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Overview 

 What is functional programming? 

 Historical origins of functional programming 

 Functional programming today 

 Concepts of functional programming 

 Functional programming with Scheme 

 Learn (more) by example 
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What is Functional 

Programming? 

 Functional programming is a declarative programming 

style (programming paradigm) 

 

 Pro: flow of computation is declarative, i.e. more implicit 

 Pro: promotes building more complex functions from other 

functions that serve as building blocks (component reuse) 

 Pro: behavior of functions defined by the values of input 

arguments only (no side-effects via global/static variables) 

 

 Cons: function composition is (considered to be) stateless 

 Cons: programmers prefer imperative programming constructs 

such as statement composition, while functional languages 

emphasize function composition 
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Concepts of Functional 

Programming 

 Functional programming defines the outputs of a program purely as 

a mathematical function of the inputs with no notion of internal state 

(no side effects) 

 A pure function can be counted on to return the same output each time 

we invoke it with the same input parameter values 

 No global (statically allocated) variables 

 No explicit (pointer) assignments 

 Dangling pointers and un-initialized variables cannot occur 

 Example pure functional programming languages: Miranda, Haskell, 

and Sisal 

 Non-pure functional programming languages include “imperative 

features” that cause side effects (e.g. destructive assignments to 

global variables or assignments/changes to lists and data structures) 

 Example: Lisp, Scheme, and ML 
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Functional Language 

Constructs 

 Building blocks are functions 

 No statement composition 

 Function composition 

 No variable assignments 

 But: can use local “variables” to 

hold a value assigned once 

 No loops 

 Recursion 

 List comprehensions in Miranda 

and Haskell 

 But: “do-loops” in Scheme 

 Conditional flow with if-then-else 

or argument patterns 

 Functional languages can be 

typed (Haskell) or untyped (Lisp) 

 Haskell examples: 
gcd a b 

  | a == b = a 

  | a >  b = gcd (a-b) b 

  | a <  b = gcd a (b-a) 

 

fac 0 = 1 

fac n = n * fac (n-1) 

 

member x []   = false 

member x (y:xs) 

     | x == y = true 

     | x <> y = member x xs 
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Theory and Origin of Functional 

Languages 

 Church's thesis: 

 All models of computation are equally powerful 

 Turing's model of computation: Turing machine 

 Reading/writing of values on an infinite tape by a finite state machine 

 Church's model of computation: Lambda Calculus 

 Functional programming languages implement Lambda Calculus 

 Computability theory 

 A program can be viewed as a constructive proof that some 

mathematical object with a desired property exists 

 A function is a mapping from inputs to output objects and computes 

output objects from appropriate inputs 

 For example, the proposition that every pair of nonnegative integers (the inputs) has 

a greatest common divisor (the output object) has a constructive proof implemented 

by Euclid's algorithm written as a "function" 
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Impact of Functional 

Languages on Language Design 

 Useful features are found in functional languages that 

are often missing in procedural languages or have been 

adopted by modern programming languages: 

 First-class function values: the ability of functions to return newly 

constructed functions 

 Higher-order functions: functions that take other functions as 

input parameters or return functions 

 Polymorphism: the ability to write functions that operate on more 

than one type of data 

 Aggregate constructs for constructing structured objects: the 

ability to specify a structured object in-line such as a complete 

list or record value 

 Garbage collection 
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Functional Programming Today 

 Significant improvements in theory and practice of 

functional programming have been made in recent years 

 Strongly typed (with type inference) 

 Modular 

 Sugaring: imperative language features that are automatically 

translated to functional constructs (e.g. loops by recursion) 

 Improved efficiency 

 Remaining obstacles to functional programming: 

 Social: most programmers are trained in imperative 

programming and aren’t used to think in terms of function 

composition 

 Commercial: not many libraries, not very portable, and no IDEs 
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Applications 

 Many (commercial) applications are built with functional 
programming languages based on the ability to 
manipulate symbolic data more easily 

 

 Examples: 
 Computer algebra (e.g. Reduce system) 

 Natural language processing 

 Artificial intelligence 

 Automatic theorem proving 

 Algorithmic optimization of functional programs 
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LISP and Scheme 

 The original functional language and implementation of 

Lambda Calculus 

 Lisp and dialects (Scheme, common Lisp) are still the 

most widely used functional languages 

 Simple and elegant design of Lisp: 

 Homogeneity of programs and data: a Lisp program is a list and 

can be manipulated in Lisp as a list 

 Self-definition: a Lisp interpreter can be written in Lisp 

 Interactive: user interaction via "read-eval-print" loop 
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Scheme 

 Scheme is a popular Lisp dialect 

 Lisp and Scheme adopt a form of prefix notation called 
Cambridge Polish notation 

