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 We’ve studied fixed-size data structures such as one-dimensional arrays 
and two-dimensional arrays. 

 This chapter introduces dynamic data structures that grow and shrink 
during execution. 

 Linked lists are collections of data items logically “lined up in a 
row”—insertions and removals are made anywhere in a linked list. 

 Stacks are important in compilers and operating systems: Insertions and 
removals are made only at one end of a stack—its top. 

 Queues represent waiting lines; insertions are made at the back (also 
referred to as the tail) of a queue and removals are made from the front 
(also referred to as the head) of a queue. 

 Binary trees facilitate high-speed searching and sorting of data, 
efficient elimination of duplicate data items, representation of file-
system directories and compilation of expressions into machine 
language. 

©1992-2012 by Pearson Education, Inc. 
All Rights Reserved. 



 We use classes, class templates, inheritance and 
composition to create and package these data structures 
for reusability and maintainability. 

 This chapter is solid preparation for Chapter 22, 
Standard Template Library (STL). 
◦ The STL is a major portion of the C++ Standard Library. 

◦ The STL provides containers, iterators for traversing those 
containers and algorithms for processing the containers’ 
elements. 

◦ The STL packages data structrues into templatized classes. 

◦ The STL code is carefully written to be portable, efficient and 
extensible. 

©1992-2012 by Pearson Education, Inc. 
All Rights Reserved. 



 A self-referential class contains a pointer member that 

points to a class object of the same class type. 

 Sample Node class definition: 
 class Node  
{  
public: 
   Node( int ); // constructor 
   void setData( int ); // set data member 
   int getData() const; // get data member 
   void setNextPtr( Node * ); // set pointer to next Node 
   Node *getNextPtr() const; // get pointer to next Node 
private: 
   int data; // data stored in this Node 
   Node *nextPtr; // pointer to another object of same type 
}; // end class Node 
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 Member nextPtr points to an object of type Node—another object 
of the same type as the one being declared here, hence the term “self-
referential class.”  

 Member nextPtr is referred to as a link—i.e., nextPtr can “tie” an 
object of type Node to another object of the same type. 

 Self-referential class objects can be linked together to form useful data 
structures such as lists, queues, stacks and trees. 

 Figure 20.1 illustrates two self-referential class objects linked together 
to form a list. 

 Note that a slash—representing a null (0) pointer—is placed in the link 
member of the second self-referential class object to indicate that the 
link does not point to another object. 

 The slash is only for illustration purposes; it does not correspond to the 
backslash character in C++. 

 A null pointer normally indicates the end of a data structure just as the 
null character ('\0') indicates the end of a string. 
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 Creating and maintaining dynamic data structures requires 
dynamic memory allocation, which enables a program to 
obtain more memory at execution time to hold new nodes. 

 When that memory is no longer needed by the program, the 
memory can be released so that it can be reused to allocate 
other objects in the future. 

 The limit for dynamic memory allocation can be as large as 
the amount of available physical memory in the computer 
or the amount of available virtual memory in a virtual 
memory system. 

 Often, the limits are much smaller, because available 
memory must be shared among many programs. 
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 The new operator takes as an argument the type of the 
object being dynamically allocated and returns a pointer to 
an object of that type. 

 For example, the following statement allocates 
sizeof( Node ) bytes, runs the Node constructor and 
assigns the new Node’s address to newPtr. 
 // create Node with data 10 
Node *newPtr = new Node( 10 );  

 If no memory is available, new throws a bad_alloc 
exception. 

 The delete operator runs the Node destructor and 
deallocates memory allocated with new—the memory is 
returned to the system so that the memory can be 
reallocated in the future. 
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 To free memory dynamically allocated by the 

preceding new, use the statement 
 delete newPtr; 

 Note that newPtr itself is not deleted; rather the 

desctructor of the node object that newPtr points to 

is called and the object’s memory is freed. 

 If pointer newPtr has the null pointer value 0, the 

preceding statement has no effect. 
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 A linked list is a linear collection of self-referential class 
objects, called nodes, connected by pointer links—hence, 
the term “linked” list. 

 A linked list is accessed via a pointer to the list’s first node. 

