
Accelerating Syntax-Guided Invariant Synthesis

Grigory Fedyukovich1 and Rastislav Bod́ık2

1 Princeton University, USA, grigoryf@cs.princeton.edu
2 University of Washington, USA, bodik@cs.washington.edu

Abstract. We present a fast algorithm for syntax-guided synthesis of in-
ductive invariants which combines enumerative learning with inductive-
subset extraction, leverages counterexamples-to-induction and interpola-
tion-based bounded proofs. It is a variant of a recently proposed proba-
bilistic method, called FreqHorn, which is however less dependent on
heuristics than its predecessor. We present an evaluation of the new al-
gorithm on a large set of benchmarks and show that it exhibits a more
predictable behavior than its predecessor, and it is competitive to the
state-of-the-art invariant synthesizers based on Property Directed Reach-
ability.

1 Introduction

Syntax-guided techniques [1] recently earned significant success in the field of
synthesis of inductive invariants [13] for a given program and a given safety
specification. Invariants are needed to represent over-approximations of the set
of reachable program states, such that from their empty intersection with the
set of error states one could conclude that the program is safe. While searching
for invariants, it is intuitive to collect various statistics from the syntactical
constructions, which appear in the program’s source code, and use them as a
guidance.

This work continues the track of FreqHorn, a completely automatic ap-
proach for 1) construction of the formal grammar based on the symbolic program
encoding, and 2) probabilistic search through the candidate formulas belonging
to that grammar. FreqHorn utilizes an SMT solver for checking inductiveness
of each generated formula and iteratively constructs a suitable invariant based
on the successful attempts (those formulas are called lemmas). Since based on a
finite number of expressions, the formal grammar is sufficiently small, and thus
the candidate formulas can be enumerated relatively quickly. We distinguish two
types of candidates: 1) formulas directly extracted from the program’s encod-
ing (called seeds) and 2) formulas which are syntactically close to seeds (called
mutants).

The conceptual novelty of FreqHorn is believed to be in the combined use
of seeds and mutants, but the original paper [13] is largely silent on the matter.
Furthermore, it turns a blind eye to some algorithmic and practical details which
are required for making the approach actually efficient. Among the downsides are
1) the treatment of all syntactic expressions equally and ignorance to whether the

candidates have any relevance to the given safety specification; and 2) inability
to predict a more-or-less appropriate order of candidates to be sampled and
checked.

Luckily, elements of the Property Directed Reachability (PDR) [4,10] can
be adapted in various stages of FreqHorn’s workflow and can mitigate the
downsides of the original algorithm. In particular, we propose to check candidates
in batches, and we show that in practice it helps discovering larger amounts
of lemmas. Additionally, we propose to keep a history of counterexamples-to-
induction (CTI) which blocked FreqHorn from learning a lemma. With some
periodicity, our new algorithm checks if there is a CTI which is invalidated by
the currently learned lemmas, and this triggers the re-check of that failed lemma.

Last but not least, we integrate our new algorithm with the classic techniques
based on Bounded Model Checking [3]. We propose to compute additional can-
didates by Craig interpolation [6] from proofs of bounded safety. We show that
it is often sufficient to obtain some fixed amount of candidates from interpolants
in the beginning of the synthesis process, and further to bootstrap the initial
set of learned lemmas by the inductive subset extracted from the combination
of the syntactic seeds and interpolants. In contrast to the entirely randomized
workflow of the original version of FreqHorn, the behavior of our revised im-
plementation at the bootstrapping is predictable. The randomized search is used
by the new algorithm only for discovering mutants; and in our experiments, it
was required in about one third of cases only.

To sum up, the paper contributes to the previous knowledge in the following
main respects:

– A new revision and a new implementation of the FreqHorn algorithm
which is split into the bootstrapping and the sampling stages. In the first
stage, it deterministically exploits seeds only. In the second stage, it keeps
generating and checking only mutants, and it is by design nondeterministic.

