COP4020 Programming Languages

Functional Programming

Prof. Chris Lacher

Modified from Robert van Engelen

Overview

- What is functional programming?
- Historical origins of functional programming
- Functional programming today
- Concepts of functional programming
- Functional programming with Scheme
- Learn (more) by example

What is Functional Programming?

- Functional programming is a declarative programming style (programming paradigm)
 - □ Pro: flow of computation is declarative, i.e. more implicit
 - □ Pro: promotes building more complex functions from other functions that serve as building blocks (component reuse)
 - □ Pro: behavior of functions defined by the values of input arguments only (no side-effects via global/static variables)
 - □ Cons: function composition is (considered to be) stateless
 - Cons: programmers prefer imperative programming constructs such as statement composition, while functional languages emphasize function composition

Concepts of Functional Programming

- Functional programming defines the outputs of a program purely as a mathematical function of the inputs with no notion of internal state (no side effects)
 - A pure function can be counted on to return the same output each time we invoke it with the same input parameter values
 - No global (statically allocated) variables
 - □ No explicit (pointer) assignments
 - Dangling pointers and un-initialized variables cannot occur
 - Example pure functional programming languages: Miranda, Haskell, and Sisal
- Non-pure functional programming languages include "imperative features" that cause side effects (e.g. destructive assignments to global variables or assignments/changes to lists and data structures)
 - Example: Lisp, Scheme, and ML

Functional Language Constructs

- Building blocks are functions
- No statement composition
 - □ Function composition
- No variable assignments
 - □ But: can use local "variables" to hold a value assigned once
- No loops
 - Recursion
 - List comprehensions in Miranda and Haskell
 - ☐ But: "do-loops" in Scheme
- Conditional flow with if-then-else or argument patterns
- Functional languages can be typed (Haskell) or untyped (Lisp)

Haskell examples:

```
gcd a b
    | a == b = a
    | a > b = gcd (a-b) b
    | a < b = gcd a (b-a)

fac 0 = 1
fac n = n * fac (n-1)

member x [] = false
member x (y:xs)
    | x == y = true
    | x <> y = member x xs
```

Theory and Origin of Functional Languages

- Church's thesis:
 - All models of computation are equally powerful
 - Turing's model of computation: Turing machine
 - Reading/writing of values on an infinite tape by a finite state machine
 - □ Church's model of computation: Lambda Calculus
 - □ Functional programming languages implement Lambda Calculus
- Computability theory
 - A program can be viewed as a constructive proof that some mathematical object with a desired property exists
 - A function is a mapping from inputs to output objects and computes output objects from appropriate inputs
 - For example, the proposition that every pair of nonnegative integers (the inputs) has a greatest common divisor (the output object) has a constructive proof implemented by Euclid's algorithm written as a "function"

Impact of Functional Languages on Language Design

- Useful features are found in functional languages that are often missing in procedural languages or have been adopted by modern programming languages:
 - ☐ First-class function values: the ability of functions to return newly constructed functions
 - ☐ *Higher-order functions*: functions that take other functions as input parameters or return functions
 - □ Polymorphism: the ability to write functions that operate on more than one type of data
 - Aggregate constructs for constructing structured objects: the ability to specify a structured object in-line such as a complete list or record value
 - □ Garbage collection

Functional Programming Today

- Significant improvements in theory and practice of functional programming have been made in recent years
 - Strongly typed (with type inference)
 - Modular
 - Sugaring: imperative language features that are automatically translated to functional constructs (e.g. loops by recursion)
 - □ Improved efficiency
- Remaining obstacles to functional programming:
 - Social: most programmers are trained in imperative programming and aren't used to think in terms of function composition
 - Commercial: not many libraries, not very portable, and no IDEs

Applications

 Many (commercial) applications are built with functional programming languages based on the ability to manipulate symbolic data more easily

Examples:

- Computer algebra (e.g. Reduce system)
- Natural language processing
- □ Artificial intelligence
- Automatic theorem proving
- Algorithmic optimization of functional programs

LISP and Scheme

- The original functional language and implementation of Lambda Calculus
- Lisp and dialects (Scheme, common Lisp) are still the most widely used functional languages
- Simple and elegant design of Lisp:
 - Homogeneity of programs and data: a Lisp program is a list and can be manipulated in Lisp as a list
 - □ Self-definition: a Lisp interpreter can be written in Lisp
 - □ Interactive: user interaction via "read-eval-print" loop

