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Control Flow: Ordering the 

Execution of a Program

 Constructs for specifying the execution order: 

1. Sequencing: the execution of statements and evaluation of expressions 
is usually in the order in which they appear in a program text

2. Selection (or alternation): a run-time condition determines the choice 
among two or more statements or expressions

3. Iteration: a statement is repeated a number of times or until a run-time 
condition is met

4. Procedural abstraction: subroutines encapsulate collections of 
statements and subroutine calls can be treated as single statements

5. Recursion: subroutines which call themselves directly or indirectly to 
solve a problem, where the problem is typically defined in terms of 
simpler versions of itself

6. Concurrency: two or more program fragments executed in parallel, 
either on separate processors or interleaved on a single processor

7. Nondeterminacy: the execution order among alternative constructs is 
deliberately left unspecified, indicating that any alternative will lead to a 
correct result
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Structured and Unstructuted 

Flow

 Unstructured flow: the use of goto statements and 
statement labels to implement control flow
 Merit or evil?

 Generally considered bad, but sometimes useful for jumping out 
of nested loops and for coding the flow of exceptions (when a 
language does not support exception handling)

 Java has no goto statement (supports labeled loops and breaks)

 Structured flow:
 Statement sequencing

 Selection with “if-then-else” statements and “switch” statements

 Iteration with “for” and “while” loop statements

 Subroutine calls (including recursion)

 All of which promotes “structured programming”
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Sequencing

 A list of statements in a program text is executed in top-

down order

 A compound statement is a delimited list of statements

 A compund statement is called a block when it includes variable 

declarations

 C, C++, and Java use { and } to delimit a block

 Pascal and Modula use begin ... end

 Ada uses declare ... begin ... end

 Special cases: in C, C++, and Java expressions can be 

inserted as statements

 In pure functional languages sequencing is impossible 

(and not desired!)
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Selection

 If-then-else selection statements in C and C++:

 if (<expr>) <stmt> [else <stmt>] 

 Condition is a bool, integer, or pointer

 Grouping with { and } is required for statement sequences in the then 
clause and else clause

 Syntax ambiguity is resolved with “an else matches the closest if” rule

 Conditional expressions, e.g. if and cond in Lisp and a?b:c in C

 Java syntax is like C/C++, but condition must be Boolean

 Ada syntax supports multiple elsif's to define nested conditions:

 if <cond> then
<statements> 
elsif <cond> then
... 
else

<statements> 
end if
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Selection (cont’d)

 Case/switch statements are different from if-then-else statements in 
that an expression can be tested against multiple constants to select 
statement(s) in one of the arms of the case statement:

 C, C++, and Java:
switch (<expr>) 
{ case <const>: <statements> break; 
case <const>: <statements> break; 
... 
default: <statements> 

} 

 A break is necessary to transfer control at the end of an arm to the end 
of the switch statement

 Most programming languages support a switch-like statement, but do 
not require the use of a break in each arm

 A switch statement is much more efficient compared to nested if-
then-else statements
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Iteration

 Enumeration-controlled loops repeat a collection of 

statements a number of times, where in each iteration a 

loop index variable takes the next value of a set of 

values specified at the beginning of the loop

 Logically-controlled loops repeat a collection of 

statements until some Boolean condition changes value 

in the loop

 Pretest loops test condition at the begin of each iteration

 Posttest loops test condition at the end of each iteration

 Midtest loops allow structured exits from within loop with exit 

conditions
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Enumeration-Controlled Loops

 History of failures on design of enumeration-controlled loops

 Fortran-IV:
DO 20 i = 1, 10, 2 

... 

