cOoP4020
Programming
Languages
Prolog

Chris Lacher
Based on Robert van Engelen

e L
w =

Overview

m Logic programming principles

m Prolog

8/4/2011 COP4020 Fall 2011

Logic Programming
m Logic programming is a form of declarative programming

m A program is a collection of axioms
m Each axiom is a Horn clause of the form:

H:-B,, B, .., B,

where H is the head term and B, are the body terms
m Meaning: H is true if all B, are true

m A user states a goal (a theorem) to be proven

m The logic programming system uses inference steps to prove the
goal (theorem) is true, using a logical resolution strategy

8/4/2011 COP4020 Fall 2011

Resolution Strategies

m To deduce a goal (theorem), the programming system searches
axioms and combines sub-goals using a resolution strategy

m For example, given the axioms:

C:- A, B.
D :-C.
m Forward chaining deduces first that C is true:
C:-AB
and then that D is true:
D:-C
m Backward chaining finds that D can be proven if sub-goal C is true:
D:-C
the system then deduces that the sub-goal is C is true:
C:-AB

since the system could prove C it has proven D

8/4/2011 COP4020 Fall 2011

Prolog

m Prolog uses backward chaining, which is more efficient
than forward chaining for larger collections of axioms

m Prolog is interactive (mixed compiled/interpreted)

m Example applications:
Expert systems
Artificial intelligence
Natural language understanding
Logical puzzles and games

m Popular system: SWI-Prolog
Login linprog.cs. fsu.edu

pl (or swipl) to start SWI-Prolog
halt. to halt Prolog (period is the Prolog command terminator)

8/4/2011 COP4020 Fall 2011

Definitions: Prolog Clauses

m A program consists of a collection of Horn clauses
m Each clause consists of a head predicate and body predicates:

H :' Bl’ Bz, ey Bn.

A clause is either a rule, e.g.
snowy (X) :- rainy(X), cold(X).
meaning: "If X is rainy and X is cold then this implies that X is snowy"

Or a clause is a fact, e.g.
rainy (rochester) .
meaning "Rochester is rainy."

This fact is identical to the rule with true as the body predicate:
rainy (rochester) :- true.
m A predicate is a term (an atom or a structure), e.g.
rainy (rochester)
member (X, Y)

true
8/4/2011 COP4020 Fall 2011

Definitions: Queries and Goals

m Queries are used to "execute" goals
m A query is interactively entered by a user after a program is loaded

A query has the form
?' Gl’ Gz, ey Gn.
where G, are goals (predicates)

m A goal is a predicate to be proven true by the programming system

8/4/2011

Example program with two facts:
m rainy (seattle).
m rainy (rochester).
Query with one goal to find which city C is rainy (if any):
?- rainy(C).
Response by the interpreter:
C = seattle

Type a semicolon ; to get next solution:
C = rochester

Typing another semicolon does not return another solution

COP4020 Fall 2011

Example

m Consider a program with three facts and one rule:
m rainy (seattle).
m rainy (rochester).
m cold(rochester).
m snowy (X) :- rainy(X), cold(X).
Query and response:

?- snowy (rochester) .
yes

Query and response:

?- snowy (seattle).
no

Query and response:
?- snowy (paris).
no
Query and response:
?- snowy (C) .
C = rochester
because rainy (rochester) and cold (rochester) are sub-goals
s/a2011 that are both true facts cor4o20 Fail 2011 8

Backward Chaining with

Backtracking

¢ ¢C=ro:hester

snowy (C)

c=x |

snowy [X)

An unsuccessful match forces
backtracking in which alternative clauses
are searched that match (sub-)goals

8/4/2011

T C=X=rochester

COP4020 Fall 2011

Consider again:
?- snowy (C) .
C = rochester
The system first tries C=seattle:
rainy (seattle)
cold (seattle) fail
Then C=rochester:
rainy (rochester)
cold (rochester)
When a goal fails, backtracking is
used to search for solutions

The system keeps this execution
point in memory together with the
current variable bindings

Backtracking unwinds variable
bindings to establish new bindings

Example: Family Relationships

m [acts:

male (albert) .

male (edward) .

female (alice) .

female (victoria).

parents (edward, victoria, albert).
parents (alice, wvictoria, albert).

m Rule:

sister (X,Y) :- female(X), parents(X,M,F), parents(Y¥,M,F).

| Query: ?- sister(alice, Z).
m The system applies backward chaining to find the answer:

8/4/2011

sister (alice, z) matches 2nd rule: x=alice, Y=2Z
NeMIgoaBZfemale(alice),parents(alice,M,F),parents(Z,M,F)
female (alice) matches 3rd fact

parents (alice,M,F) matches 2nd rule: M=victoria, F=albert
parents (Z,victoria,albert) matches 1st rule: z=edward