 Each subsequent node is accessed via the link-pointer 
member stored in the previous node. 

 By convention, the link pointer in the last node of a list is 
set to null (0) to mark the end of the list. 

 Data is stored in a linked list dynamically—each node is 
created as necessary. 

 A node can contain data of any type, including objects of 
other classes. 
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 If nodes contain base-class pointers to base-class and 

derived-class objects related by inheritance, we can 

have a linked list of such nodes and process them 

polymorphically using virtual function calls. 

 Stacks and queues are also linear data structures and, as 

we’ll see, can be viewed as constrained versions of 

linked lists. 

 Trees are nonlinear data structures. 
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 Lists of data can be stored in arrays, but linked lists provide 
several advantages. 

 A linked list is appropriate when the number of data 
elements to be represented at one time is unpredictable. 

 Linked lists are dynamic, so the length of a list can increase 
or decrease as necessary. 

 The size of a “conventional” C++ array, however, cannot be 
altered, because the array size is fixed at compile time. 

 “Conventional” arrays can become full. 

 Linked lists become full only when the system has 
insufficient memory to satisfy dynamic storage allocation 
requests. 
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 Linked lists can be maintained in sorted order by 

inserting each new element at the proper point in the 

list. 

 Existing list elements do not need to be moved. 

 Pointers merely need to be updated to point to the 

correct node. 
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 Linked-list nodes are not stored contiguously in 

memory, but logically they appear to be contiguous. 

 Figure 20.2 illustrates a linked list with several nodes. 
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 The program of Figs. 20.3–20.5 uses a List class 

template to manipulate a list of integer values and a list 

of floating-point values. 

 The program uses class templates ListNode 

(Fig. 20.3) and List (Fig. 20.4). 

 Encapsulated in each List object is a linked list of 

ListNode objects. 
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 Class template ListNode (Fig. 20.3) contains 

private members data and nextPtr (lines 19–

20), a constructor to initialize these members and 

function getData to return the data in a node. 

 Member data stores a value of type NODETYPE, the 

type parameter passed to the class template. 

 Member nextPtr stores a pointer to the next 

ListNode object in the linked list. 
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 Line 13 of the ListNode class template definition 
declares class List< NODETYPE > as a friend. 

 This makes all member functions of a given specialization 
of class template List friends of the corresponding 
specialization of class template ListNode, so they can 
access the private members of ListNode objects of 
that type. 

 Because the ListNode template parameter NODETYPE is 
used as the template argument for List in the friend 
declaration, ListNodes specialized with a particular type 
can be processed only by a List specialized with the same 
type (e.g., a List of int values manages ListNode 
objects that store int values). 
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 Lines 23–24 of the List class template (Fig. 20.4) 

declare private data members firstPtr (a pointer 

to the first ListNode in a List) and lastPtr (a 

pointer to the last ListNode in a List). 

 The default constructor (lines 31–36) initializes both 

pointers to 0 (null). 

 The destructor (lines 39–59) ensures that all 

ListNode objects in a List object are destroyed 

when that List object is destroyed. 
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 The primary List functions are insertAtFront (lines 62–
74), insertAtBack (lines 77–89), removeFromFront 
(lines 92–110) and removeFromBack (lines 113–140).   

 Function isEmpty (lines 143–147) is called a predicate 
function 
◦ it does not alter the List; rather, it determines whether the List is 

empty (i.e., the pointer to the first node of the List is null). 

◦ If the List is empty, true is returned; otherwise, false is returned. 

 Function print (lines 158–178) displays the List’s contents. 

 Utility function getNewNode (lines 150–155) returns a 
dynamically allocated ListNode object. 
◦ Called from functions insertAtFront and insertAtBack. 
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 In Fig. 20.5, Lines 69 and 73 create List objects for 

types int and double, respectively. 

 Lines 70 and 74 invoke the testList function 

template to manipulate objects. 
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 Function insertAtFront (Fig. 20.4, lines 62–74) places a 
new node at the front of the list. 

 The function consists of several steps: 
◦ Call function getNewNode (line 65), passing it value, which is a 

constant reference to the node value to be inserted. 
◦ Function getNewNode (lines 150–155) uses operator new to create a 

new list node and return a pointer to this newly allocated node, which is 
assigned to newPtr in insertAtFront (line 65). 

