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Overview

m Structured and unstructured flow
Goto's
Sequencing
Selection
Iteration and iterators
Recursion
Nondeterminacy

m EXxpressions evaluation
Evaluation order
Assignments
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Control Flow: Ordering the
Execution of a Program

m Constructs for specifying the execution order:

Sequencing: the execution of statements and evaluation of expressions
Is usually in the order in which they appear in a program text

Selection (or alternation): a run-time condition determines the choice
among two or more statements or expressions

Iteration: a statement is repeated a number of times or until a run-time
condition is met

Procedural abstraction: subroutines encapsulate collections of
statements and subroutine calls can be treated as single statements

Recursion: subroutines which call themselves directly or indirectly to
solve a problem, where the problem is typically defined in terms of
simpler versions of itself

Concurrency: two or more program fragments executed in parallel,
either on separate processors or interleaved on a single processor

Nondeterminacy: the execution order among alternative constructs is
deliberately left unspecified, indicating that any alternative will lead to a
correct result
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Structured and Unstructuted

Flow

m Unstructured flow: the use of goto statements and
statement labels to implement control flow

Merit or evil?

Generally considered bad, but sometimes useful for jumping out
of nested loops and for coding the flow of exceptions (when a
language does not support exception handling)

Java has no goto statement (supports labeled loops and breaks)

m Structured flow:

Statement sequencing
Selection with “if-then-else” statements and “switch” statements

lteration with “for” and “while” loop statements
Subroutine calls (including recursion)
All of which promotes “structured programming”
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Sequencing

m A list of statements in a program text is executed in top-
down order

m A compound statement is a delimited list of statements

A compund statement is called a block when it includes variable
declarations

C, C++, and Java use { and } to delimit a block
Pascal and Modula use begin ... end
Ada uses declare ... begin ... end

m Special cases: in C, C++, and Java expressions can be
Inserted as statements

m In pure functional languages sequencing is impossible
(and not desired!)
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Selection

m [f-then-else selection statements in C and C++;
if (<expr>) <stmt> [else <stmt>]
Condition is a bool, integer, or pointer

Grouping with { and } is required for statement sequences in the then
clause and else clause

Syntax ambiguity is resolved with “an else matches the closest if” rule
m Conditional expressions, e.g. 1£ and cond in Lisp and a?b:cin C
m Java syntax is like C/C++, but condition must be Boolean
m Ada syntax supports multiple elsif's to define nested conditions:

if <cond> then
<statements>
elsif <cond> then

else
<statements>
end if
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Selection (cont’d)

m Case/switch statements are different from if-then-else statements in
that an expression can be tested against multiple constants to select
statement(s) in one of the arms of the case statement:

C, C++, and Java:

switch (<expr>)

{ case <const>: <statements> break;
case <const>: <statements> break;

default: <statements>

}

A break is necessary to transfer control at the end of an arm to the end
of the switch statement

Most programming languages support a switch-like statement, but do
not require the use of a break in each arm

m A switch statement is much more efficient compared to nested if-
then-else statements
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Iteration

m Enumeration-controlled loops repeat a collection of
statements a number of times, where in each iteration a
loop index variable takes the next value of a set of
values specified at the beginning of the loop

m Logically-controlled loops repeat a collection of
statements until some Boolean condition changes value
In the loop
Pretest loops test condition at the begin of each iteration
Posttest loops test condition at the end of each iteration

Midtest loops allow structured exits from within loop with exit
conditions
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Enumeration-Controlled Loops

m History of failures on design of enumeration-controlled loops
m Fortran-1V:
DO 20 i = 1, 10, 2
20 CONTINUE
which is defined to be equivalent to

i=1
20 ...
i=4i+2
IF i.LE.10 GOTO 20
Problems:

Requires positive constant loop bounds (1 and 10) and step size (2)

If loop index variable i is modified in the loop body, the number of
iterations is changed compared to the iterations set by the loop bounds

