
COP4020

Programming

Languages

Prolog

Chris Lacher

Based on Robert van Engelen

COP4020 Fall 2011 28/4/2011

Overview

 Logic programming principles

 Prolog

COP4020 Fall 2011 38/4/2011

Logic Programming

 Logic programming is a form of declarative programming

 A program is a collection of axioms

 Each axiom is a Horn clause of the form:

H :- B1, B2, ..., Bn.

where H is the head term and Bi are the body terms

 Meaning: H is true if all Bi are true

 A user states a goal (a theorem) to be proven

 The logic programming system uses inference steps to prove the

goal (theorem) is true, using a logical resolution strategy

COP4020 Fall 2011 48/4/2011

Resolution Strategies

 To deduce a goal (theorem), the programming system searches

axioms and combines sub-goals using a resolution strategy

 For example, given the axioms:

C :- A, B.

D :- C.

 Forward chaining deduces first that C is true:

C :- A, B

and then that D is true:

D :- C

 Backward chaining finds that D can be proven if sub-goal C is true:

D :- C

the system then deduces that the sub-goal is C is true:

C :- A, B

since the system could prove C it has proven D

COP4020 Fall 2011 58/4/2011

Prolog

 Prolog uses backward chaining, which is more efficient
than forward chaining for larger collections of axioms

 Prolog is interactive (mixed compiled/interpreted)

 Example applications:
 Expert systems

 Artificial intelligence

 Natural language understanding

 Logical puzzles and games

 Popular system: SWI-Prolog
 Login linprog.cs.fsu.edu

 pl (or swipl) to start SWI-Prolog

 halt. to halt Prolog (period is the Prolog command terminator)

COP4020 Fall 2011 68/4/2011

Definitions: Prolog Clauses

 A program consists of a collection of Horn clauses

 Each clause consists of a head predicate and body predicates:

H :- B1, B2, ..., Bn.

 A clause is either a rule, e.g.
snowy(X) :- rainy(X), cold(X).

meaning: "If X is rainy and X is cold then this implies that X is snowy"

 Or a clause is a fact, e.g.
rainy(rochester).

meaning "Rochester is rainy."

 This fact is identical to the rule with true as the body predicate:
rainy(rochester) :- true.

 A predicate is a term (an atom or a structure), e.g.
 rainy(rochester)

 member(X,Y)

 true

COP4020 Fall 2011 78/4/2011

Definitions: Queries and Goals

 Queries are used to "execute" goals

 A query is interactively entered by a user after a program is loaded

 A query has the form
?- G1, G2, ..., Gn.

where Gi are goals (predicates)

 A goal is a predicate to be proven true by the programming system

 Example program with two facts:
 rainy(seattle).

 rainy(rochester).

 Query with one goal to find which city C is rainy (if any):
?- rainy(C).

 Response by the interpreter:
C = seattle

 Type a semicolon ; to get next solution:
C = rochester

 Typing another semicolon does not return another solution

COP4020 Fall 2011 88/4/2011

Example

 Consider a program with three facts and one rule:
 rainy(seattle).

 rainy(rochester).

 cold(rochester).

 snowy(X) :- rainy(X), cold(X).

 Query and response:
?- snowy(rochester).

yes

 Query and response:
?- snowy(seattle).

no

 Query and response:
?- snowy(paris).

no

 Query and response:
?- snowy(C).

C = rochester

because rainy(rochester) and cold(rochester) are sub-goals
that are both true facts

COP4020 Fall 2011 98/4/2011

Backward Chaining with

Backtracking

 Consider again:
?- snowy(C).

C = rochester

 The system first tries C=seattle:
rainy(seattle)

cold(seattle) fail

 Then C=rochester:
rainy(rochester)

cold(rochester)

 When a goal fails, backtracking is
used to search for solutions

 The system keeps this execution
point in memory together with the
current variable bindings

 Backtracking unwinds variable
bindings to establish new bindings

An unsuccessful match forces
backtracking in which alternative clauses

are searched that match (sub-)goals

COP4020 Fall 2011 108/4/2011

Example: Family Relationships

 Facts:
 male(albert).

 male(edward).

 female(alice).

 female(victoria).

 parents(edward, victoria, albert).

 parents(alice, victoria, albert).

 Rule:
sister(X,Y) :- female(X), parents(X,M,F), parents(Y,M,F).

 Query: ?- sister(alice, Z).

 The system applies backward chaining to find the answer:

1. sister(alice,Z) matches 2nd rule: X=alice, Y=Z

2. New goals: female(alice),parents(alice,M,F),parents(Z,M,F)

3. female(alice) matches 3rd fact

4. parents(alice,M,F) matches 2nd rule: M=victoria, F=albert

5. parents(Z,victoria,albert) matches 1st rule: Z=edward

COP4020 Fall 2011 118/4/2011

Example: Murder Mystery

% the murderer had brown hair:

murderer(X) :- hair(X, brown).