Scheme

- Scheme is a popular Lisp dialect
- Lisp and Scheme adopt a form of prefix notation called Cambridge Polish notation
- Scheme is case insensitive
- A Scheme expression is composed of
 - Atoms, e.g. a literal number, string, or identifier name,
 - □ Lists, e.g. '(a b c)
 - □ Function invocations written in list notation: the first list element is the *function* (or operator) followed by the arguments to which it is applied:

(function arg₁ arg₂ arg₃ ... arg_n)

□ For example, sin(x*x+1) is written as (sin (+ (* x x) 1))

Read-Eval-Print

- The "Read-eval-print" loop provides user interaction in Scheme
- An expression is read, evaluated, and the result printed
 - □ Input: 9
 - □ Output: 9
 - □ Input: (+ 3 4)
 - □ Output: 7
 - □ Input: (+ (* 2 3) 1)
 - □ Output: 7
- User can load a program from a file with the load function

```
(load "my_scheme_program")
```

Note: a file should use the .scm extension

Working with Data Structures

- An expression operates on values and compound data structures built from atoms and lists
- A value is either an atom or a compound list
- Atoms are
 - □ Numbers, e.g. 7 and 3.14
 - □ Strings, e.g. "abc"
 - □ Boolean values #t (true) and #f (false)
 - Symbols, which are identifiers escaped with a single quote, e.g. 'y
 - ☐ The empty list ()
- When entering a list as a literal value, escape it with a single quote
 - □ Without the quote it is a function invocation!
 - □ For example, '(a b c) is a list while (a b c) is a function application
 - □ Lists can be nested and may contain any value, e.g. '(1 (a b) "s")

Checking the Type of a Value

The type of a value can be checked with

```
\Box (boolean? x); is x a Boolean?
```

$$\Box$$
 (char? x) ; is x a character?

$$\Box$$
 (string? x); is x a string?

$$\square$$
 (symbol? x); is x a symbol?

$$\square$$
 (number? x); is x a number?

$$\Box$$
 (list? x); is x a list?

$$\Box$$
 (pair? x); is x a non-empty list?

$$\square$$
 (null? x); is x an empty list?

Examples

$$\Box$$
 (list? '(2)) \Rightarrow #t

□ (number? "abc")
$$\Rightarrow$$
 #f

Portability note: on some systems false (#f) is replaced with ()

Working with Lists

- (car xs) returns the head (first element) of list xs
- (cdr xs) (pronounced "coulder") returns the tail of list xs
- (cons x xs) joins an element x and a list xs to construct a new list
- (list $x_1 x_2 ... x_n$) generates a list from its arguments
- Examples:
 - \square (car '(2 3 4)) \Rightarrow 2
 - \square (car '(2)) \Rightarrow 2
 - \square (car '()) \Rightarrow Error
 - \square (cdr '(2 3)) \Rightarrow (3)
 - \square (car (cdr '(2 3 4))) \Rightarrow 3; also abbreviated as (cadr '(2 3 4))
 - \Box (cdr (cdr '(2 3 4))) \Rightarrow (4); also abbreviated as (cddr '(2 3 4))
 - \Box (cdr '(2)) \Rightarrow ()
 - \Box (cons 2 '(3)) \Rightarrow (2 3)
 - \square (cons 2 '(3 4)) \Rightarrow (2 3 4)
 - \square (list 1 2 3) \Rightarrow (1 2 3)

The "if" Special Form

- Special forms resemble functions but have special evaluation rules
 - □ Evaluation of arguments depends on the special construct
- The "if" special form returns the value of thenexpr or elseexpr depending on a condition

(if condition thenexpr elseexpr)

- Examples
 - \Box (if #t 1 2) \Rightarrow 1
 - \square (if #f 1 "a") \Rightarrow "a"
 - \square (if (string? "s") (+ 1 2) 4) \Rightarrow 3
 - \square (if (> 1 2) "yes" "no") \Rightarrow "no"

The "cond" Special Form

A more general if-then-else can be written using the "cond" special form that takes a sequence of (condition value) pairs and returns the first value x_i for which condition c_i is true:

```
(\text{cond } (c_1 \ x_1) \ (c_2 \ x_2) \ \dots \ (\text{else } x_n))
```

- Examples
 - \square (cond (#f 1) (#t 2) (#t 3)) \Rightarrow 2
 - □ (cond ((< 1 2) "one") ((>= 1 2) "two")) ⇒ "one"
 - \Box (cond ((< 2 1) 1) ((= 2 1) 2) (else 3)) \Rightarrow 3
- Note: "else" is used to return a default value