◦ If the list is empty (line 67), firstPtr and lastPtr are set to 
newPtr (line 68). 

◦ If the list is not empty (line 69), then the node pointed to by newPtr is 
threaded into the list by copying firstPtr to newPtr->nextPtr 
(line 71), so that the new node points to what used to be the first node of 
the list, and copying newPtr to firstPtr (line 72), so that 
firstPtr now points to the new first node of the list. 
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 Figure 20.6 illustrates function insertAtFront. 

 Part (a) shows the list and the new node before calling 

insertAtFront. 

 The dashed arrows in part (b) illustrate Step 4 of the 

insertAtFront operation that enables the node 

containing 12 to become the new list front. 
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 Function insertAtBack (Fig. 20.4, lines 77–89) places a new 
node at the back of the list. 

 The function consists of several steps: 
◦ Call function getNewNode (line 80), passing it value, which is a 

constant reference to the node value to be inserted. 
◦ Function getNewNode (lines 150–155) uses operator new to create a 

new list node and return a pointer to this newly allocated node, which is 
assigned to newPtr in insertAtBack (line 80).   

◦ If the list is empty (line 82), then both firstPtr and lastPtr are set 
to newPtr (line 83). 

◦ If the list is not empty (line 84), then the node pointed to by newPtr is 
threaded into the list by copying newPtr into lastPtr->nextPtr 
(line 86), so that the new node is pointed to by what used to be the last 
node of the list, and copying newPtr to lastPtr (line 87), so that 
lastPtr now points to the new last node of the list. 
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 Figure 20.7 illustrates an insertAtBack operation. 

 Part (a) of the figure shows the list and the new node 

before the operation. 

 The dashed arrows in part (b) illustrate Step 4 of 

function insertAtBack that enables a new node to 

be added to the end of a list that is not empty. 
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 Function removeFromFront (Fig. 20.4, lines 92–110) 
removes the front node of the list and copies the node value 
to the reference parameter. 

 The function returns false if an attempt is made to 
remove a node from an empty list (lines 95–96) and returns 
true if the removal is successful. 

 The function consists of several steps: 
◦ Assign tempPtr the address to which firstPtr points (line 99). 

Eventually, tempPtr will be used to delete the node being 
removed. 

◦ If firstPtr is equal to lastPtr (line 101), i.e., if the list has 
only one element prior to the removal attempt, then set firstPtr 
and lastPtr to zero (line 102) to dethread that node from the list 
(leaving the list empty). 
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 Steps continued: 

◦ If the list has more than one node prior to removal, then leave 

lastPtr as is and set firstPtr to firstPtr-> 
nextPtr (line 104); i.e., modify firstPtr to point to what 

was the second node prior to removal (and is now the new first 

node). 

◦ After all these pointer manipulations are complete, copy to 

reference parameter value the data member of the node 

being removed (line 106).  

◦ Now delete the node pointed to by tempPtr (line 107). 

◦ Return true, indicating successful removal (line 108). 
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 Figure 20.8 illustrates function removeFromFront. 

 Part (a) illustrates the list before the removal operation. 

 Part (b) shows the actual pointer manipulations for 

removing the front node from a nonempty list. 
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 Function removeFromBack (Fig. 20.4, lines 113–140) 
removes the back node of the list and copies the node value to 
the reference parameter. 

 The function returns false if an attempt is made to remove a 
node from an empty list (lines 116–117) and returns true if the 
removal is successful. 

 The function consists of several steps: 
◦ Assign to tempPtr the address to which lastPtr points (line 120). 

Eventually, tempPtr will be used to delete the node being removed. 
◦ If firstPtr is equal to lastPtr (line 122), i.e., if the list has only 

one element prior to the removal attempt, then set firstPtr and 
lastPtr to zero (line 123) to dethread that node from the list (leaving 
the list empty). 

