COP4020 Programming Languages

Functional Programming

Prof. Chris Lacher Modified from Robert van Engelen

Overview

- What is functional programming?
- Historical origins of functional programming
- Functional programming today
- Concepts of functional programming
- Functional programming with Scheme
- Learn (more) by example

What is Functional Programming?

- Functional programming is a declarative programming style (programming paradigm)
 - □ Pro: flow of computation is declarative, i.e. more implicit
 - Pro: promotes building more complex functions from other functions that serve as building blocks (component reuse)
 - Pro: behavior of functions defined by the values of input arguments only (no side-effects via global/static variables)
 - □ Cons: function composition is (considered to be) stateless
 - Cons: programmers prefer imperative programming constructs such as statement composition, while functional languages emphasize function composition

Concepts of Functional Programming

- Functional programming defines the outputs of a program purely as a mathematical function of the inputs with no notion of internal state (no side effects)
 - A pure function can be counted on to return the same output each time we invoke it with the same input parameter values
 - □ No global (statically allocated) variables
 - □ No explicit (pointer) assignments
 - Dangling pointers and un-initialized variables cannot occur
 - Example pure functional programming languages: Miranda, Haskell, and Sisal
- Non-pure functional programming languages include "imperative features" that cause side effects (e.g. destructive assignments to global variables or assignments/changes to lists and data structures)
 Example: Lisp, Scheme, and ML

Functional Language Constructs

- Building blocks are functions
- No statement composition
 - Function composition
- No variable assignments
 - But: can use local "variables" to hold a value assigned once
- No loops
 - Recursion
 - List comprehensions in Miranda and Haskell
 - □ But: "do-loops" in Scheme
- Conditional flow with if-then-else or argument patterns
- Functional languages can be typed (Haskell) or untyped (Lisp)

Haskell examples:

gcd a b | a == b = a

> $| a \rangle b = gcd (a-b) b$ $| a \langle b = gcd a (b-a)$

fac
$$0 = 1$$

fac $n = n * fac (n-1)$
member x [] = false

member x (y:xs)

- $| \mathbf{x} == \mathbf{y} = \mathsf{true}$
 - | x <> y = member x xs

Theory and Origin of Functional Languages

- Church's thesis:
 - □ All models of computation are equally powerful
 - □ Turing's model of computation: Turing machine
 - Reading/writing of values on an infinite tape by a finite state machine
 - Church's model of computation: Lambda Calculus
 - Functional programming languages implement Lambda Calculus
- Computability theory
 - A program can be viewed as a constructive proof that some mathematical object with a desired property exists
 - A function is a mapping from inputs to output objects and computes output objects from appropriate inputs
 - For example, the proposition that every pair of nonnegative integers (the inputs) has a greatest common divisor (the output object) has a constructive proof implemented by Euclid's algorithm written as a "function"

Impact of Functional Languages on Language Design

- Useful features are found in functional languages that are often missing in procedural languages or have been adopted by modern programming languages:
 - First-class function values: the ability of functions to return newly constructed functions
 - Higher-order functions: functions that take other functions as input parameters or return functions
 - Polymorphism: the ability to write functions that operate on more than one type of data
 - Aggregate constructs for constructing structured objects: the ability to specify a structured object in-line such as a complete list or record value
 - □ Garbage collection

Functional Programming Today

- Significant improvements in theory and practice of functional programming have been made in recent years
 - □ Strongly typed (with type inference)
 - Modular
 - Sugaring: imperative language features that are automatically translated to functional constructs (e.g. loops by recursion)
 - Improved efficiency
- Remaining obstacles to functional programming:
 - Social: most programmers are trained in imperative programming and aren't used to think in terms of function composition
 - □ Commercial: not many libraries, not very portable, and no IDEs

Applications

 Many (commercial) applications are built with functional programming languages based on the ability to manipulate symbolic data more easily

Examples:

- Computer algebra (e.g. Reduce system)
- Natural language processing
- □ Artificial intelligence
- Automatic theorem proving
- □ Algorithmic optimization of functional programs

LISP and Scheme

- The original functional language and implementation of Lambda Calculus
- Lisp and dialects (Scheme, common Lisp) are still the most widely used functional languages
- Simple and elegant design of Lisp:
 - Homogeneity of programs and data: a Lisp program is a list and can be manipulated in Lisp as a list
 - □ Self-definition: a Lisp interpreter can be written in Lisp
 - □ Interactive: user interaction via "read-eval-print" loop

Scheme

- Scheme is a popular Lisp dialect
- Lisp and Scheme adopt a form of prefix notation called Cambridge Polish notation
- Scheme is case insensitive
- A Scheme expression is composed of
 - □ Atoms, e.g. a literal number, string, or identifier name,
 - \Box Lists, e.g. '(a b c)
 - Function invocations written in list notation: the first list element is the *function* (or operator) followed by the arguments to which it is applied:

