COP4020 Programming Languages

Functional Programming
Prof. Chris Lacher
Modified from Robert van Engelen

Overview

- What is functional programming?
- Historical origins of functional programming
- Functional programming today
- Concepts of functional programming
- Functional programming with Scheme
- Learn (more) by example

What is Functional Programming?

- Functional programming is a declarative programming style (programming paradigm)
\square Pro: flow of computation is declarative, i.e. more implicit
\square Pro: promotes building more complex functions from other functions that serve as building blocks (component reuse)
\square Pro: behavior of functions defined by the values of input arguments only (no side-effects via global/static variables)
\square Cons: function composition is (considered to be) stateless
\square Cons: programmers prefer imperative programming constructs such as statement composition, while functional languages emphasize function composition

Concepts of Functional Programming

- Functional programming defines the outputs of a program purely as a mathematical function of the inputs with no notion of internal state (no side effects)
\square A pure function can be counted on to return the same output each time we invoke it with the same input parameter values
\square No global (statically allocated) variables
\square No explicit (pointer) assignments
- Dangling pointers and un-initialized variables cannot occur
\square Example pure functional programming languages: Miranda, Haskell, and Sisal
- Non-pure functional programming languages include "imperative features" that cause side effects (e.g. destructive assignments to global variables or assignments/changes to lists and data structures)
\square Example: Lisp, Scheme, and ML

Functional Language Constructs

- Building blocks are functions
- No statement composition
\square Function composition
- No variable assignments
\square But: can use local "variables" to hold a value assigned once
- No loops
\square Recursion
\square List comprehensions in Miranda and Haskell
\square But: "do-loops" in Scheme
- Conditional flow with if-then-else or argument patterns
- Functional languages can be typed (Haskell) or untyped (Lisp)
- Haskell examples: gcd a b
| $\mathrm{a}=\mathrm{b}=\mathrm{a}$
| $\mathrm{a}>\mathrm{b}=\operatorname{gcd}(\mathrm{a}-\mathrm{b}) \mathrm{b}$
| $a<b=\operatorname{gcd} a(b-a)$
fac $0=1$
fac $n=n *$ fac ($n-1$)
member x [] $=$ false
member x ($y: x s$)
| x == $y=$ true
| x <> y = member x xs

Theory and Origin of Functional Languages

- Church's thesis:
\square All models of computation are equally powerful
\square Turing's model of computation: Turing machine
- Reading/writing of values on an infinite tape by a finite state machine
\square Church's model of computation: Lambda Calculus
\square Functional programming languages implement Lambda Calculus
- Computability theory
\square A program can be viewed as a constructive proof that some mathematical object with a desired property exists
\square A function is a mapping from inputs to output objects and computes output objects from appropriate inputs
- For example, the proposition that every pair of nonnegative integers (the inputs) has a greatest common divisor (the output object) has a constructive proof implemented by Euclid's algorithm written as a "function"

Impact of Functional Languages on Language Design

- Useful features are found in functional languages that are often missing in procedural languages or have been adopted by modern programming languages:
\square First-class function values: the ability of functions to return newly constructed functions
\square Higher-order functions: functions that take other functions as input parameters or return functions
\square Polymorphism: the ability to write functions that operate on more than one type of data
\square Aggregate constructs for constructing structured objects: the ability to specify a structured object in-line such as a complete list or record value
\square Garbage collection

Functional Programming Today

- Significant improvements in theory and practice of functional programming have been made in recent years
\square Strongly typed (with type inference)
\square Modular
\square Sugaring: imperative language features that are automatically translated to functional constructs (e.g. loops by recursion)
\square Improved efficiency
- Remaining obstacles to functional programming:
\square Social: most programmers are trained in imperative programming and aren't used to think in terms of function composition
\square Commercial: not many libraries, not very portable, and no IDEs

Applications

- Many (commercial) applications are built with functional programming languages based on the ability to manipulate symbolic data more easily
- Examples:
\square Computer algebra (e.g. Reduce system)
\square Natural language processing
\square Artificial intelligence
\square Automatic theorem proving
\square Algorithmic optimization of functional programs