◦ If the list has more than one node prior to removal, then assign 
currentPtr the address to which firstPtr points (line 126) to 
prepare to “walk the list.” 
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 Steps continued: 
◦ Now “walk the list” with currentPtr until it points to the node 

before the last node. This node will become the last node after the 
remove operation completes. This is done with a while loop (lines 
129–130) that keeps replacing currentPtr by currentPtr-> 
nextPtr, while currentPtr->nextPtr is not lastPtr. 

◦ Assign lastPtr to the address to which currentPtr points (line 
132) to dethread the back node from the list. 

◦ Set currentPtr->nextPtr to zero (line 133) in the new last 
node of the list.  

◦ After all the pointer manipulations are complete, copy to reference 
parameter value the data member of the node being removed 
(line 136). 

◦ delete the node pointed to by tempPtr (line 137). 
◦ Return true (line 138), indicating successful removal. 
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 Figure 20.9 illustrates removeFromBack. 

 Part (a) of the figure illustrates the list before the 

removal operation. 

 Part (b) of the figure shows the actual pointer 

manipulations. 
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 Function print (lines 158–178) first determines whether the list is 
empty (line 161). 

 If so, it prints "The list is empty" and returns (lines 163–164). 

 Otherwise, it iterates through the list and outputs the value in each 
node. 

 The function initializes currentPtr as a copy of firstPtr (line 
167), then prints the string "The list is: " (line 169). 

 While currentPtr is not null (line 171), currentPtr->data is 
printed (line 173) and currentPtr is assigned the value of 
currentPtr->nextPtr (line 174). 

 Note that if the link in the last node of the list is not null, the printing 
algorithm will erroneously attempt to print past the end of the list. 

 The printing algorithm is identical for linked lists, stacks and queues 
(because we base each of these data structures on the same linked list 
infrastructure).  
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 The kind of linked list we’ve been discussing is a singly 
linked list—the list begins with a pointer to the first node, 
and each node contains a pointer to the next node “in 
sequence.”  

 This list terminates with a node whose pointer member has 
the value 0. 

 A singly linked list may be traversed in only one direction. 
 A circular, singly linked list (Fig. 20.10) begins with a 

pointer to the first node, and each node contains a pointer to 
the next node. 

 The “last node” does not contain a 0 pointer; rather, the 
pointer in the last node points back to the first node, thus 
closing the “circle.” 
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 A doubly linked list (Fig. 20.11) allows traversals both forward 
and backward. 

 Such a list is often implemented with two “start pointers”—one 
that points to the first element of the list to allow front-to-back 
traversal of the list and one that points to the last element to 
allow back-to-front traversal. 

 Each node has both a forward pointer to the next node in the list 
in the forward direction and a backward pointer to the next node 
in the list in the backward direction. 

 If your list contains an alphabetized telephone directory, for 
example, a search for someone whose name begins with a letter 
near the front of the alphabet might begin from the front of the 
list. 

 Searching for someone whose name begins with a letter near the 
end of the alphabet might begin from the back of the list.  
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 In a circular, doubly linked list (Fig. 20.12), the 

forward pointer of the last node points to the first node, 

and the backward pointer of the first node points to the 

last node, thus closing the “circle.” 
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 Chapter 14, Templates, explained the notion of a stack 
class template with an underlying array 
implementation. 

 In this section, we use an underlying pointer-based 
linked-list implementation. 
◦ We also discuss stacks in Chapter 22, Standard Template 

Library (STL). 

 A stack data structure allows nodes to be added to the 
stack and removed from the stack only at the top. 

 For this reason, a stack is referred to as a last-in, first-
out (LIFO) data structure. 
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 One way to implement a stack is as a constrained version of 
a linked list. 

 In such an implementation, the link member in the last node 
of the stack is set to null (zero) to indicate the bottom of the 
stack.  

 The primary member functions used to manipulate a stack 
are push and pop. 

 Function push inserts a new node at the top of the stack. 

 Function pop removes a node from the top of the stack, 
stores the popped value in a reference variable that is 
passed to the calling function and returns true if the pop 
operation was successful (false otherwise). 
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 Stacks have many interesting applications. 

 For example, when a function call is made, the called function must know how 
to return to its caller, so the return address is pushed onto a stack. 