20  CONTINUE

which is defined to be equivalent to 
i = 1 

20  ... 

i = i + 2 

IF i.LE.10 GOTO 20

Problems: 

 Requires positive constant loop bounds (1 and 10) and step size (2)

 If loop index variable i is modified in the loop body, the number of 
iterations is changed compared to the iterations set by the loop bounds

 GOTOs can jump out of the loop and also from outside into the loop

 The value of counter i after the loop is implementation dependent

 The body of the loop will be executed at least once (no empty bounds)
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Enumeration-Controlled Loops 

(cont’d)

 Fortran-77:

 Same syntax as in Fortran-IV, but many dialects support ENDDO instead 
of CONTINUE statements

 Can jump out of the loop, but cannot jump from outside into the loop

 Assignments to counter i in loop body are not allowed

 Number of iterations is determined by 
max((H-L+S)/S, 0)

for lower bound L, upper bound H, step size S

 Body is not executed when (H-L+S)/S < 0

 Either integer-valued or real-valued expressions for loop bounds and 
step sizes

 Changes to the variables used in the bounds do not affect the number 
of iterations executed 

 Terminal value of loop index variable is the most recent value assigned, 
which is

L + S*max((H-L+S)/S, 0)
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Enumeration-Controlled Loops 

(cont’d)

 Algol-60 combines logical conditions in combination 

loops:
for <id> := <forlist> do <stmt>

where the syntax of <forlist> is

<forlist> ::= <enumerator> [, enumerator]* 

<enumerator> ::= <expr> 
| <expr> step <expr> until <expr>

| <expr> while <cond> 

 Not orthogonal: many forms that behave the same:
for i := 1, 3, 5, 7, 9 do ... 

for i := 1 step 2 until 10 do ... 

for i := 1, i+2 while i < 10 do ...
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Enumeration-Controlled Loops 

(cont’d)

 Pascal’s enumeration-controlled loops have simple and 

elegant design with two forms for up and down:
for <id> := <expr> to <expr> do <stmt>

and
for <id> := <expr> downto <expr> do <stmt> 

 Can iterate over any discrete type, e.g. integers, chars, 

elements of a set

 Lower and upper bound expressions are evaluated once 

to determine the iteration range

 Counter variable cannot be assigned in the loop body

 Final value of loop counter after the loop is undefined
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Enumeration-Controlled Loops 

(cont’d)

 Ada’s for loop is much like Pascal's:
for <id> in <expr> .. <expr> loop
<statements>
end loop

and
for <id> in reverse <expr> .. <expr> loop
<statements> 
end loop

 Lower and upper bound expressions are evaluated once 
to determine the iteration range

 Counter variable has a local scope in the loop body
 Not accessible outside of the loop

 Counter variable cannot be assigned in the loop body
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Enumeration-Controlled Loops 

(cont’d)

 C, C++, and Java do not have true enumeration-controlled loops

 A “for” loop is essentially a logically-controlled loop
for (i = 1; i <= n; i++) ...

which iterates i from 1 to n by testing i <= n before the start of 

each iteration and updating i by 1 in each iteration

 Why is this not enumeration controlled?

 Assignments to counter i and variables in the bounds are allowed, thus 

it is the programmer's responsibility to structure the loop to mimic 

enumeration loops

 Use continue to jump to next iteration

 Use break to exit loop

 C++ and Java also support local scoping for counter variable
for (int i = 1; i <= n; i++) ...
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Enumeration-Controlled Loops 

(cont’d)

 Other problems with C/C++ for loops to emulate enumeration-

controlled loops are related to the mishandling of bounds and limits 

of value representations

 This C program never terminates (do you see why?)
#include <limits.h> // INT_MAX is max int value

main() 

{ int i; 

for (i = 0; i <= INT_MAX; i++) 

printf(“Iteration %d\n”, i); 

}

 This C program does not count from 0.0 to 10.0, why?
main() 

{ float n; 

for (n = 0.0; n <= 10; n += 0.01) 

printf(“Iteration %g\n”, n); 

}
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Enumeration-Controlled Loops 

(cont’d)

 How is loop iteration counter overflow handled?