LISP and Scheme

- The original functional language and implementation of Lambda Calculus
- Lisp and dialects (Scheme, common Lisp) are still the most widely used functional languages
- Simple and elegant design of Lisp:
\square Homogeneity of programs and data: a Lisp program is a list and can be manipulated in Lisp as a list
\square Self-definition: a Lisp interpreter can be written in Lisp
\square Interactive: user interaction via "read-eval-print" loop

Scheme

- Scheme is a popular Lisp dialect
- Lisp and Scheme adopt a form of prefix notation called Cambridge Polish notation
- Scheme is case insensitive
- A Scheme expression is composed of
\square Atoms, e.g. a literal number, string, or identifier name,
\square Lists, e.g. '(a b c)
\square Function invocations written in list notation: the first list element is the function (or operator) followed by the arguments to which it is applied:
(function $\arg _{1} \arg _{2} \arg _{3} \ldots \arg _{\mathrm{n}}$)
\square For example, $\sin \left(x^{*} x+1\right)$ is written as $\left(\sin \left(+{ }^{*} x x\right) 1\right)$)

Read-Eval-Print

- The "Read-eval-print" loop provides user interaction in Scheme
- An expression is read, evaluated, and the result printed
\square Input: 9
\square Output: 9
\square Input: (+ 3 4)
\square Output: 7
\square Input: (+ (* 23) 1)
\square Output: 7
- User can load a program from a file with the load function (load "my_scheme_program")

Note: a file should use the .scm extension

Working with Data Structures

- An expression operates on values and compound data structures built from atoms and lists
- A value is either an atom or a compound list
- Atoms are
\square Numbers, e.g. 7 and 3.14
\square Strings, e.g. "abc"
\square Boolean values \#t (true) and \#f (false)
\square Symbols, which are identifiers escaped with a single quote, e.g. 'y
\square The empty list ()
- When entering a list as a literal value, escape it with a single quote
\square Without the quote it is a function invocation!
\square For example, ' $(a b c)$ is a list while ($a b c$) is a function application
\square Lists can be nested and may contain any value, e.g. '(1 (a b) "s")

Checking the Type of a Value

- The type of a value can be checked with
\square (boolean? x) ; is x a Boolean?
\square (char? x) ; is x a character?
\square (string? $x) \quad ;$ is x a string?
\square (symbol? x) ; is x a symbol?
\square (number? x) ; is x a number?
\square (list? x) ; is x a list?
\square (pair? $x) \quad$; is x a non-empty list?
\square (null? x) ; is x an empty list?
- Examples
\square (list? '(2)) \Rightarrow \#t
\square (number? "abc") \Rightarrow \#f
- Portability note: on some systems false (\#f) is replaced with ()

Working with Lists

- (car $x s$) returns the head (first element) of list $x s$
- (cdr xs) (pronounced "coulder") returns the tail of list $x s$
- (cons $x x$ s) joins an element x and a list $x s$ to construct a new list
- (list $x_{1} x_{2} \ldots x_{n}$) generates a list from its arguments
- Examples:
$\square($ car '(2 34$)) \Rightarrow 2$
\square (car '(2)) $\Rightarrow 2$
$\square\left(\operatorname{car}^{\prime}()\right) \Rightarrow$ Error
\square (cdr '(2 3)) \Rightarrow (3)
$\square\left(\operatorname{car}\left(\operatorname{cdr}{ }^{\prime}(234)\right)\right) \Rightarrow 3 \quad$; also abbreviated as (cadr '(2 3 4))
$\square($ cdr $(c d r '(234))) \Rightarrow(4) \quad ;$ also abbreviated as (cddr '(2 34$))$
$\square($ cdr '(2)) $\Rightarrow()$
\square (cons 2 '(3)) $\Rightarrow(23)$
\square (cons 2 '(3 4)) \Rightarrow (2 3 4)
\square (list 123$) \Rightarrow(123)$

The "if" Special Form

- Special forms resemble functions but have special evaluation rules
\square Evaluation of arguments depends on the special construct
- The "if" special form returns the value of thenexpr or elseexpr depending on a condition
(if condition thenexpr elseexpr)
- Examples
\square (if \#t 12) $\Rightarrow 1$
\square (if \#f 1 "a") \Rightarrow "a"
\square (if (string? "s") (+ 1 2) 4) $\Rightarrow 3$
\square (if (> 12) "yes" "no") \Rightarrow "no"