 If a series of function calls occurs, the successive return values are pushed onto 
the stack in last-in, first-out order, so that each function can return to its caller. 

 Stacks support recursive function calls in the same manner as conventional 
nonrecursive calls. 

 Section 6.11 discusses the function call stack in detail. 

 Stacks provide the memory for, and store the values of, automatic variables on 
each invocation of a function. 

 When the function returns to its caller or throws an exception, the destructor (if 
any) for each local object is called, the space for that function’s automatic 
variables is popped off the stack and those variables are no longer known to the 
program.  

 Stacks are used by compilers in the process of evaluating expressions and 
generating machine-language code. 
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 We’ll take advantage of the close relationship between 
lists and stacks to implement a stack class primarily by 
reusing a list class. 

 First, we implement the stack class through private 
inheritance of the list class. 

 Then we implement an identically performing stack 
class through composition by including a list object as 
a private member of a stack class. 

 All of the data structures in this chapter, including these 
two stack classes, are implemented as templates to 
encourage further reusability. 
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 The program of Figs. 20.13–20.14 creates a Stack 

class template (Fig. 20.13) primarily through 

private inheritance (line 9) of the List class 

template of Fig. 20.4. 

 We want the Stack to have member functions push 

(lines 13–16), pop (lines 19–22), isStackEmpty 

(lines 25–28) and printStack (lines 31–34). 

◦ These are essentially the insertAtFront, 

removeFromFront, isEmpty and print functions of the 

List class template. 
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 Of course, the List class template contains other member 
functions (i.e., insertAtBack and removeFromBack) that 
we would not want to make accessible through the public 
interface to the Stack class. 

 So when we indicate that the Stack class template is to inherit 
from the List class template, we specify private inheritance. 

 This makes all the List class template’s member functions 
private in the Stack class template. 

 When we implement the Stack’s member functions, we then 
have each of these call the appropriate member function of the 
List class—push calls insertAtFront (line 15), pop calls 
removeFromFront (line 21), isStackEmpty calls 
isEmpty (line 27) and printStack calls print (line 33)—
this is referred to as delegation. 
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 The explicit use of this on lines 27 and 33 is required 
so the compiler can resolve identifiers in template 
definitions. 

 A dependent name is an identifier that depends on a 
template parameter. 

 For example, the call to removeFromFront (line 
21) depends on the argument data which has a type 
that is dependent on the template parameter 
STACKTYPE. 

 Resolution of dependent names occurs when the 
template is instantiated. 
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 In contrast, the identifier for a function that takes no 
arguments like isEmpty or print in the List 
superclass is a non-dependent name. 

 Such identifiers are normally resolved at the point where 
the template is defined. 

 If the template has not yet been instantiated, then the code 
for the function with the non-dependent name does not yet 
exist and some compilers will generate compilation errors. 

 Adding the explicit use of this-> in lines 27 and 33 
makes the calls to the base class’s member functions 
dependent on the template parameter and ensures that the 
code will compile properly. 
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 The stack class template is used in main (Fig. 20.14) 

to instantiate integer stack intStack of type 

Stack< int > (line 9). 

 Integers 0 through 2 are pushed onto intStack (lines 

14–18), then popped off intStack (lines 23–28). 

 The program uses the Stack class template to create 

doubleStack of type Stack< double > (line 30). 

 Values 1.1, 2.2 and 3.3 are pushed onto 

doubleStack (lines 36–41), then popped off 

doubleStack (lines 46–51). 

©1992-2012 by Pearson Education, Inc. 
All Rights Reserved. 



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved. 



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved. 



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved. 



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved. 



 Another way to implement a Stack class template is by 
reusing the List class template through composition. 

 Figure 20.15 is a new implementation of the Stack class 
template that contains a List< STACKTYPE > object 
called stackList (line 38). 

 This version of the Stack class template uses class List 
from Fig. 20.4. 

 To test this class, use the driver program in Fig. 20.14, but 
include the new header—Stackcomposition.h in line 
6 of that file. 

 The output of the program is identical for both versions of 
class Stack. 
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 A queue is similar to a supermarket checkout line—the 

first person in line is serviced first, and other customers 

enter the line at the end and wait to be serviced. 

