
Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Introduction to the Linked List ADT

• Linked list: set of data structures (nodes)
that contain references to other data
structures

NULL

list
head

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Linked Lists vs. Arrays and Vectors

• Linked lists can grow and shrink as

needed, unlike arrays, which have a fixed

size

• Linked lists can insert a node between

other nodes easily

NULL

list
head

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Node Organization

• A node contains:

– data: one or more data fields – may be

organized as structure, object, etc.

– a pointer that can point to another node

data

pointer

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Linked List Organization

• Linked list contains 0 or more nodes:

• Has a list head to point to first node

• Last node points to NULL

NULL

list
head

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Empty List

• If a list currently contains 0 nodes, it is

the empty list

• In this case the list head points to NULL

NULL

list
head

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Declaring a Node

• Declare a node:

struct ListNode

{

int data;

ListNode *next;

};

• No memory is allocated at this time

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Defining a Linked List

• Define a pointer for the head of the list:

ListNode *head = NULL;

• Head pointer initialized to NULL to indicate

an empty list

NULL

head

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

NULL Pointer

• Is used to indicate end-of-list

• NULL is just the 0 address, prefer using 0

• Should always be tested for before using a
pointer:
ListNode *p;

while (p != 0) ...

• Can also test the pointer itself:
while (!p) ... // same meaning

// as above

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Linked List Operations

• Basic operations:

– append a node to the end of the list

– insert a node within the list

– traverse the linked list

– delete a node

– delete/destroy the list

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Contents of NumberList.h
1 // Specification file for the NumberList class

2 #ifndef NUMBERLIST_H

3 #define NUMBERLIST_H

4

5 class NumberList

6 {

7 private:

8 // Declare a structure for the list

9 struct ListNode

10 {

11 double value; // The value in this node

12 struct ListNode *next; // To point to the next node

13 };

14

15 ListNode *head; // List head pointer

16

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

17 public:

18 // Constructor

19 NumberList()

20 { head = 0; }

21

22 // Destructor

23 ~NumberList();

24

25 // Linked list operations

26 void appendNode(double);

27 void insertNode(double);

28 void deleteNode(double);

29 void displayList() const;

30 };

31 #endif

Contents of NumberList.h

(Continued)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Create a New Node

• Allocate memory for the new node:

newNode = new ListNode;

• Initialize the contents of the node:

newNode->value = num;

• Set the pointer field to NULL:

newNode->next = 0;

newNode

newNode

23

NULL

newNode

23

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Appending a Node

• Add a node to the end of the list

• Basic process:

– Create the new node (as already described)

– Add node to the end of the list:
• If list is empty, set head pointer to this node

• Else,

– traverse the list to the end

– set pointer of last node to point to new node

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Appending a Node

NULL

list
head

5 13 19

newNode

23 NULL

nodePtr

New node created, end of list located

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Appending a Node

list
head

5 13 19

newNode

23 NULL

nodePtr

New node added to end of list

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

11 void NumberList::appendNode(double num)

12 {

13 ListNode *newNode; // To point to a new node

14 ListNode *nodePtr; // To move through the list

15

16 // Allocate a new node and store num there.

17 newNode = new ListNode;

18 newNode->value = num;

19 newNode->next = NULL;

20

21 // If there are no nodes in the list

22 // make newNode the first node.

23 if (!head)

C++ code for Appending a Node

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

24 head = newNode;

25 else // Otherwise, insert newNode at end.

26 {

27 // Initialize nodePtr to head of list.

28 nodePtr = head;

29

30 // Find the last node in the list.

31 while (nodePtr->next)

32 nodePtr = nodePtr->next;

33

34 // Insert newNode as the last node.

35 nodePtr->next = newNode;

36 }

37 }

C++ code for Appending a Node (Continued)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Inserting a Node into a Linked List

• Used to maintain a linked list in order

• Requires two pointers to traverse the list:

– pointer to locate the node with data value
greater than that of node to be inserted

– pointer to 'trail behind' one node, to point to
node before point of insertion

• New node is inserted between the nodes
pointed at by these pointers

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Inserting a Node into a Linked List

NULL

list
head

5 13 19

newNode

17 NULL

nodePtrpreviousNode

New node created, correct position located

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Inserting a Node into a Linked List

NULL

list
head

5 13 19

newNode

17

nodePtrpreviousNode

New node inserted in order in the linked list

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Traversing a Linked List

• Visit each node in a linked list: display
contents, validate data, etc.

