
COP4020

Programming

Languages

Control Flow

Robert van Engelen & Chris Lacher

COP4020 Fall 2011 28/4/2011

Overview

 Structured and unstructured flow

 Goto's

 Sequencing

 Selection

 Iteration and iterators

 Recursion

 Nondeterminacy

 Expressions evaluation

 Evaluation order

 Assignments

COP4020 Fall 2011 38/4/2011

Control Flow: Ordering the

Execution of a Program

 Constructs for specifying the execution order:

1. Sequencing: the execution of statements and evaluation of expressions
is usually in the order in which they appear in a program text

2. Selection (or alternation): a run-time condition determines the choice
among two or more statements or expressions

3. Iteration: a statement is repeated a number of times or until a run-time
condition is met

4. Procedural abstraction: subroutines encapsulate collections of
statements and subroutine calls can be treated as single statements

5. Recursion: subroutines which call themselves directly or indirectly to
solve a problem, where the problem is typically defined in terms of
simpler versions of itself

6. Concurrency: two or more program fragments executed in parallel,
either on separate processors or interleaved on a single processor

7. Nondeterminacy: the execution order among alternative constructs is
deliberately left unspecified, indicating that any alternative will lead to a
correct result

COP4020 Fall 2011 48/4/2011

Structured and Unstructuted

Flow

 Unstructured flow: the use of goto statements and
statement labels to implement control flow
 Merit or evil?

 Generally considered bad, but sometimes useful for jumping out
of nested loops and for coding the flow of exceptions (when a
language does not support exception handling)

 Java has no goto statement (supports labeled loops and breaks)

 Structured flow:
 Statement sequencing

 Selection with “if-then-else” statements and “switch” statements

 Iteration with “for” and “while” loop statements

 Subroutine calls (including recursion)

 All of which promotes “structured programming”

COP4020 Fall 2011 58/4/2011

Sequencing

 A list of statements in a program text is executed in top-

down order

 A compound statement is a delimited list of statements

 A compund statement is called a block when it includes variable

declarations

 C, C++, and Java use { and } to delimit a block

 Pascal and Modula use begin ... end

 Ada uses declare ... begin ... end

 Special cases: in C, C++, and Java expressions can be

inserted as statements

 In pure functional languages sequencing is impossible

(and not desired!)

COP4020 Fall 2011 68/4/2011

Selection

 If-then-else selection statements in C and C++:

 if (<expr>) <stmt> [else <stmt>]

 Condition is a bool, integer, or pointer

 Grouping with { and } is required for statement sequences in the then
clause and else clause

 Syntax ambiguity is resolved with “an else matches the closest if” rule

 Conditional expressions, e.g. if and cond in Lisp and a?b:c in C

 Java syntax is like C/C++, but condition must be Boolean

 Ada syntax supports multiple elsif's to define nested conditions:

 if <cond> then
<statements>
elsif <cond> then
...
else

<statements>
end if

COP4020 Fall 2011 78/4/2011

Selection (cont’d)

 Case/switch statements are different from if-then-else statements in
that an expression can be tested against multiple constants to select
statement(s) in one of the arms of the case statement:

 C, C++, and Java:
switch (<expr>)
{ case <const>: <statements> break;
case <const>: <statements> break;
...
default: <statements>

}

 A break is necessary to transfer control at the end of an arm to the end
of the switch statement

 Most programming languages support a switch-like statement, but do
not require the use of a break in each arm

 A switch statement is much more efficient compared to nested if-
then-else statements

COP4020 Fall 2011 88/4/2011

Iteration

 Enumeration-controlled loops repeat a collection of

statements a number of times, where in each iteration a

loop index variable takes the next value of a set of

values specified at the beginning of the loop

 Logically-controlled loops repeat a collection of

statements until some Boolean condition changes value

in the loop

 Pretest loops test condition at the begin of each iteration

 Posttest loops test condition at the end of each iteration

 Midtest loops allow structured exits from within loop with exit

conditions

COP4020 Fall 2011 98/4/2011

Enumeration-Controlled Loops

 History of failures on design of enumeration-controlled loops

 Fortran-IV:
DO 20 i = 1, 10, 2

...