 Queue nodes are removed only from the head of the 

queue and are inserted only at the tail of the queue. 

 For this reason, a queue is referred to as a first-in, first-

out (FIFO) data structure. 

 The insert and remove operations are known as 

enqueue and dequeue.  
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 Queues have many applications in computer systems. 

 Computers that have a single processor can service 

only one user at a time. 

 Entries for the other users are placed in a queue. 

 Each entry gradually advances to the front of the queue 

as users receive service. 

 The entry at the front of the queue is the next to receive 

service. 
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 Queues are also used to support print spooling. 

 For example, a single printer might be shared by all 

users of a network. 

 Many users can send print jobs to the printer, even 

when the printer is already busy. 

 These print jobs are placed in a queue until the printer 

becomes available. 

 A program called a spooler manages the queue to 

ensure that, as each print job completes, the next print 

job is sent to the printer. 
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 Information packets also wait in queues in computer 
networks. 

 Each time a packet arrives at a network node, it must be 
routed to the next node on the network along the path to the 
packet’s final destination. 

 The routing node routes one packet at a time, so additional 
packets are enqueued until the router can route them. 

 A file server in a computer network handles file access 
requests from many clients throughout the network. 

 Servers have a limited capacity to service requests from 
clients. 

 When that capacity is exceeded, client requests wait in 
queues. 
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 The program of Figs. 20.16–20.17 creates a Queue 

class template (Fig. 20.16) through private 

inheritance (line 9) of the List class template 

(Fig. 20.4). 

 The Queue has member functions enqueue (lines 

13–16), dequeue (lines 19–22), isQueueEmpty 

(lines 25–28) and printQueue (lines 31–34). 

 These are essentially the insertAtBack, 

removeFromFront, isEmpty and print 

functions of the List class template. 
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 The List class template contains other member functions that 
we do not want to make accessible through the public 
interface to the Queue class. 

 So when we indicate that the Queue class template is to inherit 
the List class template, we specify private inheritance. 

 This makes all the List class template’s member functions 
private in the Queue class template. 

 When we implement the Queue’s member functions, we have 
each of these call the appropriate member function of the list 
class—enqueue calls insertAtBack (line 15), dequeue 
calls removeFromFront (line 21), isQueueEmpty calls 
isEmpty (line 27) and printQueue calls print (line 33). 

 As with the Stack example in Fig. 20.13, this delegation 
requires explicit use of the this pointer in isQueueEmpty 
and printQueue to avoid compilation errors. 
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 Figure 20.17 uses the Queue class template to instantiate 

integer queue intQueue of type Queue< int > (line 9). 

 Integers 0 through 2 are enqueued to intQueue (lines 14–

18), then dequeued from intQueue in first-in, first-out 

order (lines 23–28). 

 Next, the program instantiates queue doubleQueue of 

type Queue< double > (line 30). 

 Values 1.1, 2.2 and 3.3 are enqueued to doubleQueue 

(lines 36–41), then dequeued from doubleQueue in first-

in, first-out order (lines 46–51). 
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 Linked lists, stacks and queues are linear data 

structures. 

 A tree is a nonlinear, two-dimensional data structure. 

 Tree nodes contain two or more links. 

 This section discusses binary trees (Fig. 20.18)—trees 

whose nodes all contain two links (none, one or both of 

which may be null). 
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 For this discussion, refer to nodes A, B, C and D in Fig. 20.18. 

 The root node (node B) is the first node in a tree. 

 Each link in the root node refers to a child (nodes A and D). 

 The left child (node A) is the root node of the left subtree (which 
contains only node A), and the right child (node D) is the root 
node of the right subtree (which contains nodes D and C). 

 The children of a given node are called siblings (e.g., nodes A 
and D are siblings). 

 A node with no children is a leaf node (e.g., nodes A and C are 
leaf nodes). 

 Computer scientists normally draw trees from the root node 
down—the opposite of how trees grow in nature. 
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 A binary search tree (with no duplicate node values) 

has the characteristic that the values in any left subtree 

are less than the value in its parent node, and the values 

in any right subtree are greater than the value in its 

parent node. 