% mr_holman had a ring:

attire(mr_holman, ring).

% mr_pope had a watch:

attire(mr_pope, watch).

% If sir_raymond had tattered cuffs then mr_woodley had the pincenez:

attire(mr_woodley, pincenez) :-

attire(sir_raymond, tattered_cuffs).

% and vice versa:

attire(sir_raymond,pincenez) :-

attire(mr_woodley, tattered_cuffs).

% A person has tattered cuffs if he is in room 16:

attire(X, tattered_cuffs) :- room(X, 16).

% A person has black hair if he is in room 14, etc:

hair(X, black) :- room(X, 14).

hair(X, grey) :- room(X, 12).

hair(X, brown) :- attire(X, pincenez).

hair(X, red) :- attire(X, tattered_cuffs).

% mr_holman was in room 12, etc:

room(mr_holman, 12).

room(sir_raymond, 10).

room(mr_woodley, 16).

room(X, 14) :- attire(X, watch).

COP4020 Fall 2011 128/4/2011

Example (cont’d)

 Question: who is the murderer?
?- murderer(X).

 Execution trace (indentation shows nesting depth):
murderer(X)

hair(X, brown)

attire(X, pincenez)

X = mr_woodley

attire(sir_raymond, tattered_cuffs)

room(sir_raymond, 16)

FAIL (no facts or rules)

FAIL (no alternative rules)

REDO (found one alternative rule)

attire(X, pincenez)

X = sir_raymond

attire(mr_woodley, tattered_cuffs)

room(mr_woodley, 16)

SUCCESS

SUCCESS: X = sir_raymond

SUCCESS: X = sir_raymond

SUCCESS: X = sir_raymond

SUCCESS: X = sir_raymond

COP4020 Fall 2011 138/4/2011

Unification and Variable

Instantiation

 In the previous examples we saw the use of variables, e.g. C and X

 A variable is instantiated to a term as a result of unification, which
takes place when goals are matched to head predicates

 Goal in query: rainy(C)

 Fact: rainy(seattle)

 Unification is the result of the goal-fact match: C=seattle

 Unification is recursive:

 An uninstantiated variable unifies with anything, even with other
variables which makes them identical (aliases)

 An atom unifies with an identical atom

 A constant unifies with an identical constant

 A structure unifies with another structure if the functor and number of
arguments are the same and the arguments unify recursively

 Once a variable is instantiated to a non-variable term, it cannot be
changed: “proofs cannot be tampered with”

COP4020 Fall 2011 148/4/2011

Examples of Unification

 The built-in predicate =(A,B) succeeds if and only if A and B can be unified,
where the goal =(A,B) may be written as A = B

 ?- a = a.

yes

 ?- a = 5.

No

 ?- 5 = 5.0.

No

 ?- a = X.

X = a

 ?- foo(a,b) = foo(a,b).

Yes

 ?- foo(a,b) = foo(X,b).

X = a

 ?- foo(X,b) = Y.

Y = foo(X,b)

 ?- foo(Z,Z) = foo(a,b).

no

COP4020 Fall 2011 158/4/2011

Definitions: Prolog Terms

 Terms are symbolic expressions that are Prolog’s building blocks

 A Prolog program consists of Horn clauses (axioms) that are terms

 Data structures processed by a Prolog program are terms

 A term is either

 a variable: a name beginning with an upper case letter

 a constant: a number or string

 an atom: a symbol or a name beginning with a lower case letter

 a structure of the form:
functor(arg1, arg2, ..., argn)

where functor is an atom and argi are terms

 Examples:
 X, Y, ABC, and Alice are variables

 7, 3.14, and ”hello” are constants

 foo, barFly, and + are atoms

 bin_tree(foo, bin_tree(bar, glarch))

and +(3,4) are structures

COP4020 Fall 2011 168/4/2011

Term Manipulation

 Terms can be analyzed and constructed
 Built-in predicates functor and arg, for example:

 ?- functor(foo(a,b,c), foo, 3).

yes

 ?- functor(bar(a,b,c), F, N).

F = bar

N = 3

 ?- functor(T, bee, 2).

T = bee(_G1,_G2)

 ?- functor(T, bee, 2), arg(1, T, a), arg(2, T, b).

T = bee(a,b)

 The “univ” operator =..

 ?- foo(a,b,c) =.. L

L = [foo,a,b,c]

 ?- T =.. [bee,a,b]

T = bee(a,b)

COP4020 Fall 2011 178/4/2011

Prolog Lists

 A list is of the form:

[elt1,elt2, ..., eltn]

where elti are terms

 The special list form

[elt1,elt2, ..., eltn | tail]

denotes a list whose tail list is tail

 Examples
 ?- [a,b,c] = [a|T].