– In the bootstrapping stage, interpolation-based proofs of bounded safety that
replenish the set of seeds by the candidates that likely reflect the nature of the
error unreachability and consequently affect the grammar-based generation
of mutants.

– In the sampling stage, the routine to extract inductive subsets which miti-
gates the effect of an unpredictably chosen sampling order.

– A more accurate strategy for the search space pruning and an efficient
counterexample-guided approach to give some failed candidates a second
chance.

The rest of the paper is structured as follows. In Sect. 2, we briefly formulate
the inductive synthesis problem, and in Sect 3 we sketch the basic FreqHorn
algorithm that attempts to solve it. With the help of techniques from Sect. 4, in
Sect. 5 the FreqHorn algorithm gets augmented and reformulated. In Sect. 6,
we show the experimental evidence that it indeed outperforms its predecessor
and is competitive to state-of-the-art. Finally, the related work, conclusion, and
acknowledgments complete the paper in Sect. 7 and 8.

2 Background and Notation

A first-order theory T consists of a signature 𝛴, which gathers variables, function
and predicate symbols, and a set Expr of 𝛴-formulas. Formula 𝜙 ∈ Expr is called
T -satisfiable if there exists an interpretation 𝑚 of each element (i.e., a variable, a
function or a predicate symbol), under which 𝜙 evaluates to ⊤ (denoted 𝑚 |= 𝜙);
otherwise 𝜙 is called T -unsatisfiable (denoted 𝜙 =⇒ ⊥). The Satisfiability
Modulo Theory (SMT) problem [8] for a given theory T and a formula 𝜙 aims
at determining whether 𝜙 is T -satisfiable. In this work, we formulate the tasks
arising in program verification by encoding them to the SMT problems.

Definition 1. A transition system P is a tuple ⟨V ∪V ′, Init ,Tr⟩, where V ′ is a
primed copy of a set of variables V ; Init and Tr are T -encodings of respectively
the initial states and the transition relation.

We view programs as transition systems and throughout the paper use both
terms interchangeably. Verification task is a pair ⟨𝑃,Bad⟩, where 𝑃 = ⟨V ∪
V ′, Init ,Tr⟩ is a program, and Bad is a T -encoding the error states. A verifica-
tion task has a solution if the set of error states is unreachable. A solution to
the verification task is represented by a safe inductive invariant, a formula that
covers every initial state, is closed under the transition relation, and does not
cover any of the error states.

Definition 2. Let 𝑃 = ⟨V ∪ V ′, Init ,Tr⟩; a formula Inv is a safe inductive
invariant if the following conditions (respectively called an initiation, a consecu-
tion, and a safety) hold:

Init(V) =⇒ Inv(V) (1)

Inv(V) ∧ Tr(V ,V ′) =⇒ Inv(V ′) (2)

Inv(V) ∧ Bad(V) =⇒ ⊥ (3)

To simplify reading, in the rest of the paper safe inductive invariants are
referred to as just invariants. We assume that an invariant Inv has the form of
conjunction, i.e., Inv = ℓ0 ∧ . . . ∧ ℓ𝑛, and each ℓ𝑖 is called a lemma.

The validity of each implication (1) and (2) is equivalent to the unsatisfi-
ability of the negation of the corresponding formula. Suppose, a formula Inv
makes (1) valid, but does not make (2) valid. Thus, there exists an interpre-
tation 𝑚 satisfying Inv(V) ∧ Tr(V ,V ′) ∧ ¬Inv(V ′), to which we refer to as a
counterexample-to-induction (CTI).

