
COP4020

Programming

Languages

Prolog

Chris Lacher

Based on Robert van Engelen

COP4020 Fall 2011 28/4/2011

Overview

 Logic programming principles

 Prolog

COP4020 Fall 2011 38/4/2011

Logic Programming

 Logic programming is a form of declarative programming

 A program is a collection of axioms

 Each axiom is a Horn clause of the form:

H :- B1, B2, ..., Bn.

where H is the head term and Bi are the body terms

 Meaning: H is true if all Bi are true

 A user states a goal (a theorem) to be proven

 The logic programming system uses inference steps to prove the

goal (theorem) is true, using a logical resolution strategy

COP4020 Fall 2011 48/4/2011

Resolution Strategies

 To deduce a goal (theorem), the programming system searches

axioms and combines sub-goals using a resolution strategy

 For example, given the axioms:

C :- A, B.

D :- C.

 Forward chaining deduces first that C is true:

C :- A, B

and then that D is true:

D :- C

 Backward chaining finds that D can be proven if sub-goal C is true:

D :- C

the system then deduces that the sub-goal is C is true:

C :- A, B

since the system could prove C it has proven D

COP4020 Fall 2011 58/4/2011

Prolog

 Prolog uses backward chaining, which is more efficient
than forward chaining for larger collections of axioms

 Prolog is interactive (mixed compiled/interpreted)

 Example applications:
 Expert systems

 Artificial intelligence

 Natural language understanding

 Logical puzzles and games

 Popular system: SWI-Prolog
 Login linprog.cs.fsu.edu

 pl (or swipl) to start SWI-Prolog

 halt. to halt Prolog (period is the Prolog command terminator)

COP4020 Fall 2011 68/4/2011

Definitions: Prolog Clauses

 A program consists of a collection of Horn clauses

 Each clause consists of a head predicate and body predicates:

H :- B1, B2, ..., Bn.

 A clause is either a rule, e.g.
snowy(X) :- rainy(X), cold(X).

meaning: "If X is rainy and X is cold then this implies that X is snowy"

 Or a clause is a fact, e.g.
rainy(rochester).

meaning "Rochester is rainy."

 This fact is identical to the rule with true as the body predicate:
rainy(rochester) :- true.

 A predicate is a term (an atom or a structure), e.g.
 rainy(rochester)

 member(X,Y)

 true

COP4020 Fall 2011 78/4/2011

Definitions: Queries and Goals

 Queries are used to "execute" goals

 A query is interactively entered by a user after a program is loaded

 A query has the form
?- G1, G2, ..., Gn.

where Gi are goals (predicates)

 A goal is a predicate to be proven true by the programming system

 Example program with two facts:
 rainy(seattle).

 rainy(rochester).

 Query with one goal to find which city C is rainy (if any):
?- rainy(C).

 Response by the interpreter:
C = seattle

 Type a semicolon ; to get next solution:
C = rochester

 Typing another semicolon does not return another solution

COP4020 Fall 2011 88/4/2011

Example

 Consider a program with three facts and one rule:
 rainy(seattle).

 rainy(rochester).

 cold(rochester).

 snowy(X) :- rainy(X), cold(X).

 Query and response:
?- snowy(rochester).

yes

 Query and response:
?- snowy(seattle).

no

 Query and response:
?- snowy(paris).

no

 Query and response:
?- snowy(C).

C = rochester

because rainy(rochester) and cold(rochester) are sub-goals
that are both true facts

COP4020 Fall 2011 98/4/2011

Backward Chaining with

Backtracking

 Consider again:
?- snowy(C).

C = rochester

 The system first tries C=seattle:
rainy(seattle)

cold(seattle) fail

 Then C=rochester:
rainy(rochester)

cold(rochester)

 When a goal fails, backtracking is
used to search for solutions

 The system keeps this execution
point in memory together with the
current variable bindings

 Backtracking unwinds variable
bindings to establish new bindings

An unsuccessful match forces
backtracking in which alternative clauses

are searched that match (sub-)goals

COP4020 Fall 2011 108/4/2011

Example: Family Relationships

 Facts:
 male(albert).

 male(edward).

 female(alice).

 female(victoria).

 parents(edward, victoria, albert).

 parents(alice, victoria, albert).

 Rule:
sister(X,Y) :- female(X), parents(X,M,F), parents(Y,M,F).

 Query: ?- sister(alice, Z).

 The system applies backward chaining to find the answer:

1. sister(alice,Z) matches 2nd rule: X=alice, Y=Z

2. New goals: female(alice),parents(alice,M,F),parents(Z,M,F)

3. female(alice) matches 3rd fact

4. parents(alice,M,F) matches 2nd rule: M=victoria, F=albert

5. parents(Z,victoria,albert) matches 1st rule: Z=edward

COP4020 Fall 2011 118/4/2011

Example: Murder Mystery

% the murderer had brown hair:

murderer(X) :- hair(X, brown).