20 CONTINUE

which is defined to be equivalent to
i = 1

20 ...

i = i + 2

IF i.LE.10 GOTO 20

Problems:

 Requires positive constant loop bounds (1 and 10) and step size (2)

 If loop index variable i is modified in the loop body, the number of
iterations is changed compared to the iterations set by the loop bounds

 GOTOs can jump out of the loop and also from outside into the loop

 The value of counter i after the loop is implementation dependent

 The body of the loop will be executed at least once (no empty bounds)

COP4020 Fall 2011 108/4/2011

Enumeration-Controlled Loops

(cont’d)

 Fortran-77:

 Same syntax as in Fortran-IV, but many dialects support ENDDO instead
of CONTINUE statements

 Can jump out of the loop, but cannot jump from outside into the loop

 Assignments to counter i in loop body are not allowed

 Number of iterations is determined by
max((H-L+S)/S, 0)

for lower bound L, upper bound H, step size S

 Body is not executed when (H-L+S)/S < 0

 Either integer-valued or real-valued expressions for loop bounds and
step sizes

 Changes to the variables used in the bounds do not affect the number
of iterations executed

 Terminal value of loop index variable is the most recent value assigned,
which is

L + S*max((H-L+S)/S, 0)

COP4020 Fall 2011 118/4/2011

Enumeration-Controlled Loops

(cont’d)

 Algol-60 combines logical conditions in combination

loops:
for <id> := <forlist> do <stmt>

where the syntax of <forlist> is

<forlist> ::= <enumerator> [, enumerator]*

<enumerator> ::= <expr>
| <expr> step <expr> until <expr>

| <expr> while <cond>

 Not orthogonal: many forms that behave the same:
for i := 1, 3, 5, 7, 9 do ...

for i := 1 step 2 until 10 do ...

for i := 1, i+2 while i < 10 do ...

COP4020 Fall 2011 128/4/2011

Enumeration-Controlled Loops

(cont’d)

 Pascal’s enumeration-controlled loops have simple and

elegant design with two forms for up and down:
for <id> := <expr> to <expr> do <stmt>

and
for <id> := <expr> downto <expr> do <stmt>

 Can iterate over any discrete type, e.g. integers, chars,

elements of a set

 Lower and upper bound expressions are evaluated once

to determine the iteration range

 Counter variable cannot be assigned in the loop body

 Final value of loop counter after the loop is undefined

COP4020 Fall 2011 138/4/2011

Enumeration-Controlled Loops

(cont’d)

 Ada’s for loop is much like Pascal's:
for <id> in <expr> .. <expr> loop
<statements>
end loop

and
for <id> in reverse <expr> .. <expr> loop
<statements>
end loop

 Lower and upper bound expressions are evaluated once
to determine the iteration range

 Counter variable has a local scope in the loop body
 Not accessible outside of the loop

 Counter variable cannot be assigned in the loop body

COP4020 Fall 2011 148/4/2011

Enumeration-Controlled Loops

(cont’d)

 C, C++, and Java do not have true enumeration-controlled loops

 A “for” loop is essentially a logically-controlled loop
for (i = 1; i <= n; i++) ...

which iterates i from 1 to n by testing i <= n before the start of

each iteration and updating i by 1 in each iteration

 Why is this not enumeration controlled?

 Assignments to counter i and variables in the bounds are allowed, thus

it is the programmer's responsibility to structure the loop to mimic

enumeration loops

 Use continue to jump to next iteration

 Use break to exit loop

 C++ and Java also support local scoping for counter variable
for (int i = 1; i <= n; i++) ...

COP4020 Fall 2011 158/4/2011

Enumeration-Controlled Loops

(cont’d)

 Other problems with C/C++ for loops to emulate enumeration-

controlled loops are related to the mishandling of bounds and limits

of value representations

 This C program never terminates (do you see why?)
#include <limits.h> // INT_MAX is max int value

main()

{ int i;

for (i = 0; i <= INT_MAX; i++)

printf(“Iteration %d\n”, i);

}

 This C program does not count from 0.0 to 10.0, why?
main()

{ float n;

for (n = 0.0; n <= 10; n += 0.01)

printf(“Iteration %g\n”, n);

}

COP4020 Fall 2011 168/4/2011

Enumeration-Controlled Loops

(cont’d)

 How is loop iteration counter overflow handled?