GOTOs can jump out of the loop and also from outside into the loop

The value of counter i after the loop is implementation dependent

The body of the loop will be executed at least once (no empty bounds)
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Enumeration-Controlled Loops
(cont’d)

m Fortran-/7:

8/4/2011

Same syntax as in Fortran-1V, but many dialects support ENDDO instead
of CONTINUE statements

Can jump out of the loop, but cannot jump from outside into the loop
Assignments to counter i in loop body are not allowed

Number of iterations is determined by
max(_(H-L+S)/S], 0)
for lower bound L, upper bound H, step size S
Body is not executed when (H-L+S)/S <0
Either integer-valued or real-valued expressions for loop bounds and
step sizes

Changes to the variables used in the bounds do not affect the number
of iterations executed
Terminal value of loop index variable is the most recent value assigned,
which is

L + S*max(L(H-L+S)/S], 0)
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Enumeration-Controlled Loops
(cont’d)

m Algol-60 combines logical conditions in combination
loops:
for <id> .= <forlist> do <stmt>
where the syntax of <forlist> is
<forlist> .= <enumerator> [, enumerator]*
<enumerator> ::= <expr>
| <expr> step <expr>until <expr>
| <expr> while <cond>

m Not orthogonal: many forms that behave the same:
for i :=1, 3, 5, 7, 9 do ...
for 1 := 1 step 2 until 10 do .
for i 1, i+2 while i < 10 do

8/4/2011 COP4020 Fall 2011 11



Enumeration-Controlled Loops
(cont’d)

m Pascal’'s enumeration-controlled loops have simple and

elegant design with two forms for up and down:
for <id> = <expr> to <expr> do <stmt>

and
for <id> ;= <expr> downto <expr> do <stmt>

m Can iterate over any discrete type, e.g. integers, chars,
elements of a set

m Lower and upper bound expressions are evaluated once
to determine the iteration range

m Counter variable cannot be assigned in the loop body
m Final value of loop counter after the loop is undefined
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Enumeration-Controlled Loops
(cont’d)

m Ada’s for loop is much like Pascal's:

for <id> in <expr> .. <expr> loop
<statements>

end loop

and

for <id> in reverse <expr> .. <expr> loop
<statements>

end loop

m Lower and upper bound expressions are evaluated once
to determine the iteration range

m Counter variable has a local scope in the loop body
Not accessible outside of the loop

m Counter variable cannot be assigned in the loop body
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Enumeration-Controlled Loops
(cont’d)

C, C++, and Java do not have true enumeration-controlled loops
m A “for” loop is essentially a logically-controlled loop
for (1 = 1; 1 <= n; i++)
which iterates i from 1 to n by testing i <= n before the start of
each iteration and updating i by 1 in each iteration

m  Why is this not enumeration controlled?

Assignments to counter i and variables in the bounds are allowed, thus
it is the programmer's responsibility to structure the loop to mimic
enumeration loops

m Use continue to jump to next iteration
m Use break to exit loop

m C++ and Java also support local scoping for counter variable
for (int 1 = 1; 1 <= n; i++)
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Enumeration-Controlled Loops
(cont’d)

Other problems with C/C++ for loops to emulate enumeration-
controlled loops are related to the mishandling of bounds and limits
of value representations

This C program never terminates (do you see why?)
#include <limits.h> // INT MAX is max int value
main ()

{ int i;
for (i = 0; i <= INT MAX; i++)
printf (“Iteration %d\n”, 1i);
}

This C program does not count from 0.0 to 10.0, why?
main ()
{ £float n;
for (n = 0.0; n <= 10; n += 0.01)
printf (“Iteration %g\n”, n);
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Enumeration-Controlled Loops
(cont’d)
m How is loop iteration counter overflow handled?

m C, C++, and Java: nope

m Fortran-77/
Calculate the number of iterations in advance
For REAL typed index variables an exception is raised when

overflow occurs
m Pascal and Ada

Only specify step size 1 and -1 and detection of the end of the
iterations is safe