The "cond" Special Form

- A more general if-then-else can be written using the "cond" special form that takes a sequence of (condition value) pairs and returns the first value x_{i} for which condition c_{i} is true:
(cond $\left(c_{1} x_{1}\right)\left(c_{2} x_{2}\right) \ldots\left(\right.$ else $\left.\left.x_{n}\right)\right)$
- Examples
\square (cond (\#f 1) (\#t 2) (\#t 3)) $\Rightarrow 2$
\square (cond ((< 12) "one") ((>= 12 2) "two")) \Rightarrow "one"
\square (cond ((<21)1) ((=21)2) (else 3)) $\Rightarrow 3$
- Note: "else" is used to return a default value

Logical Expressions

- Relations
\square Numeric comparison operators <, <=, =, >, <=, and <>
- Boolean operators
$\square\left(\right.$ and $\left.x_{1} x_{2} \ldots x_{n}\right)$, (or $\left.x_{1} x_{2} \ldots x_{n}\right)$
- Other test operators
\square (zero? x), (odd? x), (even? x)
$\square\left(\right.$ eq? $\left.x_{1} x_{2}\right)$ tests whether x_{1} and x_{2} refer to the same object (eq? 'a 'ab) \Rightarrow \#t (eq? '(a b) '(ab)) \Rightarrow \#f
\square (equal? $x_{1} x_{2}$) tests whether x_{1} and x_{2} are structurally equivalent (equal? 'a 'a) \Rightarrow \#t (equal? '(ab) '(ab)) \Rightarrow \#t
\square (member $x x s$) returns the sublist of $x s$ that starts with x, or returns () (member 5 ' (ab)) $\Rightarrow()$ (member 5 '(1 2345 6)) \Rightarrow (5 6)

Lambda Calculus: Functions = Lambda Abstractions

- A lambda abstraction is a nameless function (a mapping) specified with the lambda special form:
(lambda args body)
where args is a list of formal arguments and body is an expression that returns the result of the function evaluation when applied to actual arguments
- A lambda expression is an unevaluated function
- Examples:
$\square($ lambda (x) (+ x 1))
$\square\left(\operatorname{lambda}(x)\left({ }^{*} \mathrm{x} x\right)\right)$
$\square($ lambda (a b) (sqrt (+ (* a a) (* b b))))

Lambda Calculus: Invocation = Beta Reduction

- A lambda abstraction is applied to actual arguments using the familiar list notation
(function $\arg _{1} \arg _{2} \ldots \arg _{n}$)
where function is the name of a function or a lambda abstraction
- Beta reduction is the process of replacing formal arguments in the lambda abstraction's body with actuals
- Examples
$\square\left(\left(\operatorname{lambda}(x)\left({ }^{*} \underline{x} \underline{x}\right)\right) \underline{3}\right) \Rightarrow\left({ }^{*} 3\right.$ 3 $) \Rightarrow 9$
$\square\left((\operatorname{lambda}(f a)(\underline{f}(\underline{f} a)))\left(\operatorname{lambda}(x)\left({ }^{*} x \times\right)\right) \underline{3}\right)$

```
    # (f (f 3))
    =>(f((lambda (x) (* | \underline{x})) \underline{3}))
    # (f 9)
    =>((lambda (x) (* 
    # (* 9 9)
    =>81
```


Defining Global Names

- A global name is defined with the "define" special form
(define name value)
- Usually the values are functions (lambda abstractions)
- Examples:
\square (define my-name "foo")
\square (define determiners '("a" "an" "the"))
\square (define sqr (lambda (x) (* x x)))
\square (define twice (lambda (f a) (f (f a))))
\square (twice sqr 3) $\Rightarrow((\operatorname{lambda}$ (f a) (f (f a))) (lambda (x) (* x x)) 3) \Rightarrow $\ldots \Rightarrow 81$