Example 1. The loop in program in Fig. 1a iterates N times, and in each iteration
it nondeterministically picks a value M, adds it to x (conditionally) and to c,
and assigns the sum of x and c to k. We wish to prove that after the loop
terminates, x ≥ N. An invariant for the program is defined non-uniquely, e.g.,
both the conjunction (𝑘 mod 2 = 0∧ 𝑥 = 𝑐) and conjunction (𝑘 = 𝑥 + 𝑐∧ 𝑥 ≥ 𝑐)
are the solutions for this verification task.

int x, k, c = 0;

int N = NONDET();

while (c < N) {
int M = NONDET();

if (k mod 2 == 0)

x = x + M;

c = c + M;

k = x + c;

}
assert (x ≥ N);

(a)

𝑥 = 0

𝑐 = 0

𝑘 = 0

𝑐 < 𝑁

𝑘 mod 2 = 0

𝑘 = 𝑥+ 𝑐

𝑐 ≥ 𝑁

𝑥 ≥ 𝑁

(b)

𝛼 ::= 1
⃒⃒
− 1

𝛽 ::= 0
⃒⃒
2

𝛾 ::= 𝑥
⃒⃒
𝑦
⃒⃒
𝑘
⃒⃒
𝑁

𝛿 ::= 𝛼 · 𝛾 + . . .+ 𝛼 · 𝛾
⃒⃒
𝛾 mod 𝛽

cand ::= 𝛿 = 𝛽
⃒⃒
𝛿 > 𝛽

⃒⃒
𝛿 ≥ 𝛽

(c)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥 = 0 ∧ 𝑘 = 0 ∧ 𝑐 = 0 =⇒ 𝐼𝑛𝑣(𝑥, 𝑘, 𝑐,𝑁)

𝐼𝑛𝑣(𝑥, 𝑘, 𝑐,𝑁) ∧ 𝑐 < 𝑁 ∧ 𝑥′ = ite (𝑘 mod 2 = 0, 𝑥+𝑀,𝑥)∧
𝑐′ = 𝑐+𝑀 ∧ 𝑘′ = 𝑥′ + 𝑐′ =⇒ 𝐼𝑛𝑣(𝑥′, 𝑘′, 𝑐′, 𝑁)

𝐼𝑛𝑣(𝑥, 𝑘, 𝑐,𝑁) ∧ 𝑐 ≥ 𝑁 ∧ ¬(𝑥 ≥ 𝑁) =⇒ ⊥

(d)

Fig. 1: Loopy program (a), its encoding (d), subexpressions extracted from the en-
coding (b), and grammar that generalizes the subexpressions (c).

3 Syntax-Guided Invariant Synthesis

In this work, we aim at discovering invariants in an enumerative way, i.e., by
guessing a candidate formula, substituting it for conditions (1), (2), and (3), and
checking their validity. Here we present a moderately reformulated and simplified
view of an algorithm recently proposed in [13].3 The pseudocode of the algorithm,
called FreqHorn, is shown in Alg. 1. The key insight behind the algorithm is
the automatic construction of a grammar 𝐺 (line 2) based on a fixed set Seeds
of expressions obtained by traversing parse trees of Init , Tr , and Bad (line 1).

To create 𝐺 from Seeds, we drop all expressions that contain variables from
both, V and V ′, and deprime all variables in the remaining expressions. Then,
we normalize elements of Seeds to have the form of equalities, inequalities, or
disjunctions of equalities and inequalities. Finally, formulas are rewritten, such

3 The original description [13] focuses on the probabilistic routines. In the interest of
this work, we do not discuss them here but restrict our attention on describing and
exemplifying the pre-processing steps.

Algorithm 1: FreqHorn: Sampling inductive invariants, cf. [13].

