COP4020 Programming Assignment 2

1. Write new Scheme functions det, noun, verb, and ad j:

e det takes a list and returns the cdr of the list if the first word in the list is a
determiner. Otherwise, it returns an empty list * ().

e noun takes a list and returns the cdr of the list if the first word in the list is a
noun. Otherwise, it returns an empty list * ().

e verb takes a list and returns the cdr of the list if the first word in the list is a
verb. Otherwise, it returns an empty list * ().

e adj takes a list and returns the cdr of the list if the first word in the list is an
adjective. Otherwise, it returns an empty list * ().

The vocabulary is limited to the words: a, an, the, apple, car, dog, road,
eats, occupies, rides, walks, hairy, hot, red. Hint: you may use
the det?, noun?, verb?, and adj? functions of Programming Assignment 1 to
implement each of the four functions.

Save your Scheme functions in a file named pr2 . scm. Login with sshto 1inprog.cs.fsu.edu
and type ‘scheme’. Test your Scheme functions:

1]=> (load "pr2")

2 1=> (det ’(a dog))
;Value: (dog)

3]=> (det ’(red car))

;Value: ()
3]=> (adj ’'(red car))
;Value: (car)

2. Consider the syntax of a simple sentence that is composed of a determiner followed
by a noun:

(simplesentence) := (det) (noun)

Suppose we want to check if a sentence is well formed, i.e. it starts with a determiner
followed by a noun. In Scheme we can test the sentence “a dog” with:

1]=> (load "pr2")
2]=> (noun (det ' (a dog $)))
;Value: (9)

The sentence is terminated with a special end-of-sentence symbol $. If the sentence
is syntactically correct, the remaining $ in the list of words is returned.

Write a function that implements simplesentence, such that:

1]=> (load "pr2")
2]=> (simplesentence ’'(a dog $))

;Value: (9)
3]=> (simplesentence ’'(red dog $))
;Value: #f

. We can also include optional language constructs, for example
(nounphrase) == [(det)] (noun)

The determiner is optional, so a syntactically correct noun phrase may start with a
determiner.

Write a function that implements nounphrase, such that:

1]=> (load "pr2")
2]1=> (nounphrase ’(a dog $))

;Value: (9)
3]1=> (nounphrase ’(red dog $))
;Value: ()

3]=> (nounphrase ' (dog $))
;Value: (9)

. Write Scheme functions for the following syntax:

(sentence) := (nounphrasel) (verbphrase)
(nounphrasel) == [(det)] (nounphrase2)
(nounphrase2) == (adj) (nounphrase2)
(nounphrase?) := (noun)

(verbphrase) := (verb) [(nounphrasel)]

Such that:

1]=> (load "pr2")

2]=> (sentence ’'(the red dog rides a hot car $))
; Value: (9)

3]=> (sentence ’'(a rides car $))

; Value: ()