 C, C++, and Java: nope

 Fortran-77

 Calculate the number of iterations in advance

 For REAL typed index variables an exception is raised when 

overflow occurs

 Pascal and Ada

 Only specify step size 1 and -1 and detection of the end of the 

iterations is safe

 Pascal’s final counter value is undefined (may have wrapped)
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Iterators

 Iterators are used to iterate over elements of containers such as 

sets and data structures such as lists and trees

 Iterator objects are also called enumerators or generators

 C++ iterators are associated with a container object and used in 

loops similar to pointers and pointer arithmetic:

vector<int> V;

…

for (vector<int>::iterator it = V.begin(); it != V.end(); ++it)

cout << *n << endl;

An in-order tree traversal:

tree_node<int> T;

…

for (tree_node<int>::iterator it = T.begin(); it != T.end(); ++it)

cout << *n << endl;
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Iterators (cont’d)

 Java supports generics similar to C++ templates

 Iterators are similar to C++, but do not have the usual C++ 

overloaded iterator operators:

TreeNode<Integer> T;

…

for (Integer i : T)

System.out.println(i);

Note that Java has the above special for-loop for iterators that is 

essentially syntactic sugar for:

for (Iterator<Integer> it = T.iterator(); it.hasNext(); )

{ Integer i = it.next();

System.out.println(i);

}
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Iterators (cont’d)

 Iterators typically need special loops to produce 
elements one by one, e.g. in Clu:

for i in int$from_to_by(first, last, step) do

…

end

 While Java and C++ use iterator objects that hold the 
state of the iterator, Clu, Python, Ruby, and C# use 
generators (=“true iterators”) which are functions that run 
in “parallel” to the loop code to produce elements
 The yield operation in Clu returns control to the loop body

 The loop returns control to the generator’s last yield operation to 
allow it to compute the value for the next iteration

 The loop terminates when the generator function returns
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Logically-Controlled Pretest 

loops

 Logically-controlled pretest loops check the exit condition before the 

next loop iteration

 Not available Fortran-77

 Ada has only one kind of logically-controlled loops: midtest loops

 Pascal:
while <cond> do <stmt>

where the condition is a Boolean-typed expression

 C, C++:
while (<expr>) <stmt>

where the loop terminates when the condition evaluates to 0, NULL, 

or false

 Use continue and break to jump to next iteration or exit the loop

 Java is similar C++, but condition is restricted to Boolean
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Logically-Controlled Posttest 

Loops

 Logically-controlled posttest loops check the exit condition after 

each loop iteration

 Not available in Fortran-77

 Ada has only one kind of logically-controlled loops: midtest loops

 Pascal:
repeat <stmt> [; <stmt>]* until <cond>

where the condition is a Boolean-typed expression and the loop 

terminates when the condition is true

 C, C++:
do <stmt> while (<expr>)

where the loop terminates when the expression evaluates to 0, 

NULL, or false

 Java is similar to C++, but condition is restricted to Boolean
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Logically-Controlled Midtest 

Loops

 Ada supports logically-controlled midtest loops check exit conditions 
anywhere within the loop:
loop

<statements>
exit when <cond>; 

<statements>
exit when <cond>; 

...
end loop 

 Ada also supports labels, allowing exit of outer loops without gotos:
outer: loop 

... 

for i in 1..n loop 

... 

exit outer when a[i]>0; 

... 

end loop; 

end outer loop;
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Recursion

 Recursion: subroutines that call themselves directly or indirectly 

(mutual recursion)

 Typically used to solve a problem that is defined in terms of simpler 

versions, for example:

 To compute the length of a list, remove the first element, calculate the 

length of the remaining list in n, and return n+1

 Termination condition: if the list is empty, return 0

 Iteration and recursion are equally powerful in theoretical sense

 Iteration can be expressed by recursion and vice versa

 Recursion is more elegant to use to solve a problem that is naturally 

recursively defined, such as a tree traversal algorithm

 Recursion can be less efficient, but most compilers for functional 

languages are often able to replace it with iterations
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Tail-Recursive Functions

 Tail-recursive functions are functions in which no operations follow 

the recursive call(s) in the function, thus the function returns 

immediately after the recursive call:

tail-recursive not tail-recursive
int trfun() int rfun()

{ … { …

return trfun(); return rfun()+1;

} }

 A tail-recursive call could reuse the subroutine's frame on the run-

time stack, since the current subroutine state is no longer needed

 Simply eliminating the push (and pop) of the next frame will do

 In addition, we can do more for tail-recursion optimization: the 

compiler replaces tail-recursive calls by jumps to the beginning of 

the function
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Tail-Recursion Optimization