Using Local Names

- The "let" special form (let-expression) provides a scope construct for local name-to-value bindings
(let $\left(\left(\right.\right.$ name $\left._{1} x_{1}\right)\left(\right.$ name $\left._{2} x_{2}\right) \ldots\left(\right.$ name $\left.\left._{n} x_{n}\right)\right)$ expression)
where name ${ }_{1}$, name $_{2}, \ldots$, name $_{n}$ in expression are substituted by $x_{1}, x_{2}, \ldots, x_{n}$
- Examples
$\square($ let $($ (plus +) (two 2)) (plus two two)) $\Rightarrow 4$
$\square(\operatorname{let}((\mathrm{a} 3)(\mathrm{b} 4))($ sqrt $(+$ (* a a) (* b b)))) $\Rightarrow 5$
$\square\left(\right.$ let $\left(\left(\right.\right.$ sqr $\left.\left(\operatorname{lambda}(x)\left({ }^{*} \times x\right)\right)\right)($ sqrt (+ (sqr 3) (sqr 4))) $\Rightarrow 5$

Local Bindings with Self References

- A global name can simply refer to itself (for recursion)
\square (define fac (lambda (n) (if (zero? n) 1 (* n (fac (-n 1)))))
- A let-expression cannot refer to its own definitions
\square Its definitions are not in scope, only outer definitions are visible
- Use the letrec special form for recursive local definitions
(letrec $\left(\left(\right.\right.$ name $\left._{1} x_{1}\right)\left(\right.$ name $_{2}$ x $\left._{2}\right) \ldots\left(\right.$ name $\left.\left._{n} x_{n}\right)\right)$ expr)
where name e_{i} in expr refers to x_{i}
- Examples
$\square($ letrec $($ (fac (lambda (n) (if (zero? n) 1 (* n (fac (- n 1))))))) (fac 5)) $\Rightarrow 120$

I/O

- (display x) prints value of x and returns an unspecified value
\square (display "Hello World!")
Displays: "Hello World!"
\square (display (+ 2 3))
Displays: 5
- (newline) advances to a new line
- (read) returns a value from standard input
\square (if (member (read) '(6 35 9)) "You guessed it!" "No luck") Enter: 5
Displays: You guessed it!

Blocks

- (begin $x_{1} x_{2} \ldots x_{n}$) sequences a series of expressions x_{i}, evaluates them, and returns the value of the last one x_{n}
- Examples:
\square (begin

```
(display "Hello World!")
```

 (newline)
)
 \square (let ((x 1)
(y (read))
(plus +)
)
(begin
(display (plus x y))
(newline)
)
)

Do-Ioops

- The "do" special form takes a list of triples and a tuple with a terminating condition and return value, and multiple expressions x_{i} to be evaluated in the loop
(do (triples) (condition ret-expr) $x_{1} x_{2} \ldots x_{n}$)
- Each triple contains the name of an iterator, its initial value, and the update value of the iterator
- Example (displays values 0 to 9)
$\square($ do (($00(+i 1))$)
((>= i 10) "done")
(display i)
(newline)
)

Higher-Order Functions

- A function is a higher-order function (also called a functional form) if
\square It takes a function as an argument, or
\square It returns a newly constructed function as a result
- For example, a function that applies a function to an argument twice is a higher-order function
\square (define twice (lambda (f a) (f (f a))))
- Scheme has several built-in higher-order functions
\square (apply $f x s$) takes a function f and a list $x s$ and applies f to the elements of the list as its arguments
\square (apply '+ '(3 4)) $\Rightarrow 7$
$\square($ apply (lambda (x) (*x x)) '(3))
\square (map $f x s$) takes a function f and a list $x s$ and returns a list with the function applied to each element of $x s$
$\square($ map odd? '(1 23 4)) $\Rightarrow(\# t$ \#f \#t \#f)
$\square(\operatorname{map}(\operatorname{lambda}(x)(* x x)) '(1234)) \Rightarrow(14916)$

Non-Pure Constructs

- Assignments are considered non-pure in functional programming because they can change the global state of the program and possibly influence function outcomes
- The value of a pure function only depends on its arguments
- (set! name x) re-assigns x to local or global name
\square (define a 0)
(set! a 1) ; overwrite with 1
$\square(\operatorname{let}((\mathrm{a} 0))$
(begin
(set! a (+ a 1)) ; increment a by 1
(display a) ; shows 1
)
)
- (set-car! $x x s$) overwrites the head of a list $x s$ with x
- (set-cdr! $x s y s$) overwrites the tail of a list $x s$ with $y s$