T = [b,c]

 ?- [a,b,c] = [a,b|T].

T = [c]

 ?- [a,b,c] = [a,b,c|T].

T = []

COP4020 Fall 2011 188/4/2011

List Operations:

List Membership

 List membership definitions:
member(X, [X|T]).

member(X, [H|T]) :- member(X, T).

 ?- member(b, [a,b,c]).

 Execution:
member(b,[a,b,c]) does not match member(X,[X|T])

 member(b,[a,b,c]) matches predicate member(X1,[H1|T1])
with X1=b, H1=a, and T1=[b,c]

 Sub-goal to prove: member(b, [b,c])

 member(b,[b,c]) matches predicate member(X2,[X2|T2])
with X2=b and T2=[c]

 The sub-goal is proven, so member(b,[a,b,c]) is proven (deduced)

 Note: variables can be "local" to a clause (like the formal arguments of a
function)

 Local variables such as X1 and X2 are used to indicate a match of a
(sub)-goal and a head predicate of a clause

COP4020 Fall 2011 198/4/2011

Predicates and Relations

 Predicates are not functions with distinct inputs and outputs

 Predicates are more general and define relationships between

objects (terms)

 member(b,[a,b,c]) relates term b to the list that contains b

 ?- member(X, [a,b,c]).

X = a ; % type ';' to try to find more solutions

X = b ; % ... try to find more solutions

X = c ; % ... try to find more solutions

no

 ?- member(b, [a,Y,c]).

Y = b

 ?- member(b, L).

L = [b|_G255]

where L is a list with b as head and _G255 as tail, where _G255 is a

new variable

COP4020 Fall 2011 208/4/2011

List Operations: List Append

 List append predicate definitions:
append([], A, A).

append([H|T], A, [H|L]) :- append(T, A, L).

 ?- append([a,b,c], [d,e], X).

X = [a,b,c,d,e]

 ?- append(Y, [d,e], [a,b,c,d,e]).

Y = [a,b,c]

 ?- append([a,b,c], Z, [a,b,c,d,e]).

Z = [d,e]

 ?- append([a,b],[],[a,b,c]).

No

 ?- append([a,b],[X|Y],[a,b,c]).

X = c

Y = []

COP4020 Fall 2011 218/4/2011

Example: Bubble Sort

bubble(List, Sorted) :-

append(InitList, [B,A|Tail], List),

A < B,

append(InitList, [A,B|Tail], NewList),

bubble(NewList, Sorted).

bubble(List, List).

?- bubble([2,3,1], L).

append([], [2,3,1], [2,3,1]),

3 < 2, % fails: backtrack

append([2], [3,1], [2,3,1]),

1 < 3,

append([2], [1,3], NewList1), % this makes: NewList1=[2,1,3]

bubble([2,1,3], L).

append([], [2,1,3], [2,1,3]),

1 < 2,

append([], [1,2,3], NewList2), % this makes: NewList2=[1,2,3]

bubble([1,2,3], L).

append([], [1,2,3], [1,2,3]),

2 < 1, % fails: backtrack

append([1], [2,3], [1,2,3]),

3 < 2, % fails: backtrack

append([1,2], [3], [1,2,3]), % does not unify: backtrack

bubble([1,2,3], L). % try second bubble-clause which makes L=[1,2,3]

bubble([2,1,3], [1,2,3]).

bubble([2,3,1], [1,2,3]).

COP4020 Fall 2011 228/4/2011

Imperative Features

 Prolog offers built-in constructs to support a form of control-flow

 \+ G negates a (sub-)goal G

 ! (cut) terminates backtracking for a predicate

 fail always fails to trigger backtracking

 Examples
 ?- \+ member(b, [a,b,c]).

no

 ?- \+ member(b, []).

yes

 Define:
if(Cond, Then, Else) :- Cond, !, Then.

if(Cond, Then, Else) :- Else.

 ?- if(true, X=a, X=b).

X = a ; % type ';' to try to find more solutions

no

 ?- if(fail, X=a, X=b).

X = b ; % type ';' to try to find more solutions

no

COP4020 Fall 2011 238/4/2011

Example: Tic-Tac-Toe

 Rules to find line of three
(permuted) cells:
 line(A,B,C) :-

ordered_line(A,B,C).

 line(A,B,C) :-

ordered_line(A,C,B).

 line(A,B,C) :-

ordered_line(B,A,C).

 line(A,B,C) :-

ordered_line(B,C,A).

 line(A,B,C) :-

ordered_line(C,A,B).

 line(A,B,C) :-

ordered_line(C,B,A).