COP4020 Fall 2011

10

Example: Murder Mystery

% the murderer had brown hair:
murderer (X) :- hair (X, brown).
% mr holman had a ring:
attire (mr_holman, ring).
mr pope had a watch:
attire (mr_pope, watch).
If sir raymond had tattered cuffs then mr woodley had the pincenez:
attire (mr _woodley, pincenez) :-
attire(sir raymond, tattered cuffs).
and vice versa:
attire(sir raymond,pincenez) :-
attire (mr woodley, tattered cuffs).
$ A person has tattered cuffs if he is in room 16:

oo

op

op

attire (X, tattered cuffs) :- room(X, 16).
$ A person has black hair if he is in room 14, etc:

hair (X, black) :- room(X, 14).

hair (X, grey) :- room(X, 12).

hair (X, brown) :- attire (X, pincenez).

hair (X, red) :- attire(X, tattered cuffs).

% mr _holman was in room 12, etc:
room (mr_holman, 12).
room(sir raymond, 10).
room (mr_woodley, 16).
room (X, 14) :- attire (X, watch).

8/4/2011 COP4020 Fall 2011

11

Example (cont’d)

m Question: who is the murderer?
?- murderer (X) .

m EXxecution trace (indentation shows nesting depth):

murderer (X)
hair (X, brown)
attire (X, pincenez)
X = mr woodley
attire(sir raymond, tattered cuffs)
room(sir raymond, 16)
FAIL (no facts or rules)
FAIL (no alternative rules)
REDO (found one alternative rule)
attire (X, pincenez)
X = sir raymond
attire (mr woodley, tattered cuffs)
room(mr woodley, 16)
SUCCESS
SUCCESS: X = sir raymond
SUCCESS: X = sir raymond
SUCCESS: X = sir raymond

SUCCESS: X = sir raymond

8/4/2011 COP4020 Fall 2011

12

Unification and Variable
Instantiation

In the previous examples we saw the use of variables, e.g. C and X
A variable is instantiated to a term as a result of unification, which
takes place when goals are matched to head predicates

Goal in query: rainy (C)

Fact: rainy (seattle)

Unification is the result of the goal-fact match: C=seattle

m Unification is recursive;:

An uninstantiated variable unifies with anything, even with other
variables which makes them identical (aliases)

An atom unifies with an identical atom
A constant unifies with an identical constant

A structure unifies with another structure if the functor and number of
arguments are the same and the arguments unify recursively

m Once a variable is instantiated to a non-variable term, it cannot be
changed: “proofs cannot be tampered with”

8/4/2011 COP4020 Fall 2011 13

Examples of Unification

m The built-in predicate =(A,B) succeeds if and only if A and B can be unified,

where the goal =(A,B) may be writtenas A=B

8/4/2011

?- a = a.

yes

?- a = 5.

No

?- 5 =5.0.

No

?- a = X.

X = a

?- foo(a,b) = foo(a,b).
Yes

?- foo(a,b) = foo(X,b).
X = a

?- foo(X,b) =Y.
Y = foo(X,b)

?- foo(Z2,Z) = foo(a,b).
no

COP4020 Fall 2011

14

Definitions: Prolog Terms

Terms are symbolic expressions that are Prolog’s building blocks
A Prolog program consists of Horn clauses (axioms) that are terms
Data structures processed by a Prolog program are terms

A term is either
a variable: a name beginning with an upper case letter
a constant: a number or string
an atom: a symbol or a name beginning with a lower case letter

a structure of the form:
functor(arg,, arg,, ..., arg,)
where functor is an atom and arg; are terms

m Examples:
X, Y, ABC, and Alice are variables
7,3.14, and “"hello” are constants
foo, barFly, and + are atoms

bin tree(foo, bin tree(bar, glarch))
and + (3, 4) are structures

8/4/2011 COP4020 Fall 2011

15

Term Manipulation

m Terms can be analyzed and constructed

Built-in predicates functor and arg, for example:
m ?- functor(foo(a,b,c), foo, 3).

yes

m ?- functor(bar(a,b,c), F, N).
F = bar
N =3

m ?- functor (T, bee, 2).
T = bee(G1, G2)

m ?- functor (T, bee, 2), arg(l, T, a), arg(2, T, b).
T = bee(a,b)

The “univ” operator =. .

m ?- foo(a,b,c) =.. L
L = [foo0,a,b,c]
m?- T =.. [bee,a,b]

T = bee(a,b)

8/4/2011 COP4020 Fall 2011 16

Prolog Lists

m Alistis of the form:
leltelt,, ..., elt]

where elt; are terms
m The special list form

[elt,,elt,, ..., elt, | talil]

denotes a list whose tail list is tail
m Examples

?- [a,b,c] = [a]|T].