 C, C++, and Java: nope

 Fortran-77

 Calculate the number of iterations in advance

 For REAL typed index variables an exception is raised when

overflow occurs

 Pascal and Ada

 Only specify step size 1 and -1 and detection of the end of the

iterations is safe

 Pascal’s final counter value is undefined (may have wrapped)

COP4020 Fall 2011 178/4/2011

Iterators

 Iterators are used to iterate over elements of containers such as

sets and data structures such as lists and trees

 Iterator objects are also called enumerators or generators

 C++ iterators are associated with a container object and used in

loops similar to pointers and pointer arithmetic:

vector<int> V;

…

for (vector<int>::iterator it = V.begin(); it != V.end(); ++it)

cout << *n << endl;

An in-order tree traversal:

tree_node<int> T;

…

for (tree_node<int>::iterator it = T.begin(); it != T.end(); ++it)

cout << *n << endl;

COP4020 Fall 2011 188/4/2011

Iterators (cont’d)

 Java supports generics similar to C++ templates

 Iterators are similar to C++, but do not have the usual C++

overloaded iterator operators:

TreeNode<Integer> T;

…

for (Integer i : T)

System.out.println(i);

Note that Java has the above special for-loop for iterators that is

essentially syntactic sugar for:

for (Iterator<Integer> it = T.iterator(); it.hasNext();)

{ Integer i = it.next();

System.out.println(i);

}

COP4020 Fall 2011 198/4/2011

Iterators (cont’d)

 Iterators typically need special loops to produce
elements one by one, e.g. in Clu:

for i in int$from_to_by(first, last, step) do

…

end

 While Java and C++ use iterator objects that hold the
state of the iterator, Clu, Python, Ruby, and C# use
generators (=“true iterators”) which are functions that run
in “parallel” to the loop code to produce elements
 The yield operation in Clu returns control to the loop body

 The loop returns control to the generator’s last yield operation to
allow it to compute the value for the next iteration

 The loop terminates when the generator function returns

COP4020 Fall 2011 208/4/2011

Logically-Controlled Pretest

loops

 Logically-controlled pretest loops check the exit condition before the

next loop iteration

 Not available Fortran-77

 Ada has only one kind of logically-controlled loops: midtest loops

 Pascal:
while <cond> do <stmt>

where the condition is a Boolean-typed expression

 C, C++:
while (<expr>) <stmt>

where the loop terminates when the condition evaluates to 0, NULL,

or false

 Use continue and break to jump to next iteration or exit the loop

 Java is similar C++, but condition is restricted to Boolean

COP4020 Fall 2011 218/4/2011

Logically-Controlled Posttest

Loops

 Logically-controlled posttest loops check the exit condition after

each loop iteration

 Not available in Fortran-77

 Ada has only one kind of logically-controlled loops: midtest loops

 Pascal:
repeat <stmt> [; <stmt>]* until <cond>

where the condition is a Boolean-typed expression and the loop

terminates when the condition is true

 C, C++:
do <stmt> while (<expr>)

where the loop terminates when the expression evaluates to 0,

NULL, or false

 Java is similar to C++, but condition is restricted to Boolean

COP4020 Fall 2011 228/4/2011

Logically-Controlled Midtest

Loops

 Ada supports logically-controlled midtest loops check exit conditions
anywhere within the loop:
loop

<statements>
exit when <cond>;

<statements>
exit when <cond>;

...
end loop

 Ada also supports labels, allowing exit of outer loops without gotos:
outer: loop

...

for i in 1..n loop

...

exit outer when a[i]>0;

...

end loop;

end outer loop;

COP4020 Fall 2011 238/4/2011

Recursion

 Recursion: subroutines that call themselves directly or indirectly

(mutual recursion)

 Typically used to solve a problem that is defined in terms of simpler

versions, for example:

 To compute the length of a list, remove the first element, calculate the

length of the remaining list in n, and return n+1

 Termination condition: if the list is empty, return 0

 Iteration and recursion are equally powerful in theoretical sense

 Iteration can be expressed by recursion and vice versa

 Recursion is more elegant to use to solve a problem that is naturally

recursively defined, such as a tree traversal algorithm

 Recursion can be less efficient, but most compilers for functional

languages are often able to replace it with iterations

COP4020 Fall 2011 248/4/2011

Tail-Recursive Functions

 Tail-recursive functions are functions in which no operations follow

the recursive call(s) in the function, thus the function returns

immediately after the recursive call:

tail-recursive not tail-recursive
int trfun() int rfun()

{ … { …

return trfun(); return rfun()+1;