 Scheme is case insensitive 

 A Scheme expression is composed of 
 Atoms, e.g. a literal number, string, or identifier name, 

 Lists, e.g. '(a b c) 

 Function invocations written in list notation: the first list element 
is the function (or operator) followed by the arguments to which it 
is applied: 
 
(function arg1 arg2 arg3 ... argn) 

 

 For example, sin(x*x+1) is written as (sin (+ (* x x) 1)) 
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Read-Eval-Print 

 The "Read-eval-print" loop provides user interaction in Scheme 

 An expression is read, evaluated, and the result printed 

 Input: 9 

 Output: 9 

 Input: (+ 3 4) 

 Output: 7 

 Input: (+ (* 2 3) 1) 

 Output: 7 

 User can load a program from a file with the load function 

 

(load "my_scheme_program") 

 

Note: a file should use the .scm extension 
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Working with Data Structures 

 An expression operates on values and compound data structures 

built from atoms and lists 

 A value is either an atom or a compound list 

 Atoms are 

 Numbers, e.g. 7 and 3.14 

 Strings, e.g. "abc" 

 Boolean values #t (true) and #f (false) 

 Symbols, which are identifiers escaped with a single quote, e.g. 'y 

 The empty list () 

 When entering a list as a literal value, escape it with a single quote 

 Without the quote it is a function invocation! 

 For example, '(a b c) is a list while (a b c) is a function application 

 Lists can be nested and may contain any value, e.g. '(1 (a b) ''s'') 
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Checking the Type of a Value 

 The type of a value can be checked with 

 (boolean? x) ; is x a Boolean? 

 (char? x)  ; is x a character? 

 (string? x)  ; is x a string? 

 (symbol? x) ; is x a symbol? 

 (number? x) ; is x a number? 

 (list? x)  ; is x a list? 

 (pair? x)  ; is x a non-empty list? 

 (null? x)  ; is x an empty list? 

 Examples 

 (list? '(2))  #t 

 (number? ''abc'')  #f 

 Portability note: on some systems false (#f) is replaced with () 
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Working with Lists 

 (car xs) returns the head (first element) of list xs 

 (cdr xs) (pronounced "coulder") returns the tail of list xs 

 (cons x xs) joins an element x and a list xs to construct a new list 

 (list x1 x2 … xn) generates a list from its arguments 

 Examples: 

 (car '(2 3 4))  2 

 (car '(2))  2 

 (car '())  Error 

 (cdr '(2 3))  (3) 

 (car (cdr '(2 3 4)))  3 ; also abbreviated as (cadr '(2 3 4)) 

 (cdr (cdr '(2 3 4)))  (4) ; also abbreviated as (cddr '(2 3 4)) 

 (cdr '(2))  () 

 (cons 2 '(3))  (2 3) 

 (cons 2 '(3 4))  (2 3 4) 

 (list 1 2 3)  (1 2 3) 
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The “if” Special Form 

 Special forms resemble functions but have special 
evaluation rules 
 Evaluation of arguments depends on the special construct 

 The “if” special form returns the value of thenexpr or 
elseexpr depending on a condition 
 
(if condition thenexpr elseexpr) 

 

 Examples 
 (if #t 1 2)  1 

 (if #f 1 "a")  "a" 

 (if (string? "s") (+ 1 2) 4)  3 

 (if (> 1 2) "yes" "no")  "no" 
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The “cond” Special Form 

 A more general if-then-else can be written using the 
“cond” special form that takes a sequence of (condition 
value) pairs and returns the first value xi for which 
condition ci is true: 
 
(cond (c1 x1) (c2 x2) … (else xn) ) 

 

 Examples 
 (cond (#f 1) (#t 2) (#t 3) )  2 

 (cond ((< 1 2) ''one'') ((>= 1 2) ''two'') )  ''one'' 

 (cond ((< 2 1) 1) ((= 2 1) 2) (else 3) )  3 

 Note: “else” is used to return a default value 
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Logical Expressions 

 Relations 

 Numeric comparison operators <, <=, =, >, <=, and <> 

 Boolean operators 

 (and x1 x2 … xn), (or x1 x2 … xn) 

 Other test operators 

 (zero? x), (odd? x), (even? x) 

 (eq? x1 x2) tests whether x1 and x2 refer to the same object 
 (eq? 'a 'a)  #t 
 (eq? '(a b) '(a b))  #f 

 (equal? x1 x2) tests whether x1 and x2 are structurally equivalent 
 (equal? 'a 'a)  #t 
 (equal? '(a b) '(a b))  #t 

 (member x xs) returns the sublist of xs that starts with x, or returns () 
 (member 5 '(a b))  () 
 (member 5 '(1 2 3 4 5 6))  (5 6) 
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Lambda Calculus: Functions = 