Logical Expressions

- Relations
 - □ Numeric comparison operators <, <=, =, >, <=, and <>
- Boolean operators
 - \square (and $x_1 x_2 \dots x_n$), (or $x_1 x_2 \dots x_n$)
- Other test operators
 - \square (zero? x), (odd? x), (even? x)
 - □ (eq? x_1 x_2) tests whether x_1 and x_2 refer to the same object (eq? 'a 'a) \Rightarrow #t (eq? '(a b) '(a b)) \Rightarrow #f
 - □ (equal? x_1 x_2) tests whether x_1 and x_2 are structurally equivalent (equal? 'a 'a) \Rightarrow #t (equal? '(a b) '(a b)) \Rightarrow #t
 - (member x xs) returns the sublist of xs that starts with x, or returns () (member 5 '(a b)) \Rightarrow () (member 5 '(1 2 3 4 5 6)) \Rightarrow (5 6)

Lambda Calculus: Functions = Lambda Abstractions

A lambda abstraction is a nameless function (a mapping) specified with the lambda special form:

(lambda args body)

where *args* is a list of formal arguments and *body* is an expression that returns the result of the function evaluation when applied to actual arguments

- A lambda expression is an unevaluated function
- Examples:
 - □ (lambda (x) (+ x 1))
 - □ (lambda (x) (* x x))
 - □ (lambda (a b) (sqrt (+ (* a a) (* b b))))

Lambda Calculus: Invocation = Beta Reduction

 A lambda abstraction is applied to actual arguments using the familiar list notation

```
(function arg_1 arg_2 ... arg_n)
```

where *function* is the name of a function or a lambda abstraction

- Beta reduction is the process of replacing formal arguments in the lambda abstraction's body with actuals
- Examples

```
□ ( (lambda (x) (* \underline{x} \underline{x})) \underline{3} ) \Rightarrow (* 3 3) \Rightarrow 9

□ ( (lambda (f a) (\underline{f} (\underline{f} \underline{a}))) (lambda (x) (* \underline{x} \underline{x})) \underline{3} )

\Rightarrow (f (f (3)) where f = (lambda (x) (* \underline{x} \underline{x})) \Rightarrow (f ((lambda (x) (* \underline{x} \underline{x})) \Rightarrow (f 9) where f = (lambda (x) (* \underline{x} \underline{x})) \Rightarrow ((lambda (x) (* \underline{x} \underline{x})) \Rightarrow (* 9 9)

\Rightarrow 81
```

Defining Global Names

- A global name is defined with the "define" special form (define name value)
- Usually the values are functions (lambda abstractions)
- Examples:
 - □ (define my-name "foo")
 - □ (define determiners '("a" "an" "the"))
 - □ (define sqr (lambda (x) (* x x)))
 - □ (define twice (lambda (f a) (f (f a))))
 - □ (twice sqr 3) ⇒ ((lambda (f a) (f (f a))) (lambda (x) (* x x)) 3) ⇒
 ... ⇒ 81

Using Local Names

The "let" special form (let-expression) provides a scope construct for local name-to-value bindings

```
(let ((name_1 x_1) (name_2 x_2) \dots (name_n x_n)) expression)
```

where $name_1$, $name_2$, ..., $name_n$ in expression are substituted by $x_1, x_2, ..., x_n$

- Examples
 - \Box (let ((plus +) (two 2)) (plus two two)) \Rightarrow 4
 - □ (let ((a 3) (b 4)) (sqrt (+ (* a a) (* b b)))) \Rightarrow 5
 - \square (let ((sqr (lambda (x) (* x x))) (sqrt (+ (sqr 3) (sqr 4))) \Rightarrow 5

Local Bindings with Self References

- A global name can simply refer to itself (for recursion)
 - □ (define fac (lambda (n) (if (zero? n) 1 (* n (fac (- n 1)))))
- A let-expression cannot refer to its own definitions
 - □ Its definitions are not in scope, only outer definitions are visible
- Use the letrec special form for recursive local definitions

```
(letrec ( (name_1 x_1) (name_2 x_2) \dots (name_n x_n) ) expr)
```

where $name_i$ in expr refers to x_i

- Examples
 - □ (letrec ((fac (lambda (n) (if (zero? n) 1 (* n (fac (- n 1)))))))
 (fac 5)) ⇒ 120

1/0

- (display x) prints value of x and returns an unspecified value
 - (display "Hello World!")
 Displays: "Hello World!"
 - ☐ (display (+ 2 3)) Displays: 5
- (newline) advances to a new line
- (read) returns a value from standard input
 - □ (if (member (read) '(6 3 5 9)) "You guessed it!" "No luck")

Enter: 5

Displays: You guessed it!