% mr_holman had a ring:

attire(mr_holman, ring).

% mr_pope had a watch:

attire(mr_pope, watch).

% If sir_raymond had tattered cuffs then mr_woodley had the pincenez:

attire(mr_woodley, pincenez) :-

attire(sir_raymond, tattered_cuffs).

% and vice versa:

attire(sir_raymond,pincenez) :-

attire(mr_woodley, tattered_cuffs).

% A person has tattered cuffs if he is in room 16:

attire(X, tattered_cuffs) :- room(X, 16).

% A person has black hair if he is in room 14, etc:

hair(X, black) :- room(X, 14).

hair(X, grey) :- room(X, 12).

hair(X, brown) :- attire(X, pincenez).

hair(X, red) :- attire(X, tattered_cuffs).

% mr_holman was in room 12, etc:

room(mr_holman, 12).

room(sir_raymond, 10).

room(mr_woodley, 16).

room(X, 14) :- attire(X, watch).

COP4020 Fall 2011 128/4/2011

Example (cont’d)

 Question: who is the murderer?
?- murderer(X).

 Execution trace (indentation shows nesting depth):
murderer(X)

hair(X, brown)

attire(X, pincenez)

X = mr_woodley

attire(sir_raymond, tattered_cuffs)

room(sir_raymond, 16)

FAIL (no facts or rules)

FAIL (no alternative rules)

REDO (found one alternative rule)

attire(X, pincenez)

X = sir_raymond

attire(mr_woodley, tattered_cuffs)

room(mr_woodley, 16)

SUCCESS

SUCCESS: X = sir_raymond

SUCCESS: X = sir_raymond

SUCCESS: X = sir_raymond

SUCCESS: X = sir_raymond

COP4020 Fall 2011 138/4/2011

Unification and Variable

Instantiation

 In the previous examples we saw the use of variables, e.g. C and X

 A variable is instantiated to a term as a result of unification, which
takes place when goals are matched to head predicates

 Goal in query: rainy(C)

 Fact: rainy(seattle)

 Unification is the result of the goal-fact match: C=seattle

 Unification is recursive:

 An uninstantiated variable unifies with anything, even with other
variables which makes them identical (aliases)

 An atom unifies with an identical atom

 A constant unifies with an identical constant

 A structure unifies with another structure if the functor and number of
arguments are the same and the arguments unify recursively

 Once a variable is instantiated to a non-variable term, it cannot be
changed: “proofs cannot be tampered with”

COP4020 Fall 2011 148/4/2011

Examples of Unification

 The built-in predicate =(A,B) succeeds if and only if A and B can be unified,
where the goal =(A,B) may be written as A = B

 ?- a = a.

yes

 ?- a = 5.

No

 ?- 5 = 5.0.

No

 ?- a = X.

X = a

 ?- foo(a,b) = foo(a,b).

Yes

 ?- foo(a,b) = foo(X,b).

X = a

 ?- foo(X,b) = Y.

Y = foo(X,b)

 ?- foo(Z,Z) = foo(a,b).

no

COP4020 Fall 2011 158/4/2011

Definitions: Prolog Terms

 Terms are symbolic expressions that are Prolog’s building blocks

 A Prolog program consists of Horn clauses (axioms) that are terms

 Data structures processed by a Prolog program are terms

 A term is either

 a variable: a name beginning with an upper case letter

 a constant: a number or string

 an atom: a symbol or a name beginning with a lower case letter

 a structure of the form:
functor(arg1, arg2, ..., argn)

where functor is an atom and argi are terms

 Examples:
 X, Y, ABC, and Alice are variables

 7, 3.14, and ”hello” are constants

 foo, barFly, and + are atoms

 bin_tree(foo, bin_tree(bar, glarch))

and +(3,4) are structures

COP4020 Fall 2011 168/4/2011

Term Manipulation

 Terms can be analyzed and constructed
 Built-in predicates functor and arg, for example:

 ?- functor(foo(a,b,c), foo, 3).

yes

 ?- functor(bar(a,b,c), F, N).

F = bar

N = 3

 ?- functor(T, bee, 2).

T = bee(_G1,_G2)

 ?- functor(T, bee, 2), arg(1, T, a), arg(2, T, b).

T = bee(a,b)

 The “univ” operator =..

 ?- foo(a,b,c) =.. L

L = [foo,a,b,c]

 ?- T =.. [bee,a,b]

T = bee(a,b)

COP4020 Fall 2011 178/4/2011

Prolog Lists

 A list is of the form:

[elt1,elt2, ..., eltn]

where elti are terms

 The special list form

[elt1,elt2, ..., eltn | tail]

denotes a list whose tail list is tail

 Examples
 ?- [a,b,c] = [a|T].

