xs))
 (car xs)
 (op (car xs) (reduce op (cdr xs)))
)
)
)

 (reduce and '(#t #t #f)) (and #t (and #t #f)) #f

 (reduce * '(1 2 3)) (* 1 (* 2 3)) 6

 (reduce + '(1 2 3)) (+ 1 (+ 2 3)) 6

COP4020 Fall 2013

Example 7

 Higher-order filter operation: keep elements of a list for
which a condition is true
(define filter
 (lambda (op xs)
 (cond
 ((null? xs) ())
 ((op (car xs)) (cons (car xs) (filter op (cdr xs))))
 (else (filter op (cdr xs)))
)
)
)

 (filter odd? '(1 2 3 4 5)) (1 3 5)

 (filter (lambda (n) (<> n 0)) '(0 1 2 3 4)) (1 2 3 4)

COP4020 Fall 2013

Example 8

 Binary tree insertion, where () are leaves and (val left right) is a node

(define insert

 (lambda (n T)

 (cond

 ((null? T) (list n () ()))

 ((= (car T) n) T)

 ((> (car T) n) (list (car T) (insert n (cadr T)) (caddr T)))

 ((< (car T) n) (list (car T) (cadr T) (insert n (caddr T))))

)

)

)

 (insert 1 '(3 () (4 () ()))) (3 (1 () ()) (4 () ()))

