
COP4020

Programming

Languages

Compilers and Interpreters

Robert van Engelen & Chris Lacher

COP4020 Fall 2011 28/4/2011

Overview

 Common compiler and interpreter configurations

 Virtual machines

 Integrated development environments

 Compiler phases

 Lexical analysis

 Syntax analysis

 Semantic analysis

 Intermediate (machine-independent) code generation

 Intermediate code optimization

 Target (machine-dependent) code generation

 Target code optimization

COP4020 Fall 2011 38/4/2011

Compilers versus Interpreters

 The compiler versus interpreter implementation is often fuzzy

 One can view an interpreter as a virtual machine that executes high-
level code

 Java is compiled to bytecode

 Java bytecode is interpreted by the Java virtual machine (JVM) or
translated to machine code by a just-in-time compiler (JIT)

 A processor (CPU) can be viewed as an implementation in hardware of
a virtual machine (e.g. bytecode can be executed in hardware)

 Some programming languages cannot be purely compiled into
machine code alone

 Some languages allow programs to rewrite/add code to the code base
dynamically

 Some languages allow programs to translate data to code for execution
(interpretation)

COP4020 Fall 2011 48/4/2011

Compilers versus Interpreters

 Compilers “try to be as smart as possible” to fix decisions that
can be taken at compile time to avoid to generate code that
makes this decision at run time
 Type checking at compile time vs. runtime

 Static allocation

 Static linking

 Code optimization

 Compilation leads to better performance in general
 Allocation of variables without variable lookup at run time

 Aggressive code optimization to exploit hardware features

 Interpretation facilitates interactive debugging and testing
 Interpretation leads to better diagnostics of a programming problem

 Procedures can be invoked from command line by a user

 Variable values can be inspected and modified by a user

COP4020 Fall 2011 58/4/2011

Compilation

 Compilation is the conceptual process of translating

source code into a CPU-executable binary target code

 Compiler runs on the same platform X as the target code

Target

Program

Compiler
Source

Program
Target

Program

Input Output

Run on X

Compile on X

Debug on X

COP4020 Fall 2011 68/4/2011

Cross Compilation

 Compiler runs on platform X, target code runs on

platform Y

Target

Program

Cross

Compiler

Source

Program
Target

Program

Input Output

Run on Y

Compile on X
Copy to Y

Debug on X

(= emulate Y)

COP4020 Fall 2011 78/4/2011

Interpretation

 Interpretation is the conceptual process of running high-

level code by an interpreter

Interpreter

Source

Program

Input

Output

COP4020 Fall 2011 88/4/2011

Virtual Machines

 A virtual machine executes an instruction stream in

software

 Adopted by Pascal, Java, Smalltalk-80, C#, functional

and logic languages, and some scripting languages

 Pascal compilers generate P-code that can be interpreted or

compiled into object code

 Java compilers generate bytecode that is interpreted by the Java

virtual machine (JVM)

 The JVM may translate bytecode into machine code by just-in-

time (JIT) compilation

COP4020 Fall 2011 98/4/2011

Compilation and Execution on

Virtual Machines

 Compiler generates intermediate program

 Virtual machine interprets the intermediate program

Virtual

Machine

Compiler
Source

Program
Intermediate

Program

Input Output

Run on VM
Compile on X

Run on X, Y, Z, …

COP4020 Fall 2011 108/4/2011

Pure Compilation and Static

Linking

 Adopted by the typical Fortran implementation

 Library routines are separately linked (merged) with the

object code of the program

Compiler
Source

Program
Incomplete

Object Code

Linker
Static Library

Object Code

_printf

_fget

_fscan

…

extern printf();

Binary

Executable

COP4020 Fall 2011 118/4/2011

Compilation, Assembly, and

Static Linking

 Facilitates debugging of the compiler

Compiler
Source

Program
Assembly

Program

Linker
Static Library

Object Code

Binary

Executable

Assembler

COP4020 Fall 2011 128/4/2011

Compilation, Assembly, and

Dynamic Linking

 Dynamic libraries (DLL, .so, .dylib) are linked at run-time

by the OS (via stubs in the executable)

Compiler
Source

Program
Assembly

Program

Incomplete

Executable
Input

Output

Assembler

Shared Dynamic Libraries

COP4020 Fall 2011 138/4/2011

Preprocessing

 Most C and C++ compilers use a preprocessor to

expand macros

Compiler

Preprocessor
Source

Program
Modified Source

Program

Assembly or

Object Code

COP4020 Fall 2011 148/4/2011

The CPP Preprocessor

 Early C++ compilers used the CPP preprocessor to

generated C code for compilation

C Compiler

C++

Preprocessor

C++

Source

Code

C Source

Code

Assembly or

Object Code

COP4020 Fall 2011 158/4/2011

Integrated Development

Environments

 Programming tools function together in concert

 Editors

 Compilers/preprocessors/interpreters

 Debuggers

 Emulators

 Assemblers

 Linkers

 Advantages

 Tools and compilation stages are hidden

 Automatic source-code dependency checking

 Debugging made simpler

 Editor with search facilities

 Examples

 Smalltalk-80, Eclipse, MS VisualStudio, Borland

COP4020 Fall 2011 168/4/2011

Compilation Phases and Passes

 Compilation of a program proceeds through a fixed

series of phases

 Each phase use an (intermediate) form of the program produced

by an earlier phase

 Subsequent phases operate on lower-level code representations

 Each phase may consist of a number of passes over the

program representation

 Pascal, FORTRAN, C languages designed for one-pass

compilation, which explains the need for function prototypes

 Single-pass compilers need less memory to operate

 Java and ADA are multi-pass

COP4020 Fall 2011 178/4/2011

Compiler Front- and Back-end

Semantic

Analysis and

Intermediate

Code Generation

Scanner

(lexical analysis)