(function $arg_1 arg_2 arg_3 \dots arg_n$)

□ For example, $sin(x^*x+1)$ is written as (sin (+ (* x x) 1))

COP4020 Fall 2013

Read-Eval-Print

- The "Read-eval-print" loop provides user interaction in Scheme
- An expression is read, evaluated, and the result printed
 - □ Input: 9
 - Output: 9
 - □ Input: (+ 3 4)
 - Output: 7
 - □ Input: (+ (* 2 3) 1)
 - Output: 7
- User can load a program from a file with the load function

```
(load "my_scheme_program")
```

Note: a file should use the .scm extension

Working with Data Structures

- An expression operates on values and compound data structures built from atoms and lists
- A value is either an atom or a compound list
- Atoms are
 - \Box Numbers, e.g. 7 and 3.14
 - Strings, e.g. "abc"
 - □ Boolean values #t (true) and #f (false)
 - □ Symbols, which are identifiers escaped with a single quote, e.g. 'y
 - \Box The empty list ()
- When entering a list as a literal value, escape it with a single quote
 - □ Without the quote it is a function invocation!
 - \Box For example, '(a b c) is a list while (a b c) is a function application
 - □ Lists can be nested and may contain any value, e.g. '(1 (a b) "s")

Checking the Type of a Value

The type of a value can be checked with

- $\Box \text{ (boolean? } x \text{)} ; \text{ is } x \text{ a Boolean?}$
- \Box (char? x) ; is x a character?
- \Box (string? *x*) ; is *x* a string?
- $\Box (symbol? x) ; is x a symbol?$
- $\Box (number? x) ; is x a number?$
- □ (list? *x*)
- ; is *x* a list?
- $\Box (pair? x) ; is x a non-empty list?$
 - (null? *x*) ; is *x* an empty list?

Examples

- $\Box (list?'(2)) \Rightarrow \#t$
- □ (number? "abc") \Rightarrow #f

Portability note: on some systems false (#f) is replaced with ()

Working with Lists

- (car xs) returns the head (first element) of list xs
- (cdr xs) (pronounced "coulder") returns the tail of list xs
- (cons x xs) joins an element x and a list xs to construct a new list
- (list $x_1 x_2 \dots x_n$) generates a list from its arguments
- Examples:
 - \Box (car '(2 3 4)) \Rightarrow 2
 - \Box (car '(2)) \Rightarrow 2
 - \Box (car '()) \Rightarrow Error
 - \Box (cdr '(2 3)) \Rightarrow (3)

 - $\Box (cdr (cdr '(2 3 4))) \Longrightarrow (4)$
 - \Box (cdr '(2)) \Rightarrow ()
 - \Box (cons 2 '(3)) \Rightarrow (2 3)
 - \Box (cons 2 '(3 4)) \Rightarrow (2 3 4)
 - $\Box \text{ (list 1 2 3)} \Rightarrow (1 2 3)$

- \Box (car (cdr '(2 3 4))) \Rightarrow 3 ; also abbreviated as (cadr '(2 3 4))
 - ; also abbreviated as (cddr '(2 3 4))

The "if" Special Form

- Special forms resemble functions but have special evaluation rules
 - Evaluation of arguments depends on the special construct
- The "if" special form returns the value of thenexpr or elseexpr depending on a condition

(if condition thenexpr elseexpr)

- \Box (if #t 1 2) \Rightarrow 1
- $\Box \text{ (if #f 1 "a")} \Rightarrow "a"$
- □ (if (string? "s") (+ 1 2) 4) \Rightarrow 3
- □ (if (> 1 2) "yes" "no") \Rightarrow "no"

The "cond" Special Form

A more general if-then-else can be written using the "cond" special form that takes a sequence of (*condition value*) pairs and returns the first *value* x_i for which *condition* c_i is true:

 $(\text{cond} (c_1 x_1) (c_2 x_2) \dots (\text{else } x_n))$

- $\Box \ (cond \ (\#f \ 1) \ (\#t \ 2) \ (\#t \ 3) \) \Rightarrow 2$
- □ (cond ((< 1 2) "one") ((>= 1 2) "two")) ⇒ "one"
- □ (cond ((< 2 1) 1) ((= 2 1) 2) (else 3)) \Rightarrow 3
- Note: "else" is used to return a default value

Logical Expressions

- Relations
 - \Box Numeric comparison operators <, <=, =, >, <=, and <>
- Boolean operators
 - \Box (and $x_1 x_2 \dots x_n$), (or $x_1 x_2 \dots x_n$)
- Other test operators
 - \Box (zero? x), (odd? x), (even? x)
 - □ (eq? $x_1 x_2$) tests whether x_1 and x_2 refer to the same object (eq? 'a 'a) ⇒ #t (eq? '(a b) '(a b)) ⇒ #f
 - □ (equal? $x_1 x_2$) tests whether x_1 and x_2 are structurally equivalent (equal? 'a 'a) ⇒ #t (equal? '(a b) '(a b)) ⇒ #t
 - □ (member *x xs*) returns the sublist of *xs* that starts with *x*, or returns () (member 5 '(a b)) \Rightarrow () (member 5 '(1 2 3 4 5 6)) \Rightarrow (5 6)