T = [b,c]

?- [a,b,c] = [a,b]|T].

T = [c]

?- [a,b,c] = [a,b,c]|T].
T = []

8/4/2011 COP4020 Fall 2011

17

List Operations:
List Membership

m List membership definitions:

member (X, [X|T]).
member (X, [H|T]) :- member (X, T).

m ?- member (b, [a,b,c]).

8/4/2011

Execution:
member (b, [a,b,c]) does not match member (X, [X|T])

member (b, [a,b,c]) matches predicate member (X,, [H,|T,])
with X,=b, H,;=a, and T,=[b, c]

Sub-goal to prove: member (b, [b,c])

member (b, [b,c]) matches predicate member (X,, [X,|T,])
with X,=b and T,=[c]
The sub-goal is proven, so member (b, [a,b,c]) is proven (deduced)

Note: variables can be "local" to a clause (like the formal arguments of a
function)

Local variables such as X; and X, are used to indicate a match of a
(sub)-goal and a head predicate of a clause

COP4020 Fall 2011 18

Predicates and Relations

m Predicates are not functions with distinct inputs and outputs

m Predicates are more general and define relationships between
objects (terms)

8/4/2011

member (b, [a,b,c]) relates term b to the list that contains b
?- member (X, [a,b,c]).

X =a; % type ';' to try to find more solutions
X =Db ; 3 try to find more solutions

X =c; 3 try to find more solutions

no

?- member (b, [a,Y,c]).

Y =Db

?- member (b, L).

L = [b|_G255]

where L is a list with b as head and _G255 as tail, where _G255 is a
new variable

COP4020 Fall 2011

19

List Operations: List Append

m List append predicate definitions:

append ([]1, A, A).
append ([H|T], A, [H|L]) :- append(T, A, L).

m ?- append([a,b,c], [d,e], X).
X = [a,b,c,d,e]

m ?- append(Y, [d,e], [a,b,c,d,e]).
Y = [a,b,C]

m ?- append([a,b,c], Z2, [a,b,c,d,e]).

Z = [4d,e]
m ?- append([a,b],[],[a,b,c]).
No
m ?- append([a,b], [X]|Y],[a,b,c]).
X =c
Y = []

8/4/2011 COP4020 Fall 2011 20

Example: Bubble Sort

bubble (List, Sorted) :-
append (InitList, [B,A|Tail], List),
A < B,
append (InitList, [A,B|Tail], NewlList),
bubble (NewList, Sorted).

bubble (List, List).

?- bubble([2,3,1], L).
append([], [2,3,11, [2,3,1]),

3 < 2, % fails: backtrack

append([2], [3,1], [2,3,1]),

1< 3,

append([2], [1,3], NewListl), % this makes: NewListl=[2,1,3]

bubble([2,1,3], L).
append([], [2,1,3], [2,1,3]),
1< 2,
append([], [1,2,3], Newlist2), % this makes: NewList2=[1,2,63]
bubble([1,2,3], L).
append([], [1,2,3], [1,2,3]),

2 <1, % fails: backtrack
append ([1], [2,3], [1,2,3]),
3 < 2, % fails: backtrack
append([1,2], [3], [1,2,3]), % does not unify: backtrack
bubble([1,2,3], L). % try second bubble-clause which makes L=[1,2,3]

bubble([2,1,3], [1,2,3]).

bubble([2,3,1], [1,2,3]).
8/4/2011 COP4020 Fall 2011 21

Imperative Features

m Prolog offers built-in constructs to support a form of control-flow
\+ G negates a (sub-)goal G
! (cut) terminates backtracking for a predicate
fail always fails to trigger backtracking

m Examples
?- \+ member (b, [a,b,c]).

no
?- \+ member (b, []).

yes

Define:

if (Cond, Then, Else) :- Cond, !, Then.
if (Cond, Then, Else) :- Else.

?- if (true, X=a, X=b).

X=a; % type ';' to try to find more solutions
no

?- if (fail, X=a, X=b).

X=Db ; % type ';' to try to find more solutions
no

8/4/2011 COP4020 Fall 2011

Example: Tic-Tac-Toe

m Rules to find line of three

8/4/2011

COP4020 Fall 2011

(permuted) cells:

line(A,B,C) :-

ordered line(A,B,C).

line(A,B,C) :-

ordered line(A,C,B).

line(A,B,C) :-

ordered line(B,A,C).

line(A,B,C) :-

ordered line(B,C,A).

line(A,B,C) :-

ordered line(C,A,B).

line(A,B,C) :-
ordered line (C,BA).