Parser

(syntax analysis)

Machine-

Independent

Code

Improvement

Target Code

Generation

Machine-Specific

Code

Improvement

Source program (character stream)

Tokens

Parse tree

Abstract syntax tree or

other intermediate form

Modified intermediate form

Assembly or object code

Modified assembly or object code

Abstract syntax tree or

other intermediate form

F
ro

n
t

e
n

d

a
n

a
ly

s
is

B
a
c

k
 e

n
d

s
y
n

th
e
s

is

COP4020 Fall 2011 188/4/2011

Scanner: Lexical Analysis

 Lexical analysis breaks up a program into tokens

program gcd (input, output);

var i, j : integer;

begin

read (i, j);

while i <> j do

if i > j then i := i - j else j := j - i;

writeln (i)

end.

program gcd (input , output) ;

var i , j : integer ; begin

read (i , j) ; while

i <> j do if i > j

then i := i - j else j

:= i - i ; writeln (i

) end .

COP4020 Fall 2011 198/4/2011

Context-Free Grammars

 A context-free grammar defines the syntax of a programming
language

 The syntax defines the syntactic categories for language constructs

 Statements

 Expressions

 Declarations

 Categories are subdivided into more detailed categories

 A Statement is a

 For-statement

 If-statement

 Assignment

<statement> ::= <for-statement> | <if-statement> | <assignment>
<for-statement> ::= for (<expression> ; <expression> ; <expression>) <statement>

<assignment> ::= <identifier> := <expression>

COP4020 Fall 2011 208/4/2011

Example: Micro Pascal

<Program> ::= program <id> (<id> <More_ids>) ; <Block> .

<Block> ::= <Variables> begin <Stmt> <More_Stmts> end

<More_ids> ::= , <id> <More_ids>

|
<Variables> ::= var <id> <More_ids> : <Type> ; <More_Variables>

|

<More_Variables> ::= <id> <More_ids> : <Type> ; <More_Variables>

|

<Stmt> ::= <id> := <Exp>
| if <Exp> then <Stmt> else <Stmt>

| while <Exp> do <Stmt>

| begin <Stmt> <More_Stmts> end

<Exp> ::= <num>

| <id>

| <Exp> + <Exp>
| <Exp> - <Exp>

COP4020 Fall 2011 218/4/2011

Parser: Syntax Analysis

 Parsing organizes tokens into a hierarchy called a parse

tree (more about this later)

 Essentially, a grammar of a language defines the

structure of the parse tree, which in turn describes the

program structure

 A syntax error is produced by a compiler when the parse

tree cannot be constructed for a program

COP4020 Fall 2011 228/4/2011

Semantic Analysis

 Semantic analysis is applied by a compiler to discover the meaning
of a program by analyzing its parse tree or abstract syntax tree

 Static semantic checks are performed at compile time

 Type checking

 Every variable is declared before used

 Identifiers are used in appropriate contexts

 Check subroutine call arguments

 Check labels

 Dynamic semantic checks are performed at run time, and the
compiler produces code that performs these checks

 Array subscript values are within bounds

 Arithmetic errors, e.g. division by zero

 Pointers are not dereferenced unless pointing to valid object

 A variable is used but hasn't been initialized

 When a check fails at run time, an exception is raised

COP4020 Fall 2011 238/4/2011

Semantic Analysis and Strong

Typing

 A language is strongly typed "if (type) errors are always
detected"
 Errors are either detected at compile time or at run time

 Examples of such errors are listed on previous slide

 Languages that are strongly typed are Ada, Java, ML, Haskell

 Languages that are not strongly typed are Fortran, Pascal,
C/C++, Lisp

 Strong typing makes language safe and easier to use,
but potentially slower because of dynamic semantic
checks

 In some languages, most (type) errors are detected late
at run time which is detrimental to reliability e.g. early
Basic, Lisp, Prolog, some script languages

COP4020 Fall 2011 248/4/2011

Code Generation and

Intermediate Code Forms

 A typical intermediate form of

code produced by the

semantic analyzer is an

abstract syntax tree (AST)

 The AST is annotated with

useful information such as

pointers to the symbol table

entry of identifiers

Example AST for the

gcd program in Pascal

COP4020 Fall 2011 258/4/2011

Target Code Generation and

Optimization

 The AST with the annotated information is traversed by

the compiler to generate a low-level intermediate form of

code, close to assembly

 This machine-independent intermediate form is

optimized

 From the machine-independent form assembly or object

code is generated by the compiler

 This machine-specific code is optimized to exploit

specific hardware features