Blocks

- (begin $x_1 x_2 ... x_n$) sequences a series of expressions x_i , evaluates them, and returns the value of the last one x_n
- Examples:

Do-loops

The "do" special form takes a list of triples and a tuple with a terminating condition and return value, and multiple expressions x_i to be evaluated in the loop

```
(do (triples) (condition ret-expr) x_1 x_2 \dots x_n)
```

- Each triple contains the name of an iterator, its initial value, and the update value of the iterator
- Example (displays values 0 to 9)

Higher-Order Functions

- A function is a higher-order function (also called a functional form) if
 - It takes a function as an argument, or
 - □ It returns a newly constructed function as a result
- For example, a function that applies a function to an argument twice is a higher-order function
 - □ (define twice (lambda (f a) (f (f a))))
- Scheme has several built-in higher-order functions
 - □ (apply *f xs*) takes a function *f* and a list *xs* and applies *f* to the elements of the list as its arguments
 - \square (apply '+ '(3 4)) \Rightarrow 7
 - □ (apply (lambda (x) (* x x)) '(3))
 - (map f xs) takes a function f and a list xs and returns a list with the function applied to each element of xs
 - □ (map odd? '(1 2 3 4)) \Rightarrow (#t #f #t #f)
 - □ (map (lambda (x) (* x x)) (1 2 3 4)) \Rightarrow (1 4 9 16)

Non-Pure Constructs

- Assignments are considered non-pure in functional programming because they can change the global state of the program and possibly influence function outcomes
- The value of a pure function only depends on its arguments
- (set! name x) re-assigns x to local or global name

```
(define a 0)
(set! a 1); overwrite with 1
(let ( (a 0) )
(begin
(set! a (+ a 1)); increment a by 1
(display a) ; shows 1
)
```

- (set-car! x xs) overwrites the head of a list xs with x
- (set-cdr! xs ys) overwrites the tail of a list xs with ys

Recursive factorial: (define fact (lambda (n) (if (zero? n) 1 (* n (fact (- n 1)))) \Rightarrow (if (zero? 2) 1 (* 2 (fact (- 2 1)))) • (fact 2) \Rightarrow (* 2 (fact 1)) \Rightarrow (* 2 (if (zero? 1) 1 (* 1 (fact (- 1 1))))) \Rightarrow (* 2 (* 1 (fact 0))) \Rightarrow (* 2 (* 1 (if (zero? 0) 1 (* 0 (fact (- 0 1)))) \Rightarrow (* 2 (* 1 1))

Iterative factorial (define iterfact (lambda (n) (do ((i 1 (+ i 1)) ; i runs from 1 updated by 1 (f 1 (* f i)) ; f from 1, multiplied by i ((>in)f); until i > n, return f ; loop body is omitted

Sum the elements of a list (define sum (lambda (lst) (if (null? lst) (+ (car lst) (sum (cdr lst))) • (sum '(1 2 3)) \Rightarrow (+ 1 (sum (2 3)) \Rightarrow (+ 1 (+ 2 (sum (3)))) \Rightarrow (+ 1 (+ 2 (+ 3 (sum ())))) \Rightarrow (+ 1 (+ 2 (+ 3 0)))

Generate a list of *n* copies of *x* (define fill (lambda (n x) (if (= n 0))(cons x (fill (- n 1) x))) • (fill 2 'a) \Rightarrow (cons a (fill 1 a)) \Rightarrow (cons a (cons a (fill 0 a))) \Rightarrow (cons a (cons a ())) \Rightarrow (a a)

```
Replace x with y in list xs
(define subst
 (lambda (x y xs)
   (cond
    ((null? xs)
    ((eq? (car xs) x) (cons y (subst x y (cdr xs))))
                       (cons (car xs) (subst x y (cdr xs))))
    (else
```

• (subst 3 0 '(8 2 3 4 3 5)) \Rightarrow '(8 2 0 4 0 5)

- (reduce and '(#t #t #f)) ⇒ (and #t (and #t #f)) ⇒ #f
- (reduce * '(1 2 3)) \Rightarrow (* 1 (* 2 3)) \Rightarrow 6
- (reduce + '(1 2 3)) \Rightarrow (+ 1 (+ 2 3)) \Rightarrow 6

 Higher-order filter operation: keep elements of a list for which a condition is true

- (filter odd? '(1 2 3 4 5)) \Rightarrow (1 3 5)
- (filter (lambda (n) (<> n 0)) '(0 1 2 3 4)) ⇒ (1 2 3 4)

 Binary tree insertion, where () are leaves and (val left right) is a node (define insert

• (insert 1 '(3 () (4 () ()))) \Rightarrow (3 (1 () ()) (4 () ()))