T = [b,c]

 ?- [a,b,c] = [a,b|T].

T = [c]

 ?- [a,b,c] = [a,b,c|T].

T = []

COP4020 Fall 2011 188/4/2011

List Operations:

List Membership

 List membership definitions:
member(X, [X|T]).

member(X, [H|T]) :- member(X, T).

 ?- member(b, [a,b,c]).

 Execution:
member(b,[a,b,c]) does not match member(X,[X|T])

 member(b,[a,b,c]) matches predicate member(X1,[H1|T1])
with X1=b, H1=a, and T1=[b,c]

 Sub-goal to prove: member(b, [b,c])

 member(b,[b,c]) matches predicate member(X2,[X2|T2])
with X2=b and T2=[c]

 The sub-goal is proven, so member(b,[a,b,c]) is proven (deduced)

 Note: variables can be "local" to a clause (like the formal arguments of a
function)

 Local variables such as X1 and X2 are used to indicate a match of a
(sub)-goal and a head predicate of a clause

COP4020 Fall 2011 198/4/2011

Predicates and Relations

 Predicates are not functions with distinct inputs and outputs

 Predicates are more general and define relationships between

objects (terms)

 member(b,[a,b,c]) relates term b to the list that contains b

 ?- member(X, [a,b,c]).

X = a ; % type ';' to try to find more solutions

X = b ; % ... try to find more solutions

X = c ; % ... try to find more solutions

no

 ?- member(b, [a,Y,c]).

Y = b

 ?- member(b, L).

L = [b|_G255]

where L is a list with b as head and _G255 as tail, where _G255 is a

new variable

COP4020 Fall 2011 208/4/2011

List Operations: List Append

 List append predicate definitions:
append([], A, A).

append([H|T], A, [H|L]) :- append(T, A, L).

 ?- append([a,b,c], [d,e], X).

X = [a,b,c,d,e]

 ?- append(Y, [d,e], [a,b,c,d,e]).

Y = [a,b,c]

 ?- append([a,b,c], Z, [a,b,c,d,e]).

Z = [d,e]

 ?- append([a,b],[],[a,b,c]).

No

 ?- append([a,b],[X|Y],[a,b,c]).

X = c

Y = []

COP4020 Fall 2011 218/4/2011

Example: Bubble Sort

bubble(List, Sorted) :-

append(InitList, [B,A|Tail], List),

A < B,

append(InitList, [A,B|Tail], NewList),

bubble(NewList, Sorted).

bubble(List, List).

?- bubble([2,3,1], L).

append([], [2,3,1], [2,3,1]),

3 < 2, % fails: backtrack

append([2], [3,1], [2,3,1]),

1 < 3,

append([2], [1,3], NewList1), % this makes: NewList1=[2,1,3]

bubble([2,1,3], L).

append([], [2,1,3], [2,1,3]),

1 < 2,

append([], [1,2,3], NewList2), % this makes: NewList2=[1,2,3]

bubble([1,2,3], L).

append([], [1,2,3], [1,2,3]),

2 < 1, % fails: backtrack

append([1], [2,3], [1,2,3]),

3 < 2, % fails: backtrack

append([1,2], [3], [1,2,3]), % does not unify: backtrack

bubble([1,2,3], L). % try second bubble-clause which makes L=[1,2,3]

bubble([2,1,3], [1,2,3]).

bubble([2,3,1], [1,2,3]).

COP4020 Fall 2011 228/4/2011

Imperative Features

 Prolog offers built-in constructs to support a form of control-flow

 \+ G negates a (sub-)goal G

 ! (cut) terminates backtracking for a predicate

 fail always fails to trigger backtracking

 Examples
 ?- \+ member(b, [a,b,c]).

no

 ?- \+ member(b, []).

yes

 Define:
if(Cond, Then, Else) :- Cond, !, Then.

if(Cond, Then, Else) :- Else.

 ?- if(true, X=a, X=b).

X = a ; % type ';' to try to find more solutions

no

 ?- if(fail, X=a, X=b).

X = b ; % type ';' to try to find more solutions

no

COP4020 Fall 2011 238/4/2011

Example: Tic-Tac-Toe

 Rules to find line of three
(permuted) cells:
 line(A,B,C) :-

ordered_line(A,B,C).

 line(A,B,C) :-

ordered_line(A,C,B).

 line(A,B,C) :-

ordered_line(B,A,C).

 line(A,B,C) :-

ordered_line(B,C,A).

 line(A,B,C) :-

ordered_line(C,A,B).

 line(A,B,C) :-

ordered_line(C,B,A).