} }

 A tail-recursive call could reuse the subroutine's frame on the run-

time stack, since the current subroutine state is no longer needed

 Simply eliminating the push (and pop) of the next frame will do

 In addition, we can do more for tail-recursion optimization: the

compiler replaces tail-recursive calls by jumps to the beginning of

the function

COP4020 Fall 2011 258/4/2011

Tail-Recursion Optimization

 Consider the GCD function:
int gcd(int a, int b)

{ if (a==b) return a;

else if (a>b) return gcd(a-b, b);

else return gcd(a, b-a);

}

a good compiler will optimize the function into:
int gcd(int a, int b)

{ start:

if (a==b) return a;

else if (a>b) { a = a-b; goto start; }

else { b = b-a; goto start; }

}

which is just as efficient as the iterative version:
int gcd(int a, int b)

{ while (a!=b)

if (a>b) a = a-b;

else b = b-a;

return a;

}

COP4020 Fall 2011 268/4/2011

Converting Recursive Functions

to Tail-Recursive Functions

 Remove the work after the recursive call and include it in some other
form as a computation that is passed to the recursive call

 For example, the non-tail-recursive function

(define summation (lambda (f low high)
(if (= low high)

(f low)
(+ (f low) (summation f (+ low 1) high)))))

can be rewritten into a tail-recursive function:

(define summation (lambda (f low high subtotal)
(if (=low high)

(+ subtotal (f low))
(summation f (+ low 1) high (+ subtotal (f low))))))

COP4020 Fall 2011 278/4/2011

Example

 Here is the same example in C:

typedef int (*int_func)(int);

int summation(int_func f, int low, int high)

{ if (low == high)

return f(low)

else

return f(low) + summation(f, low+1, high);

}

rewritten into the tail-recursive form:

int summation(int_func f, int low, int high, int subtotal)

{ if (low == high)

return subtotal+f(low)

else

return summation(f, low+1, high, subtotal+f(low));

}

COP4020 Fall 2011 288/4/2011

When Recursion is Bad

 The Fibonacci function implemented as a recursive function is very
inefficient as it takes exponential time to compute:

(define fib (lambda (n)
(cond ((= n 0) 1)

((= n 1) 1)
(else (+ (fib (- n 1)) (fib (- n 2)))))))

with a tail-recursive helper function, we can run it in O(n) time:

(define fib (lambda (n)
(letrec ((fib-helper (lambda (f1 f2 i)

(if (= i n)
f2
(fib-helper f2 (+ f1 f2) (+ i 1))))))

(fib-helper 0 1 0))))

COP4020 Fall 2011 298/4/2011

Expression Syntax and Effect

on Evaluation Order

 An expression consists of
 An atomic object, e.g. number or variable

 An operator applied to a collection of operands (or arguments)
that are expressions

 Common syntactic forms for operators:
 Function call notation, e.g. somefunc(A, B, C)

 Infix notation for binary operators, e.g. A + B

 Prefix notation for unary operators, e.g. -A

 Postfix notation for unary operators, e.g. i++

 Cambridge Polish notation, e.g. (* (+ 1 3) 2) in Lisp

 "Multi-word" infix, e.g. a>b?a:b in C and
myBox displayOn: myScreen at: 100@50

in Smalltalk, where displayOn: and at: are written infix with
arguments mybox, myScreen, and 100@50

COP4020 Fall 2011 308/4/2011

Operator Precedence and

Associativity

 The use of infix, prefix, and postfix notation sometimes lead to

ambiguity as to what is an operand of what

 Fortran example: a+b*c**d**e/f

 Operator precedence: higher operator precedence means that a

(collection of) operator(s) group more tightly in an expression than

operators of lower precedence

 Operator associativity: determines evaluation order of operators of

the same precedence

 Left associative: operators are evaluated left-to-right (most common)

 Right associative: operators are evaluated right-to-left (Fortran power

operator **, C assignment operator = and unary minus)

 Non-associative: requires parenthesis when composed (Ada power

operator **)

COP4020 Fall 2011 318/4/2011

Operator Precedence and

Associativity

 Pascal's flat precedence levels is a design mistake

if A<B and C<D then

is the same as

if A<(B and C)<D then

 Note: levels of operator precedence and associativity are
easily captured in a grammar as we saw earlier

COP4020 Fall 2011 328/4/2011

Evaluation Order of Expressions

 Precedence and associativity state the rules for structuring
expressions, but do not determine the operand evaluation order!