Input: ⟨𝑃,Bad⟩: verification task, where 𝑃 = ⟨V ∪V ′, Init ,Tr⟩
Output: Lemmas ⊆ 2Expr

1 Seeds ← getSubExprs(Init ,Tr ,Bad);
2 𝐺← getGrammarAndDistributions(Seeds);
3 Lemmas ← ∅;

4 while Bad(V) ∧
⋀︀

ℓ∈Lemmas

ℓ(V) ≠⇒ ⊥ do

5 cand ← sample(𝐺);
6 res ←

(︀
Init(V) =⇒ cand(V)

)︀
∧(︀

cand(V) ∧
⋀︀

ℓ∈Lemmas

ℓ(V) ∧ Tr(V ,V ′) =⇒ cand(V ′)
)︀
;

7 if res then
8 Lemmas ← Lemmas ∪ {cand};
9 𝐺← adjust(𝐺, cand , res);

that all terms are moved to the left side, and the subtraction, <, and ≤ are
rewritten respectively as the addition, >, and ≥.

The algorithm uses 𝐺 for generating the candidate formulas (line 5) and
populates the set of lemmas until their conjunction is an invariant. The algorithm
learns from each positive and negative attempt (line 9). That is, 𝐺 gets adjusted,
such that the candidate (and some of its close relatives) is not going to be
sampled in any of the following iterations.

Example 2. The verification condition for the program in Fig. 1a is represented
by three implications in Fig. 1d. They are syntactically split into the set Seeds
of expressions over V , elements of which used to contain only primed or only
unprimed variables (shown in Fig. 1b). In particular, equalities 𝑥′ = 𝑥 + 𝑀 and
𝑐′ = 𝑐 + 𝑀 are excluded from Seeds, and equality 𝑘′ = 𝑥′ + 𝑐′ is rewritten to
𝑘 = 𝑥 + 𝑐. The grammar containing the normalized expressions from Seeds is
shown in Fig. 1c. It is easy to see that all lemmas consisting in both invariants
from Ex. 1, (𝑘 mod 2 = 0 ∧ 𝑥 = 𝑐) and (𝑘 = 𝑥 + 𝑐 ∧ 𝑥 ≥ 𝑐), can be generated by
applying the grammar’s production rules recursively.

Definition 3. Each formula contained in set Seeds, which is used for construct-
ing grammar 𝐺 (in line 2), is called a seed. Formula cand produced by 𝐺 is called
a mutant if cand ̸∈ Seeds.

The main downside of Alg. 1 is that it is hard to choose a sampling order
for each individual lemma at the final invariant. Suppose, cand = (𝑥 = 𝑐) is
sampled and checked in the first iteration of Alg. 1. Consequently, condition (2)
is not fulfilled, and it is witnessed by the following CTI: [𝑥 ← 0; 𝑘 ← 1; 𝑐 ←
0;𝑁 ← 10;𝑥′ ← 0; 𝑘′ ← 7; 𝑐 ← 7;𝑀 ← 7]. The grammar is then adjusted, such
that 𝑥 = 𝑐 (and some syntactically relevant, stronger or equivalent formulas, e.g.
−𝑥 = −𝑐) do not belong to the grammar anymore.

Suppose, in the second iteration of Alg. 1, cand = (𝑘 = 𝑥 + 𝑐). It passes
checks (1) and (2), gets inserted to set Lemmas, and thus it is going to be
taken into account in the following iterations (see implications in lines 4 and 6).
The grammar is then adjusted again, such that 𝑘 = 𝑥 + 𝑐 (and some weaker or
equivalent formulas, e.g. 𝑘 ≥ 𝑥+𝑐) do not belong to the grammar anymore. Note
that if in the third iteration cand = (𝑥 = 𝑐) was sampled again, the algorithm
would terminate. However, it is impossible since the sampling grammar was
adjusted after both negative and positive attempts.

The opposite sampling order (i.e., cand = (𝑘 = 𝑥+ 𝑐) first, and cand = (𝑥 =
𝑐) then) would lead to a faster convergence of the algorithm. Since it is hard to
decide which order to choose, the production rules are equipped with probability
distributions that allow both orders under certain probabilities. In this paper,
we propose to use a strategy which is less dependent on an order – to check
candidates in batches – and we describe it in Sect. 5 in more detail.