1 2 3

4 5 6

7 8 9

COP4020 Fall 2011 248/4/2011

Example: Tic-Tac-Toe

 Facts:

 ordered_line(1,5,9).

 ordered_line(3,5,7).

 ordered_line(1,2,3).

 ordered_line(4,5,6).

 ordered_line(7,8,9).

 ordered_line(1,4,7).

 ordered_line(2,5,8).

 ordered_line(3,6,9).

1 2 3

4 5 6

7 8 9

COP4020 Fall 2011 258/4/2011

Example: Tic-Tac-Toe

 How to make a good move to a cell:
 move(A) :- good(A), empty(A).

 Which cell is empty?
 empty(A) :- \+ full(A).

 Which cell is full?
 full(A) :- x(A).

 full(A) :- o(A).

COP4020 Fall 2011 268/4/2011

Example: Tic-Tac-Toe

 Which cell is best to move to? (check this in this order
 good(A) :- win(A). % a cell where we win

 good(A) :- block_win(A). % a cell where we block the

opponent from a win

 good(A) :- split(A). % a cell where we can make a

split to win

 good(A) :- block_split(A).% a cell where we block the

opponent from a split

 good(A) :- build(A). % choose a cell to get a line

 good(5). % choose a cell in a good

location

 good(1).

 good(3).

 good(7).

 good(9).

 good(2).

 good(4).

 good(6).

 good(8).

COP4020 Fall 2011 278/4/2011

Example: Tic-Tac-Toe

 How to find a winning cell:
 win(A) :- x(B), x(C), line(A,B,C).

 Choose a cell to block the opponent from choosing a
winning cell:
 block_win(A) :- o(B), o(C), line(A,B,C).

 Choose a cell to split for a win later:
 split(A) :- x(B), x(C), \+ (B = C),

line(A,B,D), line(A,C,E), empty(D), empty(E).

 Choose a cell to block the opponent from making a split:
 block_split(A) :- o(B), o(C), \+ (B = C),

line(A,B,D), line(A,C,E), empty(D), empty(E).

 Choose a cell to get a line:
 build(A) :- x(B), line(A,B,C), empty(C).

O

X O

X X

split

COP4020 Fall 2011 288/4/2011

Example: Tic-Tac-Toe

 Board positions are stored as

facts:

 x(7).

 o(5).

 x(4).

 o(1).

 Move query:

 ?- move(A).

A = 9

O

X O

X

COP4020 Fall 2011 298/4/2011

Prolog Arithmetic

 Arithmetic is needed for computations in Prolog

 Arithmetic is not relational

 The is predicate evaluates an arithmetic expression and

instantiates a variable with the result

 For example

 X is 2*sin(1)+1

instantiates X with the results of 2*sin(1)+1

COP4020 Fall 2011 308/4/2011

Examples with Arithmetic

 A predicate to compute the length of a list:
 length([], 0).

 length([H|T], N) :- length(T, K), N is K + 1.

 where the first argument of length is a list and the

second is the computed length

 Example query:
 ?- length([1,2,3], X).

X = 3

 Defining a predicate to compute GCD:
 gcd(A, A, A).

 gcd(A, B, G) :- A > B, N is A-B, gcd(N, B, G).

 gcd(A, B, G) :- A < B, N is B-A, gcd(A, N, G).

COP4020 Fall 2011 318/4/2011

Database Manipulation

 Prolog programs (facts+rules) are stored in a database

 A Prolog program can manipulate the database
 Adding a clause with assert, for example:
assert(rainy(syracuse))

 Retracting a clause with retract, for example:
retract(rainy(rochester))

 Checking if a clause is present with clause(Head, Body)
for example:
clause(rainy(rochester), true)

 Prolog is fully reflexive
 A program can reason about all if its aspects (code+data)

 A meta-level (or metacircular) interpreter is a Prolog program
that executes (another) Prolog program, e.g. a tracer can be
written in Prolog

COP4020 Fall 2011 328/4/2011

A Meta-level Interpeter

 clause_tree(G) :- write_ln(G), fail. % just show goal

clause_tree(true) :- !.

clause_tree((G,R)) :-

!,

clause_tree(G),

clause_tree(R).

clause_tree((G;R)) :-

!,

(clause_tree(G)

; clause_tree(R)

).

clause_tree(G) :-

(predicate_property(G,built_in)

; predicate_property(G,compiled)

), !,

call(G). % let Prolog do it

clause_tree(G) :- clause(G,Body), clause_tree(Body).

 ?- clause_tree((X is 3, X<1; X=4)).

_G324 is 3, _G324<1 ; _G324=4

_G324 is 3, _G324<1

_G324 is 3

3<1

_G324=4

X = 4