 Figure 20.19 illustrates a binary search tree with 9 

values. 

 Note that the shape of the binary search tree that 

corresponds to a set of data can vary, depending on the 

order in which the values are inserted into the tree. 
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 The program of Figs. 20.20–20.22 creates a binary search tree 
and traverses it (i.e., walks through all its nodes) three ways—
using recursive inorder, preorder and postorder traversals. 

 We explain these traversal algorithms shortly. 
 We begin our discussion with the driver program (Fig. 20.22), 

then continue with the implementations of classes TreeNode 
(Fig. 20.20) and Tree (Fig. 20.21). 

 Function main (Fig. 20.22) begins by instantiating integer tree 
intTree of type Tree< int > (line 10). 

 The program prompts for 10 integers, each of which is inserted in 
the binary tree by calling insertNode (line 19). 

 The program then performs preorder, inorder and postorder 
traversals (these are explained shortly) of intTree (lines 23, 26 
and 29, respectively). 
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 The program then instantiates floating-point tree 

doubleTree of type Tree< double > (line 31). 

 The program prompts for 10 double values, each of 

which is inserted in the binary tree by calling 

insertNode (line 41). 

 The program then performs preorder, inorder and 

postorder traversals of doubleTree (lines 45, 48 and 

51, respectively). 
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 The TreeNode class template (Fig. 20.20) definition 

declares Tree<NODETYPE> as its friend (line 13). 

◦ This makes all member functions of a given specialization of 

class template Tree (Fig. 20.21) friends of the corresponding 

specialization of class template TreeNode, so they can access 

the private members of TreeNode objects of that type. 

◦ Because the TreeNode template parameter NODETYPE is 

used as the template argument for Tree in the friend 

declaration, TreeNodes specialized with a particular type can 

be processed only by a Tree specialized with the same type 

(e.g., a Tree of int values manages TreeNode objects that 

store int values). 
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 Lines 30–32 declare a TreeNode’s private data—

the node’s data value, and pointers leftPtr (to the 

node’s left subtree) and rightPtr (to the node’s right 

subtree). 

 The constructor (lines 16–22) sets data to the value 

supplied as a constructor argument and sets pointers 

leftPtr and rightPtr to zero (thus initializing 

this node to be a leaf node). 

 Member function getData (lines 25–28) returns the 

data value. 
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 Class template Tree (Fig. 20.21) has as private data 
rootPtr (line 20), a pointer to the tree’s root node. 

 Lines 15–18 declare the public member functions 
insertNode (that inserts a new node in the tree) and 
preOrderTraversal, inOrderTraversal and 
postOrderTraversal, each of which walks the tree in 
the designated manner. 

 Each of these member functions calls its own recursive 
utility function to perform the appropriate operations on the 
internal representation of the tree, so the program is not 
required to access the underlying private data to perform 
these functions. 

 Remember that the recursion requires us to pass in a pointer 
that represents the next subtree to process. 
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 The Tree constructor initializes rootPtr to zero to indicate that the 
tree is initially empty. 

 The Tree class’s utility function insertNodeHelper (lines 45–66) 
is called by insertNode (lines 37–41) to recursively insert a node 
into the tree. 

 A node can only be inserted as a leaf node in a binary search tree. 

 If the tree is empty, a new TreeNode is created, initialized and 
inserted in the tree (lines 51–52).  

 If the tree is not empty, the program compares the value to be inserted 
with the data value in the root node. 

 If the insert value is smaller (line 55), the program recursively calls 
insertNodeHelper (line 56) to insert the value in the left subtree. 

 If the insert value is larger (line 60), the program recursively calls 
insertNodeHelper (line 61) to insert the value in the right subtree. 
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 If the value to be inserted is identical to the data value 
in the root node, the program prints the message 
" dup" (line 63) and returns without inserting the 
duplicate value into the tree. 

 insertNode passes the address of rootPtr to 
insertNodeHelper (line 40) so it can modify the 
value stored in rootPtr (i.e., the address of the root 
node). 