Pascal’s final counter value is undefined (may have wrapped)
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Iterators

m |terators are used to iterate over elements of containers such as
sets and data structures such as lists and trees

m [terator objects are also called enumerators or generators

m C++ iterators are associated with a container object and used in
loops similar to pointers and pointer arithmetic:

vector<int> V;

for (vector<int>::iterator it = V.begin(); it !'= V.end(); ++it)
cout << *n << endl;

An in-order tree traversal:

tree_node<int> T,

for (tree node<int>::iterator it = T.begin(); it != T.end(); ++it)
cout << *n << endl;
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Iterators (cont’d)

Java supports generics similar to C++ templates

Iterators are similar to C++, but do not have the usual C++
overloaded iterator operators:

TreeNode<Integer> T;

for (Integer i : T)
System.out.println (i) ;

Note that Java has the above special for-loop for iterators that is
essentially syntactic sugar for:

for (Iterator<Integer> it = T.iterator(); it.hasNext(); )
{ Integer i = it.next();

System.out.println (i) ;
}
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Iterators (cont’d)

m [terators typically need special loops to produce
elements one by one, e.g. in Clu:

for i in int$from to by (first, last, step) do

end

m While Java and C++ use iterator objects that hold the
state of the iterator, Clu, Python, Ruby, and C# use
generators (="true iterators”) which are functions that run
in “parallel” to the loop code to produce elements

The yield operation in Clu returns control to the loop body

The loop returns control to the generator’s last yield operation to
allow it to compute the value for the next iteration

The loop terminates when the generator function returns
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Logically-Controlled Pretest
loops

Logically-controlled pretest loops check the exit condition before the
next loop iteration
Not available Fortran-77
Ada has only one kind of logically-controlled loops: midtest loops
Pascal:
while <cond> do <stmt>
where the condition is a Boolean-typed expression
C, C++:
while (<expr>) <stmt>
where the loop terminates when the condition evaluates to 0, NULL,

or false
Use continue and break to jump to next iteration or exit the loop

Java is similar C++, but condition is restricted to Boolean
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Logically-Controlled Posttest
Loops

Logically-controlled posttest loops check the exit condition after
each loop iteration

Not available in Fortran-77

Ada has only one kind of logically-controlled loops: midtest loops
Pascal:

repeat <stmt> [; <stmt>]* until <cond>
where the condition is a Boolean-typed expression and the loop
terminates when the condition is true
C, C++:

do <stmt> while (<expr>)
where the loop terminates when the expression evaluates to O,
NULL, or false

Java is similar to C++, but condition is restricted to Boolean
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Logically-Controlled Midtest
Loops

Ada supports logically-controlled midtest loops check exit conditions

anywhere within the loop:
loop
<statements>
exit when <cond>;
<statements>
exit when <cond>;

end loop

Ada also supports labels, allowing exit of outer loops without gotos:
outer: loop

for 1 in 1..n loop
exit outer when a[i]>O0;

end loop;
end outer loop;
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Recursion

m Recursion: subroutines that call themselves directly or indirectly
(mutual recursion)

m Typically used to solve a problem that is defined in terms of simpler
versions, for example:

To compute the length of a list, remove the first element, calculate the
length of the remaining list in n, and return n+1

Termination condition: if the list is empty, return O
m |teration and recursion are equally powerful in theoretical sense
Iteration can be expressed by recursion and vice versa

m Recursion is more elegant to use to solve a problem that is naturally
recursively defined, such as a tree traversal algorithm

m Recursion can be less efficient, but most compilers for functional
languages are often able to replace it with iterations
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Tail-Recursive Functions

m Tail-recursive functions are functions in which no operations follow
the recursive call(s) in the function, thus the function returns
Immediately after the recursive call:

tail-recursive not tail-recursive
int trfun|() int rfun|()
{ .. { ..
return trfun(); return rfun()+1;
} }

m A tail-recursive call could reuse the subroutine's frame on the run-
time stack, since the current subroutine state is no longer needed