Lambda Abstractions 

 A lambda abstraction is a nameless function (a mapping) 
specified with the lambda special form: 
 
(lambda args body) 
 
where args is a list of formal arguments and body is an 
expression that returns the result of the function 
evaluation when applied to actual arguments 

 A lambda expression is an unevaluated function 

 Examples: 
 (lambda (x) (+ x 1)) 

 (lambda (x) (* x x)) 

 (lambda (a b) (sqrt (+ (* a a) (* b b)))) 
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Lambda Calculus: Invocation 

= Beta Reduction 

 A lambda abstraction is applied to actual arguments using the 
familiar list notation 
 
 (function arg1 arg2 ... argn) 
 
where function is the name of a function or a lambda abstraction 

 Beta reduction is the process of replacing formal arguments in the 
lambda abstraction’s body with actuals 

 Examples 

 ( (lambda (x) (* x x)) 3 )  (* 3 3)  9 

 ( (lambda (f a) (f (f a))) (lambda (x) (* x x)) 3 ) 
 (f (f 3))    where f = (lambda (x) (* x x)) 
 (f ( (lambda (x) (* x x)) 3 )) where f = (lambda (x) (* x x)) 
 (f 9)    where f = (lambda (x) (* x x)) 
 ( (lambda (x) (* x x)) 9 ) 
 (* 9 9) 
 81 
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Defining Global Names 

 A global name is defined with the “define” special form 

 

(define name value) 

 

 Usually the values are functions (lambda abstractions) 

 Examples: 

 (define my-name ''foo'') 

 (define determiners '(''a'' ''an'' ''the'')) 

 (define sqr (lambda (x) (* x x))) 

 (define twice (lambda (f a) (f (f a)))) 

 (twice sqr 3)  ((lambda (f a) (f (f a))) (lambda (x) (* x x)) 3)  

…  81 
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Using Local Names 

 The “let” special form (let-expression) provides a scope 

construct for local name-to-value bindings 

 

(let ( (name1 x1) (name2 x2) … (namen xn) ) expression) 

 

where name1, name2, …, namen in expression are 

substituted by x1, x2, …, xn  

 Examples 

 (let ( (plus +) (two 2) ) (plus two two))  4 

 (let ( (a 3) (b 4) ) (sqrt (+ (* a a) (* b b))))  5 

 (let ( (sqr (lambda (x) (* x x)) ) (sqrt (+ (sqr 3) (sqr 4)))  5 
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Local Bindings with Self 

References 

 A global name can simply refer to itself (for recursion) 

 (define fac (lambda (n) (if (zero? n) 1 (* n (fac (- n 1))))) 

 A let-expression cannot refer to its own definitions 

 Its definitions are not in scope, only outer definitions are visible 

 Use the letrec special form for recursive local definitions 

 

 (letrec ( (name1 x1) (name2 x2) … (namen xn) ) expr) 

 

where namei in expr refers to xi 

 Examples 

 (letrec ( (fac (lambda (n) (if (zero? n) 1 (* n (fac (- n 1)))))) ) 

  (fac 5))  120 
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I/O 

 (display x) prints value of x and returns an unspecified 

value 

 (display "Hello World!") 

Displays: "Hello World!" 

 (display (+ 2 3)) 

Displays: 5 

 (newline) advances to a new line 

 (read) returns a value from standard input 

 (if (member (read) '(6 3 5 9)) "You guessed it!" "No luck") 

Enter: 5 

Displays: You guessed it! 
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Blocks 

 (begin x1 x2 … xn) sequences a series of expressions xi, evaluates 
them, and returns the value of the last one xn 

 Examples: 

 (begin  
  (display "Hello World!")  
  (newline)  
)  

 (let ( (x 1)  
        (y (read))  
        (plus +)  
      )  
      (begin  
         (display (plus x y))  
         (newline)  
      )  
) 
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Do-loops 

 The “do” special form takes a list of triples and a tuple with a 

terminating condition and return value, and multiple expressions xi to 

be evaluated in the loop 

 

(do (triples) (condition ret-expr) x1 x2 … xn)  

 

 Each triple contains the name of an iterator, its initial value, and the 

update value of the iterator 

 Example (displays values 0 to 9) 

 (do ( (i 0 (+ i 1)) )  

      ( (>= i 10) "done" )  

      (display i)  

      (newline)  

) 
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Higher-Order Functions 

 A function is a higher-order function (also called a functional form) if 

 It takes a function as an argument, or 

 It returns a newly constructed function as a result 

 For example, a function that applies a function to an argument twice 
is a higher-order function 

 (define twice (lambda (f a) (f (f a)))) 

 Scheme has several built-in higher-order functions 

 (apply f xs) takes a function f and a list xs and applies f to the elements 
of the list as its arguments 