Lambda Calculus: Functions = Lambda Abstractions

A lambda abstraction is a nameless function (a mapping) specified with the lambda special form:

(lambda *args body*)

where *args* is a list of formal arguments and *body* is an expression that returns the result of the function evaluation when applied to actual arguments

- A lambda expression is an unevaluated function
- Examples:
 - □ (lambda (x) (+ x 1))
 - □ (lambda (x) (* x x))
 - □ (lambda (a b) (sqrt (+ (* a a) (* b b))))

Lambda Calculus: Invocation = Beta Reduction

A lambda abstraction is *applied* to actual arguments using the familiar list notation

(function $arg_1 arg_2 \dots arg_n$)

where *function* is the name of a function or a lambda abstraction

- Beta reduction is the process of replacing formal arguments in the lambda abstraction's body with actuals
- Examples
 - □ ((lambda (x) (* $\underline{x} \underline{x}$)) $\underline{3}$) \Rightarrow (* 3 3) \Rightarrow 9
 - - $\Rightarrow (f (f 3))$ $\Rightarrow (f ((lambda (x) (* <u>x x</u>)) <u>3</u>))$
 - $\Rightarrow (f 9)$
 - $\Rightarrow ((\text{lambda}(x)(* \underline{x} \underline{x})) \underline{9}))$
 - $\Rightarrow (* 9 9) \\\Rightarrow 81$

where f = (lambda (x) (* x x))

where f = (lambda (x) (* x x))

Defining Global Names

A global name is defined with the "define" special form

(define *name value*)

Usually the values are functions (lambda abstractions)

Examples:

- □ (define my-name "foo")
- □ (define determiners '("a" "an" "the"))
- □ (define sqr (lambda (x) (* x x)))
- \Box (define twice (lambda (f a) (f (f a))))
- □ (twice sqr 3) \Rightarrow ((lambda (f a) (f (f a))) (lambda (x) (* x x)) 3) \Rightarrow ... \Rightarrow 81

Using Local Names

The "let" special form (let-expression) provides a scope construct for local name-to-value bindings

(let ($(name_1 x_1) (name_2 x_2) \dots (name_n x_n)$) expression)

where $name_1$, $name_2$, ..., $name_n$ in *expression* are substituted by $x_1, x_2, ..., x_n$

- □ (let ((plus +) (two 2)) (plus two two)) \Rightarrow 4
- □ (let ((a 3) (b 4)) (sqrt (+ (* a a) (* b b)))) \Rightarrow 5
- □ (let ((sqr (lambda (x) (* x x))) (sqrt (+ (sqr 3) (sqr 4))) \Rightarrow 5

Local Bindings with Self References

- A global name can simply refer to itself (for recursion)
 i (define fac (lambda (n) (if (zero? n) 1 (* n (fac (- n 1)))))
- A let-expression cannot refer to its own definitions
 Its definitions are not in scope, only outer definitions are visible
- Use the letrec special form for recursive local definitions

(letrec ($(name_1 x_1) (name_2 x_2) \dots (name_n x_n)$) expr)

where *name*_{*i*} in *expr* refers to x_i

Examples

□ (letrec ((fac (lambda (n) (if (zero? n) 1 (* n (fac (- n 1)))))) (fac 5)) ⇒ 120

I/O

- (display x) prints value of x and returns an unspecified value
 - (display "Hello World!")
 Displays: "Hello World!"
 - (display (+ 2 3))Displays: 5
- (newline) advances to a new line
- (read) returns a value from standard input
 - (if (member (read) '(6 3 5 9)) "You guessed it!" "No luck") Enter: 5
 Displays: You guessed it!

Blocks

- (begin $x_1 x_2 \dots x_n$) sequences a series of expressions x_i , evaluates them, and returns the value of the last one x_n
- Examples:

```
    (begin
(display "Hello World!")
(newline)
    (let ( (x 1)
(y (read))
(plus +)
    (begin
(display (plus x y))
(newline)
    )
```

Do-loops

The "do" special form takes a list of triples and a tuple with a terminating condition and return value, and multiple expressions x_i to be evaluated in the loop

(do (*triples*) (*condition ret-expr*) $x_1 x_2 \dots x_n$)

- Each triple contains the name of an iterator, its initial value, and the update value of the iterator
- Example (displays values 0 to 9)

```
□ (do ( (i 0 (+ i 1)) )
( (>= i 10) "done" )
(display i)
(newline)
)
```