Simply eliminating the push (and pop) of the next frame will do

m |n addition, we can do more for tail-recursion optimization: the
compiler replaces tail-recursive calls by jumps to the beginning of
the function
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Tail-Recursion Optimization

m Consider the GCD function:
int gecd(int a, int b)
{ 1if (a==b) return a;
else if (a>b) return gcd(a-b, b);
else return gcd(a, b-a);
}
a good compiler will optimize the function into:

int gecd(int a, int b)

{ start:
if (a==b) return a;
else if (a>b) { a = a-b; goto start; }
else { b = b-a; goto start; }

}
which is just as efficient as the iterative version:

int gcd(int a, int b)
{ while (a!=Db)

if (a>b) a = a-b;
else b = b-a;
return a;

}
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Converting Recursive Functions
to Tail-Recursive Functions

m Remove the work after the recursive call and include it in some other
form as a computation that is passed to the recursive call

m For example, the non-tail-recursive function

(define summation (lambda (f low high)
(if (= low high)
(f low)
(+ (f low) (summation f (+ low 1) high)))))

can be rewritten into a tail-recursive function:
(define summation (lambda (f low high subtotal)
(if (=low high)

(+ subtotal (f low))
(summation f (+ low 1) high (+ subtotal (f low))))))
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Example

m Here is the same example in C:

typedef int (*int func) (int);
int summation(int func £, int low, int high)
{ if (low == high)
return f (low)
else
return f(low) + summation(f, low+l, high) ;

}
rewritten into the tail-recursive form:

int summation(int func £, int low, int high, int subtotal)
{ if (low == high)
return subtotal+f (low)

else
return summation(f, low+l, high, subtotal+f(low))

}
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When Recursion is Bad

m The Fibonacci function implemented as a recursive function is very
Inefficient as it takes exponential time to compute:

(define fib (lambda (n)
(cond ((=n0)1)
(=n1)1) |
(else (+ (fib (- n 1)) (fib (- n 2)))))))

with a tail-recursive helper function, we can run it in O(n) time:

(define fib (lambda (n)
(letrec ((fib-helper (lambda (f1 f2 i)

(if (= i n)
2

(fib-helper 2 (+ f1 f2) (+i 1))))))
(fib-helper 0 1 0))))

8/4/2011 COP4020 Fall 2011



Expression Syntax and Effect
on Evaluation Order

m An expression consists of
An atomic object, e.g. number or variable
An operator applied to a collection of operands (or arguments)
that are expressions

m  Common syntactic forms for operators:
Function call notation, e.g. somefunc (A, B, C)
Infix notation for binary operators, e.g. A+ B
Prefix notation for unary operators, e.g. -A
Postfix notation for unary operators, e.g. i++
Cambridge Polish notation, e.g. (* (+ 1 3) 2) in Lisp
"Multi-word" infix, e.g. a>b?a:b in C and

myBox displayOn: myScreen at: 100@50

In Smalltalk, where displayOn: and at: are written infix with
arguments mybox, myScreen, and 100@50
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Operator Precedence and
Associativity

m  The use of infix, prefix, and postfix notation sometimes lead to
ambiguity as to what is an operand of what
Fortran example: a+b*c**d**e/£f

m Operator precedence: higher operator precedence means that a
(collection of) operator(s) group more tightly in an expression than
operators of lower precedence

m Operator associativity: determines evaluation order of operators of
the same precedence
Left associative: operators are evaluated left-to-right (most common)

Right associative: operators are evaluated right-to-left (Fortran power
operator **, C assignment operator = and unary minus)