 (apply '+ '(3 4))  7 

 (apply (lambda (x) (* x x)) '(3)) 

 (map f xs) takes a function f and a list xs and returns a list with the 
function applied to each element of xs 

 (map odd? '(1 2 3 4))  (#t #f #t #f) 

 (map (lambda (x) (* x x)) '(1 2 3 4))  (1 4 9 16) 
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Non-Pure Constructs 

 Assignments are considered non-pure in functional programming 
because they can change the global state of the program and 
possibly influence function outcomes 

 The value of a pure function only depends on its arguments 

 (set! name x) re-assigns x to local or global name 

 (define a 0) 
(set! a 1) ; overwrite with 1 

 (let ( (a 0) ) 
      (begin 
        (set! a (+ a 1)) ; increment a by 1 
        (display a) ; shows 1 
      )  
) 

 (set-car! x xs) overwrites the head of a list xs with x 

 (set-cdr! xs ys) overwrites the tail of a list xs with ys 
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Example 1 

 Recursive factorial: 
(define fact  
  (lambda (n)  
    (if (zero? n) 1 (* n (fact (- n 1))))  
  )  
) 

 (fact 2)  (if (zero? 2) 1 (* 2 (fact (- 2 1)))) 
   (* 2 (fact 1)) 
   (* 2 (if (zero? 1) 1 (* 1 (fact (- 1 1))))) 
   (* 2 (* 1 (fact 0))) 
   (* 2 (* 1 (if (zero? 0) 1 (* 0 (fact (- 0 1)))) 
   (* 2 (* 1 1)) 
   2 



COP4020 Fall 2013 

Example 2 

 Iterative factorial 

(define iterfact  

  (lambda (n)  

    (do ( (i 1 (+ i 1)) ; i runs from 1 updated by 1  

            (f 1 (* f i))  ; f from 1, multiplied by i 

          )  

          ( (> i n) f )  ; until i > n, return f 

             ; loop body is omitted  

    ) 

  ) 

) 
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Example 3 

 Sum the elements of a list 
(define sum  
  (lambda (lst)   
    (if (null? lst)  
      0  
      (+ (car lst) (sum (cdr lst))) 
    )  
  )  
) 

 (sum '(1 2 3))  (+ 1 (sum (2 3)) 
    (+ 1 (+ 2 (sum (3)))) 
    (+ 1 (+ 2 (+ 3 (sum ())))) 
    (+ 1 (+ 2 (+ 3 0))) 
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Example 4 

 Generate a list of n copies of x 

(define fill 

  (lambda (n x) 

    (if (= n 0) 

      () 

      (cons x (fill (- n 1) x))) 

  ) 

) 

 (fill 2 'a)   (cons a (fill 1 a)) 

    (cons a (cons a (fill 0 a))) 

    (cons a (cons a ())) 

    (a a) 
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Example 5 

 Replace x with y in list xs 

(define subst 

  (lambda (x y xs) 

    (cond 

      ((null? xs)       ()) 

      ((eq? (car xs) x)   (cons y (subst x y (cdr xs)))) 

      (else        (cons (car xs) (subst x y (cdr xs)))) 

    ) 

  ) 

) 

 (subst 3 0 '(8 2 3 4 3 5))  '(8 2 0 4 0 5) 
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Example 6 

 Higher-order reductions 
(define reduce 
  (lambda (op xs) 
    (if (null? (cdr xs))  
      (car xs)  
      (op (car xs) (reduce op (cdr xs)))  
    ) 
  ) 
) 

 (reduce and '(#t #t #f))  (and #t (and #t #f))  #f 

 (reduce * '(1 2 3))  (* 1 (* 2 3))  6 

 (reduce + '(1 2 3))  (+ 1 (+ 2 3))  6 
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Example 7 

 Higher-order filter operation: keep elements of a list for 
which a condition is true 
(define filter  
  (lambda (op xs)  
    (cond  
      ((null? xs) ())  
      ((op (car xs)) (cons (car xs) (filter op (cdr xs))))  
      (else  (filter op (cdr xs)))  
    )  
  )  
) 

 (filter odd? '(1 2 3 4 5))  (1 3 5) 

 (filter (lambda (n) (<> n 0)) '(0 1 2 3 4))  (1 2 3 4) 
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Example 8 

 Binary tree insertion, where () are leaves and (val left right) is a node 

(define insert 

  (lambda (n T) 

    (cond 

      ((null? T)  (list n () ())) 

      ((= (car T) n) T) 

      ((> (car T) n) (list (car T) (insert n (cadr T)) (caddr T))) 

      ((< (car T) n) (list (car T) (cadr T) (insert n (caddr T)))) 

    ) 

  ) 

) 

 (insert 1 '(3 () (4 () ())))  (3 (1 () ()) (4 () ())) 