 Expression
a-f(b)-b*c

is structured as
(a-f(b))-(b*c)

but either (a-f(b)) or (b*c) can be evaluated first

 The evaluation order of arguments in function and subroutine calls
may differ, e.g. arguments evaluated from left to right or right to left

 Knowing the operand evaluation order is important

 Side effects: suppose f(b) above modifies the value of b (f(b) has a
“side effect”) then the value will depend on the operand evaluation order

 Code improvement: compilers rearrange expressions to maximize
efficiency, e.g. a compiler can improve memory load efficiency by
moving loads up in the instruction stream

COP4020 Fall 2011 338/4/2011

Expression Operand Reordering

Issues

 Rearranging expressions may lead to arithmetic overflow or different
floating point results
 Assume b, d, and c are very large positive integers, then if b-c+d is

rearranged into (b+d)-c arithmetic overflow occurs

 Floating point value of b-c+d may differ from b+d-c

 Most programming languages will not rearrange expressions when
parenthesis are used, e.g. write (b-c)+d to avoid problems

 Design choices:

 Java: expressions evaluation is always left to right in the order operands
are provided in the source text and overflow is always detected

 Pascal: expression evaluation is unspecified and overflows are always
detected

 C anc C++: expression evaluation is unspecified and overflow detection
is implementation dependent

 Lisp: no limit on number representation

COP4020 Fall 2011 348/4/2011

Short-Circuit Evaluation

 Short-circuit evaluation of Boolean expressions: the result of an
operator can be determined from the evaluation of just one operand

 Pascal does not use short-circuit evaluation

 The program fragment below has the problem that element a[11] is
read resulting in a dynamic semantic error:
var a:array [1..10] of integer;

...

i := 1;

while i<=10 and a[i]<>0 do

i := i+1

 C, C++, and Java use short-circuit conditional and/or operators

 If a in a&&b evaluates to false, b is not evaluated

 If a in a||b evaluates to true, b is not evaluated

 Avoids the Pascal problem, e.g.
while (i <= 10 && a[i] != 0) ...

 Ada uses and then and or else, e.g. cond1 and then cond2

 Ada, C, and C++ also have regular bit-wise Boolean operators

COP4020 Fall 2011 358/4/2011

Assignments and Expressions

 Fundamental difference between imperative and
functional languages

 Imperative: "computing by means of side effects”
 Computation is an ordered series of changes to values of

variables in memory (state) and statement ordering is influenced
by run-time testing values of variables

 Expressions in functional language are referentially
transparent:
 All values used and produced depend on the local referencing

environment of the expression

 A function is idempotent in a functional language: it always
returns the same value given the same arguments because of
the absence of side-effects

COP4020 Fall 2011 368/4/2011

L-Values vs. R-Values and Value

Model vs. Reference Model

 Consider the assignment of the form: a := b

 The left-hand side a of the assignment is an l-value which is an
expression that should denote a location, e.g. array element a[2] or a
variable foo or a dereferenced pointer *p

 The right-hand side b of the assignment is an r-value which can be any
syntactically valid expression with a type that is compatible to the left-
hand side

 Languages that adopt the value model of variables copy the value of
b into the location of a (e.g. Ada, Pascal, C)

 Languages that adopt the reference model of variables copy
references, resulting in shared data values via multiple references

 Clu copies the reference of b into a so that a and b refer to the same
object

 Java is a mix: it uses the value model for built-in types and the
reference model for class instances

COP4020 Fall 2011 378/4/2011

Special Cases of Assignments

 Assignment by variable initialization

 Use of uninitialized variable is source of many problems, sometimes
compilers are able to detect this but with programmer involvement e.g.
definite assignment requirement in Java

 Implicit initialization, e.g. 0 or NaN (not a number) is assigned by default
when variable is declared

 Combinations of assignment operators

 In C/C++ a+=b is equivalent to a=a+b (but a[i++]+=b is different from
a[i++]=a[i++]+b, ouch!)

 Compiler produces better code, because the address of a variable is
only calculated once

 Multiway assignments in Clu, ML, and Perl

 a,b := c,d assigns c to a and d to b simultaneously, e.g. a,b :=
b,a swaps a with b

 a,b := 1 assigns 1 to both a and b