 To receive a pointer to rootPtr (which is also a 
pointer), insertNodeHelper’s first argument is 
declared as a pointer to a pointer to a TreeNode. 
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 Member functions inOrderTraversal (lines 88–

92), preOrderTraversal (lines 69–73) and 

postOrderTraversal (lines 107–111) traverse the 

tree and print the node values. 

 For the purpose of the following discussion, we use the 

binary search tree in Fig. 20.23. 
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 Function inOrderTraversal invokes utility function 
inOrderHelper to perform the inorder traversal of the 
binary tree. 

 The steps for an inorder traversal are: 
◦ Traverse the left subtree with an inorder traversal. (This is performed 

by the call to inOrderHelper at line 100.) 

◦ Process the value in the node—i.e., print the node value (line 101). 

◦ Traverse the right subtree with an inorder traversal. (This is 
performed by the call to inOrderHelper at line 102.) 

 The value in a node is not processed until the values in its 
left subtree are processed, because each call to 
inOrderHelper immediately calls inOrderHelper 
again with the pointer to the left subtree. 
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 The inorder traversal of the tree in Fig. 20.23 is 
 6 13 17 27 33 42 48 

 Note that the inorder traversal of a binary search tree 

prints the node values in ascending order. 

 The process of creating a binary search tree actually 

sorts the data—thus, this process is called the binary 

tree sort. 
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 Function preOrderTraversal invokes utility function 
preOrderHelper to perform the preorder traversal of the 
binary tree. 

 The steps for an preorder traversal are: 
◦ Process the value in the node (line 81). 
◦ Traverse the left subtree with a preorder traversal. (This is performed by 

the call to preOrderHelper at line 82.) 
◦ Traverse the right subtree with a preorder traversal. (This is performed 

by the call to preOrderHelper at line 83.) 

 The value in each node is processed as the node is visited. 
 After the value in a given node is processed, the values in the left 

subtree are processed. 
 Then the values in the right subtree are processed. 
 The preorder traversal of the tree in Fig. 20.23 is 

 27 13 6 17 42 33 48 
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 Function postOrderTraversal invokes utility 
function postOrderHelper to perform the postorder 
traversal of the binary tree. 

 The steps for a postorder traversal are: 
◦ Traverse the left subtree with a postorder traversal. (This is 

performed by the call to postOrderHelper at line 120.) 

◦ Traverse the right subtree with a postorder traversal. (This is 
performed by the call to postOrderHelper at line 121.) 

◦ Process the value in the node (line 122).  

 The value in each node is not printed until the values of its 
children are printed. 

 The postOrderTraversal of the tree in Fig. 20.23 is 
 6 17 13 33 48 42 27 
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 The binary search tree facilitates duplicate elimination. 

 As the tree is being created, an attempt to insert a 

duplicate value will be recognized, because a duplicate 

will follow the same “go left” or “go right” decisions 

on each comparison as the original value did when it 

was inserted in the tree. 

 Thus, the duplicate will eventually be compared with a 

node containing the same value. 

 The duplicate value may be discarded at this point. 
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 Searching a binary tree for a value that matches a key value is also fast. 

 If the tree is balanced, then each branch contains about half the number 
of nodes in the tree. 

 Each comparison of a node to the search key eliminates half the nodes. 

 This is called an O(log n) algorithm (Big O notation is discussed in 
Chapter 19). 

 So a binary search tree with n elements would require a maximum of 
log2 n comparisons either to find a match or to determine that no match 
exists. 

 This means, for example, that when searching a (balanced) 1000-
element binary search tree, no more than 10 comparisons need to be 
made, because 210 > 1000. 

 When searching a (balanced) 1,000,000-element binary search tree, no 
more than 20 comparisons need to be made, because 220 > 1,000,000. 
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 In the exercises, algorithms are presented for several other 
binary tree operations such as deleting an item from a 
binary tree, printing a binary tree in a two-dimensional tree 
format and performing a level-order traversal of a binary 
tree. 

 The level-order traversal of a binary tree visits the nodes of 
the tree row by row, starting at the root node level. 

 On each level of the tree, the nodes are visited from left to 
right. 

 Other binary tree exercises include allowing a binary search 
tree to contain duplicate values, inserting string values in a 
binary tree and determining how many levels are contained 
in a binary tree. 
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