1 2 3

4 5 6

7 8 9

COP4020 Fall 2011 248/4/2011

Example: Tic-Tac-Toe

 Facts:

 ordered_line(1,5,9).

 ordered_line(3,5,7).

 ordered_line(1,2,3).

 ordered_line(4,5,6).

 ordered_line(7,8,9).

 ordered_line(1,4,7).

 ordered_line(2,5,8).

 ordered_line(3,6,9).

1 2 3

4 5 6

7 8 9

COP4020 Fall 2011 258/4/2011

Example: Tic-Tac-Toe

 How to make a good move to a cell:
 move(A) :- good(A), empty(A).

 Which cell is empty?
 empty(A) :- \+ full(A).

 Which cell is full?
 full(A) :- x(A).

 full(A) :- o(A).

COP4020 Fall 2011 268/4/2011

Example: Tic-Tac-Toe

 Which cell is best to move to? (check this in this order
 good(A) :- win(A). % a cell where we win

 good(A) :- block_win(A). % a cell where we block the

opponent from a win

 good(A) :- split(A). % a cell where we can make a

split to win

 good(A) :- block_split(A).% a cell where we block the

opponent from a split

 good(A) :- build(A). % choose a cell to get a line

 good(5). % choose a cell in a good

location

 good(1).

 good(3).

 good(7).

 good(9).

 good(2).

 good(4).

 good(6).

 good(8).

COP4020 Fall 2011 278/4/2011

Example: Tic-Tac-Toe

 How to find a winning cell:
 win(A) :- x(B), x(C), line(A,B,C).

 Choose a cell to block the opponent from choosing a
winning cell:
 block_win(A) :- o(B), o(C), line(A,B,C).

 Choose a cell to split for a win later:
 split(A) :- x(B), x(C), \+ (B = C),

line(A,B,D), line(A,C,E), empty(D), empty(E).

 Choose a cell to block the opponent from making a split:
 block_split(A) :- o(B), o(C), \+ (B = C),

line(A,B,D), line(A,C,E), empty(D), empty(E).

 Choose a cell to get a line:
 build(A) :- x(B), line(A,B,C), empty(C).

O

X O

X X

split

COP4020 Fall 2011 288/4/2011

Example: Tic-Tac-Toe

 Board positions are stored as

facts:

 x(7).

 o(5).

 x(4).

 o(1).

 Move query:

 ?- move(A).

A = 9

O

X O

X

COP4020 Fall 2011 298/4/2011

Prolog Arithmetic

 Arithmetic is needed for computations in Prolog

 Arithmetic is not relational

 The is predicate evaluates an arithmetic expression and

instantiates a variable with the result

 For example

 X is 2*sin(1)+1

instantiates X with the results of 2*sin(1)+1

COP4020 Fall 2011 308/4/2011

Examples with Arithmetic

 A predicate to compute the length of a list:
 length([], 0).

 length([H|T], N) :- length(T, K), N is K + 1.

 where the first argument of length is a list and the

second is the computed length

 Example query:
 ?- length([1,2,3], X).

X = 3

 Defining a predicate to compute GCD:
 gcd(A, A, A).

 gcd(A, B, G) :- A > B, N is A-B, gcd(N, B, G).

 gcd(A, B, G) :- A < B, N is B-A, gcd(A, N, G).

COP4020 Fall 2011 318/4/2011

Database Manipulation

 Prolog programs (facts+rules) are stored in a database

 A Prolog program can manipulate the database
 Adding a clause with assert, for example:
assert(rainy(syracuse))

 Retracting a clause with retract, for example:
retract(rainy(rochester))

 Checking if a clause is present with clause(Head, Body)
for example:
clause(rainy(rochester), true)

 Prolog is fully reflexive
 A program can reason about all if its aspects (code+data)

 A meta-level (or metacircular) interpreter is a Prolog program
that executes (another) Prolog program, e.g. a tracer can be
written in Prolog

COP4020 Fall 2011 328/4/2011

A Meta-level Interpeter

 clause_tree(G) :- write_ln(G), fail. % just show goal

clause_tree(true) :- !.

clause_tree((G,R)) :-

!,

clause_tree(G),

clause_tree(R).

clause_tree((G;R)) :-

!,

(clause_tree(G)

; clause_tree(R)

).

clause_tree(G) :-

(predicate_property(G,built_in)

; predicate_property(G,compiled)

), !,

call(G). % let Prolog do it

clause_tree(G) :- clause(G,Body), clause_tree(Body).

 ?- clause_tree((X is 3, X<1; X=4)).

_G324 is 3, _G324<1 ; _G324=4

_G324 is 3, _G324<1

_G324 is 3

3<1

_G324=4

X = 4