 Consider the GCD function:
int gcd(int a, int b) 

{ if (a==b) return a; 

else if (a>b) return gcd(a-b, b); 

else return gcd(a, b-a); 

}

a good compiler will optimize the function into:
int gcd(int a, int b) 

{ start: 

if (a==b) return a; 

else if (a>b) { a = a-b; goto start; } 

else { b = b-a; goto start; } 

}

which is just as efficient as the iterative version: 
int gcd(int a, int b)

{ while (a!=b) 

if (a>b) a = a-b; 

else b = b-a; 

return a; 

}
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Converting Recursive Functions 

to Tail-Recursive Functions

 Remove the work after the recursive call and include it in some other 
form as a computation that is passed to the recursive call

 For example, the non-tail-recursive function

(define summation (lambda (f low high) 
(if (= low high) 

(f low) 
(+ (f low) (summation f (+ low 1) high))))) 

can be rewritten into a tail-recursive function: 

(define summation (lambda (f low high subtotal) 
(if (=low high) 

(+ subtotal (f low)) 
(summation f (+ low 1) high (+ subtotal (f low))))))
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Example

 Here is the same example in C:

typedef int (*int_func)(int); 

int summation(int_func f, int low, int high) 

{ if (low == high)

return f(low) 

else

return f(low) + summation(f, low+1, high); 

} 

rewritten into the tail-recursive form: 

int summation(int_func f, int low, int high, int subtotal) 

{ if (low == high)

return subtotal+f(low) 

else

return summation(f, low+1, high, subtotal+f(low)); 

}
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When Recursion is Bad

 The Fibonacci function implemented as a recursive function is very 
inefficient as it takes exponential time to compute:

(define fib (lambda (n) 
(cond ((= n 0) 1) 

((= n 1) 1) 
(else (+ (fib (- n 1)) (fib (- n 2))))))) 

with a tail-recursive helper function, we can run it in O(n) time:

(define fib (lambda (n) 
(letrec ((fib-helper (lambda (f1 f2 i) 

(if (= i n) 
f2 
(fib-helper f2 (+ f1 f2) (+ i 1)))))) 

(fib-helper 0 1 0))))
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Expression Syntax and Effect 

on Evaluation Order

 An expression consists of
 An atomic object, e.g. number or variable

 An operator applied to a collection of operands (or arguments) 
that are expressions

 Common syntactic forms for operators:
 Function call notation, e.g. somefunc(A, B, C)

 Infix notation for binary operators, e.g. A + B

 Prefix notation for unary operators, e.g. -A

 Postfix notation for unary operators, e.g. i++

 Cambridge Polish notation, e.g. (* (+ 1 3) 2) in Lisp

 "Multi-word" infix, e.g. a>b?a:b in C and
myBox displayOn: myScreen at: 100@50

in Smalltalk, where displayOn: and at: are written infix with 
arguments mybox, myScreen, and 100@50
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Operator Precedence and 

Associativity

 The use of infix, prefix, and postfix notation sometimes lead to 

ambiguity as to what is an operand of what

 Fortran example: a+b*c**d**e/f

 Operator precedence: higher operator precedence means that a 

(collection of) operator(s) group more tightly in an expression than 

operators of lower precedence

 Operator associativity: determines evaluation order of operators of 

the same precedence

 Left associative: operators are evaluated left-to-right (most common)

 Right associative: operators are evaluated right-to-left (Fortran power 

operator **, C assignment operator = and unary minus)

 Non-associative: requires parenthesis when composed (Ada power 

operator **)
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Operator Precedence and 

Associativity

 Pascal's flat precedence levels is a design mistake

if A<B and C<D then

is the same as

if A<(B and C)<D then

 Note: levels of operator precedence and associativity are 
easily captured in a grammar as we saw earlier



COP4020 Fall 2011 328/4/2011

Evaluation Order of Expressions

 Precedence and associativity state the rules for structuring 
expressions, but do not determine the operand evaluation order!