Non-associative: requires parenthesis when composed (Ada power
operator **)
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Operator Precedence and
Associativity

m Pascal's flat precedence levels is a design mistake

if A<B and C<D then

IS the same as

if A<(B and C)<D then

m Note: levels of operator precedence and associativity are
easily captured in a grammar as we saw earlier
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Evaluation Order of Expressions

m Precedence and associativity state the rules for structuring
expressions, but do not determine the operand evaluation order!
EXxpression
a-f (b) -b*c
IS structured as
(a-£ (b)) - (b*c)
but either (a-£ (b)) or (b*c) can be evaluated first
m The evaluation order of arguments in function and subroutine calls
may differ, e.qg. arguments evaluated from left to right or right to left

m  Knowing the operand evaluation order is important

Side effects: suppose £ (b) above modifies the value of b (£ (b) has a
“side effect”) then the value will depend on the operand evaluation order

Code improvement: compilers rearrange expressions to maximize
efficiency, e.g. a compiler can improve memory load efficiency by
moving loads up in the instruction stream
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Expression Operand Reordering
Issues

m Rearranging expressions may lead to arithmetic overflow or different
floating point results

Assume b, d, and c are very large positive integers, then if b-c+d is
rearranged into (b+d) -c arithmetic overflow occurs

Floating point value of b-c+d may differ from b+d-c

Most programming languages will not rearrange expressions when
parenthesis are used, e.g. write (b-c) +d to avoid problems

m Design choices:

Java: expressions evaluation is always left to right in the order operands
are provided in the source text and overflow is always detected

Pascal: expression evaluation is unspecified and overflows are always
detected

C anc C++: expression evaluation is unspecified and overflow detection
IS implementation dependent

Lisp: no limit on number representation
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Short-Circuit Evaluation

m  Short-circuit evaluation of Boolean expressions: the result of an
operator can be determined from the evaluation of just one operand
m Pascal does not use short-circuit evaluation

The program fragment below has the problem that element a[11] is
read resulting in a dynamic semantic error:
var a:array [1..10] of integer;

i:=1;
while i<=10 and a[i]<>0 do
i = i+l
m C, C++, and Java use short-circuit conditional and/or operators
If a In a&&b evaluates to false, b is not evaluated
If ain a| | b evaluates to true, b is not evaluated

Avoids the Pascal problem, e.g.
while (i <= 10 && a[i] '= 0)

Ada uses and then and or else, e.g. condl and then cond2

Ada, C, and C++ also have regular bit-wise Boolean operators
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Assignments and Expressions

m Fundamental difference between imperative and
functional languages

m Imperative: "computing by means of side effects”

Computation is an ordered series of changes to values of
variables in memory (state) and statement ordering is influenced
by run-time testing values of variables
m Expressions in functional language are referentially
transparent:

All values used and produced depend on the local referencing
environment of the expression

A function is idempotent in a functional language: it always
returns the same value given the same arguments because of
the absence of side-effects
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L-Values vs. R-Values and Value
Model vs. Reference Model

m Consider the assignment of the form: a .= Db

The left-hand side a of the assignment is an I-value which is an
expression that should denote a location, e.g. array element a[2] or a
variable foo or a dereferenced pointer *p

The right-hand side b of the assignment is an r-value which can be any
syntactically valid expression with a type that is compatible to the left-
hand side
m Languages that adopt the value model of variables copy the value of
b into the location of a (e.g. Ada, Pascal, C)

m Languages that adopt the reference model of variables copy
references, resulting in shared data values via multiple references

Clu copies the reference of b into a so that a and b refer to the same
object

Java is a mix: it uses the value model for built-in types and the
reference model for class instances
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Special Cases of Assignments

m  Assignment by variable initialization

Use of uninitialized variable is source of many problems, sometimes
compilers are able to detect this but with programmer involvement e.g.
definite assignment requirement in Java

Implicit initialization, e.g. 0 or NaN (not a number) is assigned by default
when variable is declared

m Combinations of assignment operators
In C/C++ a+=b is equivalent to a=a+b (but a[i++] +=Db is different from
a[i++]=a[i++]+b, ouchl!)
Compiler produces better code, because the address of a variable is
only calculated once

m  Multiway assignments in Clu, ML, and Perl

a,b := c,dassigns cto a and d to b simultaneously, e.g. a,b :=
b,a swaps a with b

a,b := 1assigns 1tobothaandb
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