Example 1

- Recursive factorial: (define fact
(lambda (n)
(if (zero? n) 1 (* n (fact (- n 1))))
)
)
- (fact 2) \Rightarrow (if (zero? 2) 1 (* 2 (fact (- 21))))
$\Rightarrow\left({ }^{*} 2\right.$ (fact 1))
$\Rightarrow(* 2$ (if (zero? 1) 1 (* $1($ fact (-11$)))$)
\Rightarrow (* 2 (* 1 (fact 0)))
$\Rightarrow\left({ }^{*} 2\left({ }^{*} 1\right.\right.$ (if (zero? 0$) 1$ (* 0 (fact (-01))))
$\Rightarrow\left({ }^{*} 2\left({ }^{*} 11\right)\right.$)
$\Rightarrow 2$

Example 2

- Iterative factorial (define iterfact (lambda (n)
(do ((1 (+i 1)) (f 1 (* f i$)$)
)
(($>\mathrm{in}$) f) ; until i > n, return f
; loop body is omitted

Example 3

- Sum the elements of a list (define sum
(lambda (Ist) (if (null? Ist)
0
(+ (car Ist) (sum (cdr Ist)))

)
)
- (sum '(1 23 3)) $\quad \Rightarrow$ (+ 1 (sum (2 3))
$\Rightarrow(+1(+2($ sum $(3))))$
$\Rightarrow(+1(+2(+3($ sum ()$))))$
$\Rightarrow(+1(+2(+30)))$

Example 4

- Generate a list of n copies of x (define fill
(lambda ($\mathrm{n} x$)
(if ($=\mathrm{n} 0$)
()
(cons $x($ fill $(-n 1) x))$)
)
)
- (fill 2 'a) $\quad \Rightarrow$ (cons a (fill 1 a))
$\Rightarrow($ cons a (cons a (fill 0 a)))
\Rightarrow (cons a (cons a ()))
\Rightarrow (a a)

Example 5

- Replace x with y in list $x s$
(define subst
(lambda (x y xs) (cond
((eq? (car xs) x) (cons y (subst x y (cdr xs))))
(else
(cons (car xs) (subst x y (cdr xs))))

```
        )
    )
    )
```

- (subst 30 '(8 2343 5)) $\Rightarrow{ }^{\prime}(82040$ 5)

Example 6

- Higher-order reductions (define reduce
(lambda (op xs)
(if (null? (cdr xs))
(car xs)
(op (car xs) (reduce op (cdr xs)))

)
- (reduce and '(\#t \#t \#f)) \Rightarrow (and \#t (and \#t \#f)) \Rightarrow \#f
- (reduce *'(1 2 3)) $\Rightarrow\left({ }^{*} 1\right.$ (* 23$\left.)\right) \Rightarrow 6$
- (reduce + '(123)) $\Rightarrow(+1(+23)) \Rightarrow 6$

Example 7

- Higher-order filter operation: keep elements of a list for which a condition is true (define filter
(lambda (op xs)
(cond
((op (car xs)) (cons (car xs) (filter op (cdr xs)))) (else (filter op (cdr xs)))
- (filter odd? '(1 234 5)) \Rightarrow (1 3 5)
- (filter (lambda (n) (<> n 0)) '(01234)) \Rightarrow (1 234 4)

Example 8

- Binary tree insertion, where () are leaves and (val left right) is a node (define insert
(lambda (n T) (cond
((null? T) (list n()()$)$)
(($=(\operatorname{car} T) \mathrm{n}) \quad \mathrm{T})$
((> (car T) n) (list (car T) (insert n (cadr T)) (caddr T))) ($<(\operatorname{car} T) \mathrm{n}) \quad$ (list (car T) (cadr T) (insert n (caddr T))))
)
)
- (insert $\left.\left.1^{\prime}(3()(4()()))\right) \Rightarrow(3(1)())(4())\right)$