23

Example: Tic-Tac-Toe

8/4/2011

COP4020 Fall 2011

m Facts:

ordered_line(1,5,9).
ordered_line(3,5,7).
ordered_line(1,2,3).
ordered_line(4,5,6).
ordered_line(7,8,9).
ordered_line(1,4,7).
ordered_line(2,5,8).
ordered_line(3,6,9).

24

Example: Tic-Tac-Toe

m How to make a good move to a cell:

move (A) :- good(A), empty(A).
m Which cell is empty?

empty (A) :- \+ full(A).
m Which cell is full?

full(A) :- x(A).

full(A) :- o(A).

8/4/2011 COP4020 Fall 2011

25

Example: Tic-Tac-Toe

m Which cell is best to move to? (check this in this order

8/4/2011

good (A)
good (A)

good (A)
good (A)

good (A)

good (5) .

good (1) .
good (3) .
good (7) .
good (9) .
good (2) .
good (4) .
good (6) .
good (8) .

:— win(A) .

[°)

% a cell where we win
block win(A). % a cell where we block the
opponent from a win
split(a). % a cell where we can make a

split to win

block split(A).% a cell where we block the

build(a) .

opponent from a split
choose a cell to get a line

oe oP

choose a cell in a good
location

COP4020 Fall 2011

26

| O
Example: Tic-Tac-Toe <5
. . . X X

m How to find a winning cell: split

win(A) :- x(B), x(C), line(A,B,C).
m Choose a cell to block the opponent from choosing a

winning cell:

block win(A) :- o(B), o(C), line(A,B,C).
m Choose a cell to split for a win later:

split(A) :- x(B), x(C), \+ (B =C),

line(A,B,D), line(A,C,E), empty (D), empty(E).

m Choose a cell to block the opponent from making a split:

block split(A) :- o(B), o(C), \+ (B =2C),
line(A,B,D), line(A,C,E), empty (D), empty(E).

m Choose a cell to get a line:
build(A) :- x(B), line(A,B,C), empty(C).

8/4/2011 COP4020 Fall 2011 27

Example: Tic-Tac-Toe

m Board positions are stored as

O facts:
x(7).
o(5).
x(4).

X O o(l).

m Move query:
?- move (A) .
A=09

8/4/2011 COP4020 Fall 2011

28

Prolog Arithmetic

m Arithmetic is needed for computations in Prolog

m Arithmetic is not relational
m The is predicate evaluates an arithmetic expression and
Instantiates a variable with the result

m For example
X is 2*sin(1l)+1
Instantiates X with the results of 2*sin (1) +1

8/4/2011 COP4020 Fall 2011 29

Examples with Arithmetic

m A predicate to compute the length of a list:
length([], O0).
length([H|T], N) :- length(T, K), N is K + 1.

m Where the first argument of length is a list and the
second is the computed length
m Example query:
?- length([1,2,3], X).
X =3
m Defining a predicate to compute GCD:
gcd(A, A, A).
gcd(A, B, G) :- A > B, N is A-B, gcd(N, B, G).
gcd(A, B, G) :- A< B, N is B-A, gcd(A, N, G).

8/4/2011 COP4020 Fall 2011 30

Database Manipulation

m Prolog programs (facts+rules) are stored in a database

m A Prolog program can manipulate the database

Adding a clause with assert, for example:
assert (rainy (syracuse))

Retracting a clause with retract, for example:
retract (rainy (rochester))

Checking if a clause is present with clause (Head, Body)
for example:

clause (rainy (rochester) , true)
m Prolog is fully reflexive
A program can reason about all if its aspects (code+data)

A meta-level (or metacircular) interpreter is a Prolog program
that executes (another) Prolog program, e.g. a tracer can be
written in Prolog

8/4/2011 COP4020 Fall 2011 31

A Meta-level Interpeter

m clause_tree(G) :- write_1ln(G), fail. % just show goal
clause tree(true) :- !.

clause:tree((G,R)) T -
1
<
clause_tree (G),
clause tree(R).

clause_tfge((G;R)) T -

}
’

(clause_tree (G)
; clause_tree (R)
) .
clause_tree(G) :-
(predicate_property(G,built in)
; predicate property (G,compiled)
)/ !/
call(G). % let Prolog do it
clause_tree(G) :- clause(G,Body), clause_ tree (Body) .
m ?- clause tree((X is 3, X<1; X=4)).
G324 is 3, _G324<1 ; _G324=4
_ G324 is 3, _G324<1
_ G324 is 3
31
_G324=4
X =4

8/4/2011 COP4020 Fall 2011