 Expression
a-f(b)-b*c

is structured as
(a-f(b))-(b*c)

but either (a-f(b)) or (b*c) can be evaluated first

 The evaluation order of arguments in function and subroutine calls 
may differ, e.g. arguments evaluated from left to right or right to left

 Knowing the operand evaluation order is important

 Side effects: suppose f(b) above modifies the value of b (f(b) has a 
“side effect”) then the value will depend on the operand evaluation order

 Code improvement: compilers rearrange expressions to maximize 
efficiency, e.g. a compiler can improve memory load efficiency by 
moving loads up in the instruction stream
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Expression Operand Reordering 

Issues

 Rearranging expressions may lead to arithmetic overflow or different 
floating point results
 Assume b, d, and c are very large positive integers, then if b-c+d is 

rearranged into (b+d)-c arithmetic overflow occurs

 Floating point value of b-c+d may differ from b+d-c

 Most programming languages will not rearrange expressions when 
parenthesis are used, e.g. write (b-c)+d to avoid problems

 Design choices:

 Java: expressions evaluation is always left to right in the order operands 
are provided in the source text and overflow is always detected

 Pascal: expression evaluation is unspecified and overflows are always 
detected

 C anc C++: expression evaluation is unspecified and overflow detection 
is implementation dependent

 Lisp: no limit on number representation
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Short-Circuit Evaluation

 Short-circuit evaluation of Boolean expressions: the result of an 
operator can be determined from the evaluation of just one operand

 Pascal does not use short-circuit evaluation

 The program fragment below has the problem that element a[11] is 
read resulting in a dynamic semantic error:
var a:array [1..10] of integer;

... 

i := 1; 

while i<=10 and a[i]<>0 do 

i := i+1

 C, C++, and Java use short-circuit conditional and/or operators

 If a in a&&b evaluates to false, b is not evaluated

 If a in a||b evaluates to true, b is not evaluated

 Avoids the Pascal problem, e.g.
while (i <= 10 && a[i] != 0) ...

 Ada uses and then and or else, e.g. cond1 and then cond2

 Ada, C, and C++ also have regular bit-wise Boolean operators
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Assignments and Expressions

 Fundamental difference between imperative and 
functional languages

 Imperative: "computing by means of side effects”
 Computation is an ordered series of changes to values of 

variables in memory (state) and statement ordering is influenced 
by run-time testing values of variables

 Expressions in functional language are referentially 
transparent:
 All values used and produced depend on the local referencing 

environment of the expression

 A function is idempotent in a functional language: it always 
returns the same value given the same arguments because of 
the absence of side-effects
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L-Values vs. R-Values and Value 

Model vs. Reference Model

 Consider the assignment of the form: a := b

 The left-hand side a of the assignment is an l-value which is an 
expression that should denote a location, e.g. array element a[2] or a 
variable foo or a dereferenced pointer *p

 The right-hand side b of the assignment is an r-value which can be any 
syntactically valid expression with a type that is compatible to the left-
hand side

 Languages that adopt the value model of variables copy the value of 
b into the location of a (e.g. Ada, Pascal, C)

 Languages that adopt the reference model of variables copy 
references, resulting in shared data values via multiple references

 Clu copies the reference of b into a so that a and b refer to the same 
object

 Java is a mix: it uses the value model for built-in types and the 
reference model for class instances
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Special Cases of Assignments

 Assignment by variable initialization

 Use of uninitialized variable is source of many problems, sometimes 
compilers are able to detect this but with programmer involvement e.g. 
definite assignment requirement in Java

 Implicit initialization, e.g. 0 or NaN (not a number) is assigned by default 
when variable is declared

 Combinations of assignment operators

 In C/C++ a+=b is equivalent to a=a+b (but a[i++]+=b is different from 
a[i++]=a[i++]+b, ouch!)

 Compiler produces better code, because the address of a variable is 
only calculated once

 Multiway assignments in Clu, ML, and Perl

 a,b := c,d assigns c to a and d to b simultaneously, e.g. a,b := 
b,a swaps a with b

 a,b := 1 assigns 1 to both a and b