Higher-Order Functions

- A function is a *higher-order function* (also called a functional form) if
 - □ It takes a function as an argument, or
 - □ It returns a newly constructed function as a result
- For example, a function that applies a function to an argument twice is a higher-order function
 - □ (define twice (lambda (f a) (f (f a))))
- Scheme has several built-in higher-order functions
 - □ (apply f xs) takes a function f and a list xs and applies f to the elements of the list as its arguments
 - $\Box \text{ (apply '+ '(3 4))} \Rightarrow 7$
 - □ (apply (lambda (x) (* x x)) '(3))
 - \Box (map *f xs*) takes a function *f* and a list *xs* and returns a list with the function applied to each element of *xs*
 - □ (map odd? '(1 2 3 4)) \Rightarrow (#t #f #t #f)
 - □ (map (lambda (x) (* x x)) '(1 2 3 4)) \Rightarrow (1 4 9 16)

Non-Pure Constructs

- Assignments are considered non-pure in functional programming because they can change the global state of the program and possibly influence function outcomes
- The value of a *pure function* only depends on its arguments
- (set! name x) re-assigns x to local or global name

```
    (define a 0)
        (set! a 1); overwrite with 1
    (let ( (a 0) )
            (begin
               (set! a (+ a 1)); increment a by 1
                (display a) ; shows 1
                )
            )
```

- (set-car! x xs) overwrites the head of a list xs with x
- (set-cdr! xs ys) overwrites the tail of a list xs with ys

```
Recursive factorial:
   (define fact
    (lambda (n)
      (if (zero? n) 1 (* n (fact (- n 1))))
             \Rightarrow (if (zero? 2) 1 (* 2 (fact (- 2 1))))
(fact 2)
                  \Rightarrow (* 2 (fact 1))
                  \Rightarrow (* 2 (if (zero? 1) 1 (* 1 (fact (- 1 1)))))
                  \Rightarrow (* 2 (* 1 (fact 0)))
                  \Rightarrow (* 2 (* 1 (if (zero? 0) 1 (* 0 (fact (- 0 1))))
                  \Rightarrow (* 2 (* 1 1))
                  \Rightarrow 2
```

- Iterative factorial (define iterfact (lambda (n) (do ((i 1 (+ i 1)) (f 1 (* f i))) ((> i n) f)
- ; i runs from 1 updated by 1 ; f from 1, multiplied by i
- ; until i > n, return f ; loop body is omitted

```
Sum the elements of a list
   (define sum
    (lambda (lst)
      (if (null? lst)
        ()
        (+ (car lst) (sum (cdr lst)))
• (sum (1 2 3)) \implies (+ 1 (sum (2 3)))
                         \Rightarrow (+ 1 (+ 2 (sum (3))))
                         \Rightarrow (+ 1 (+ 2 (+ 3 (sum ()))))
                         \Rightarrow (+ 1 (+ 2 (+ 3 0)))
```

```
Generate a list of n copies of x
   (define fill
     (lambda (n x)
      (if (= n 0))
        (cons x (fill (- n 1) x)))
   (fill 2 'a)
                           \Rightarrow (cons a (fill 1 a))
\Rightarrow (cons a (cons a (fill 0 a)))
                           \Rightarrow (cons a (cons a ()))
                           \Rightarrow (a a)
```

COP4020 Fall 2013

```
Replace x with y in list xs
(define subst
 (lambda (x y xs)
   (cond
    ((null? xs)
                        ())
    ((eq? (car xs) x) (cons y (subst x y (cdr xs))))
                       (cons (car xs) (subst x y (cdr xs))))
    (else
(subst 30'(823435)) \Rightarrow '(820405)
```

Higher-order reductions (define reduce (lambda (op xs) (if (null? (cdr xs)) (car xs) (op (car xs) (reduce op (cdr xs))) (reduce and '(#t #t #f)) \Rightarrow (and #t (and #t #f)) \Rightarrow #f $(reduce * (1 2 3)) \Rightarrow (* 1 (* 2 3)) \Rightarrow 6$ $(reduce + (1 2 3)) \Rightarrow (+ 1 (+ 2 3)) \Rightarrow 6$

```
Higher-order filter operation: keep elements of a list for
which a condition is true
(define filter
 (lambda (op xs)
   (cond
    ((null? xs) ())
    ((op (car xs)) (cons (car xs) (filter op (cdr xs))))
                 (filter op (cdr xs)))
    (else
(filter odd? ((1 \ 2 \ 3 \ 4 \ 5)) \Rightarrow (1 \ 3 \ 5)
(filter (lambda (n) (<> n 0)) '(0 1 2 3 4)) \Rightarrow (1 2 3 4)
```

• (insert 1 '(3 () (4 () ()))) \Rightarrow (3 (1 () ()) (4 () ()))