• Basic process:
– set a pointer to the contents of the head

pointer

– while pointer is not NULL
• process data

• go to the next node by setting the pointer to the
pointer field of the current node in the list

– end while

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Traversing a Linked List

NULL

list
head

5 13 19

nodePtr

nodePtr points to the node containing 5, then the

node containing 13, then the node containing 19,

then points to NULL, and the list traversal stops

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Deleting a Node

• Used to remove a node from a linked list

• If list uses dynamic memory, then delete

node from memory

• Requires two pointers: one to locate the

node to be deleted, one to point to the

node before the node to be deleted

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Deleting a Node

NULL

list
head

5 13 19

nodePtrpreviousNode

Locating the node containing 13

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Deleting a Node

Adjusting pointer around the node to be deleted

NULL

list
head

5 13 19

nodePtrpreviousNode

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Deleting a Node

NULL

list
head

5 19

nodePtrpreviousNode

Linked list after deleting the node containing 13

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Destroying a Linked List

• Must remove all nodes used in the list

• To do this, use list traversal to visit each node

• For each node,

– Unlink the node from the list

– If the list uses dynamic memory, then free the node’s

memory

• Set the list head to NULL

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

17.5

The STL list Container

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

The STL list Container

• Template for a doubly linked list

• Member functions for

– locating beginning, end of list: front, back,

end

– adding elements to the list: insert, merge,

push_back, push_front

– removing elements from the list: erase,

pop_back, pop_front, unique

• See Table 17-1 for a list of member functions

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Introduction to the Stack ADT

• Stack: a LIFO (last in, first out) data
structure

• Examples:
– plates in a cafeteria

– return addresses for function calls

• Implementation:
– static: fixed size, implemented as array

– dynamic: variable size, implemented as linked
list

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

A LIFO Structure

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Stack Operations and Functions

• Operations:

– push: add a value onto the top of the stack

– pop: remove a value from the top of the stack

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Stack Operations - Example

• A stack that can hold char values:

K

E

G

K

E

E
push('E'); push('K'); push('G');

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Stack Operations - Example

• A stack that can hold char values:

E
K

E
pop();

(remove G)

pop();

(remove K)

pop();

(remove E)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

18.2

Dynamic Stacks

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Dynamic Stacks

• Grow and shrink as necessary

• Can't ever be full as long as memory is

available

• Implemented as a linked list

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Implementing a Stack

• Programmers can program their own
routines to implement stack functions

• Can also use the implementation of stack
available in the STL

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

The STL stack container

• Stack template can be implemented as a
vector, a linked list, or a deque

• Implements push, pop, and empty
member functions

• Implements other member functions:
– size: number of elements on the stack

– top: reference to element on top of the stack

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Defining a stack

• Defining a stack of chars, named cstack,
implemented using a vector:
stack< char, vector<char> > cstack;

• implemented using a list:
stack< char, list<char> > cstack;

• implemented using a deque:
stack< char > cstack;

• Spaces are required between consecutive >>,
<< symbols

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Introduction to the Queue ADT

• Queue: a FIFO (first in, first out) data structure.

• Examples:
– people in line at the theatre box office

– print jobs sent to a printer

• Implementation:
– static: fixed size, implemented as array

– dynamic: variable size, implemented as linked list

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Queue Locations and

Operations

• rear: position where elements are added

• front: position from which elements are
removed

• enqueue: add an element to the rear of
the queue

• dequeue: remove an element from the
front of a queue

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Queue Operations - Example

• A currently empty queue that can hold char values:

• enqueue('E');

E

front

rear

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Queue Operations - Example

• enqueue('K');

• enqueue('G');

E K

E K G

front

rear

front

rear

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Queue Operations - Example

• dequeue(); // remove E

• dequeue(); // remove K

K G

G

front

rear

front

rear

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Dynamic Queues

• Like a stack, a queue can be implemented

using a linked list

• Allows dynamic sizing, avoids issue of

shifting elements or wrapping indices

front rear

NULL

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Implementing a Queue

• Programmers can program their own

routines to implement queue operations

• Can also use the implementation of queue

and dequeue available in the STL

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

The STL deque

and queue Containers

• deque: a double-ended queue. Has

member functions to enqueue
(push_back) and dequeue (pop_front)

• queue: container ADT that can be used to

provide queue as a vector, list, or deque.

Has member functions to enque (push)

and dequeue (pop)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Defining a queue

• Defining a queue of chars, named
cQueue, implemented using a deque:
deque<char> cQueue;

• implemented using a queue:
queue<char> cQueue;

• implemented using a list:
queue< char, list<char> > cQueue;

• Spaces are required between consecutive
>>, << symbols