4 Old Friends Are Best

In this section, we rehash two ideas widely used in symbolic model checking that
can be adapted to accelerate syntax-guided invariant synthesis.

4.1 Interpolation-based proofs of bounded safety

Bounded Model Checking (BMC) [3] is a formal technique, primarily used for
bug finding. Given a transition system ⟨V ∪V ′, Init ,Tr⟩, set of error states Bad ,
and a non-negative integer number 𝑘, the BMC task is to check if there exists
a path of length 𝑘 ending in an error state. The idea is to unroll Tr 𝑘 times,
conjoin it with Init and with the negation of Bad , and to check the satisfiability
of the resulting formula (called a BMC formula):

Init(𝑉) ∧ Tr(𝑉, 𝑉 ′) ∧ Tr(𝑉 ′, 𝑉 ′′) ∧. . .∧ Tr(𝑉 (𝑘−1), 𝑉 (𝑘))⏟ ⏞
𝑘

∧Bad(𝑉 (𝑘))

Here, each 𝑉 (𝑖) is a fresh copy of 𝑉 . Each satisfying assignment to the BMC
formula represents a counterexample of length 𝑘. Otherwise, if the formula is
unsatisfiable, then no counterexample of length 𝑘 exists.

Lemma 1. If a BMC formula for program 𝑃 and some 𝑘 is satisfiable then no
invariant exists.

A proof of bounded safety is an over-approximation 𝐼 of the set of initial
states, such that any path of length 𝑘, that starts in a state satisfying 𝐼, does
not end in a state satisfying Bad . The extraction of proofs is typically done with
the help of Craig interpolation [6].

Definition 4. Given two formulas 𝐴 and 𝐵, such that 𝐴 ∧ 𝐵 =⇒ ⊥, an
interpolant 𝐼 is a formula satisfying three conditions: 1) 𝐴 =⇒ 𝐼, 2) 𝐼 ∧𝐵 =⇒
⊥, and 3) 𝐼 is expressed over the common alphabet to 𝐴 and 𝐵.

Algorithm 2: bmcItp: Obtaining bounded proofs, cf. [24,25].

Input: ⟨𝑃,Bad⟩: verification task, where 𝑃 = ⟨V ∪V ′, Init ,Tr⟩, 𝑘: bound
Output: proof ⊆ 2Expr

1 unr ← ⊤;
2 for (𝑖← 𝑘; 𝑖 > 0; 𝑖← 𝑖− 1) do

3 unr ← unr ∧ Tr(V (𝑖−1),V (𝑖));

4 if unr ∧ Bad(V (𝑘)) =⇒ ⊥ then

5 proof ← getItp(unr ,Bad(V (𝑘)));
6 return;

7 unr ← unr ∧ Bad(V (𝑘));

8 if Init(V (0)) ∧ unr =⇒ ⊥ then

9 proof ← getItp(Init(V (0)), unr);

For an invocation of a procedure of generating an interpolant 𝐼 for 𝐴 and 𝐵
and splitting it to a set of conjunction-free clauses (i.e., 𝐼 = ℓ0∧· · ·∧ℓ𝑛), we write
{ℓ𝑖} ← getItp(𝐴,𝐵). Alg. 2 shows an algorithm to generate interpolation-based
proofs of bounded safety for BMC formulas. It iteratively unrolls the transition
relation and applies the interpolation to the entire BMC formula. In addition,
in spirit of Lazy Annotation [25], while decrementing 𝑖, the algorithm applies
a backward reasoning and checks if an error state is reachable by (𝑘 − 𝑖) steps
from an empty state (line 4). It triggers the interpolation to be applied to smaller
formulas, and in some cases fastens the proof search (line 5).

Example 3. Let the program in Fig. 1a is unrolled 0 times, then its BMC formula
is constructed as follows: 𝑥 = 0 ∧ 𝑘 = 0 ∧ 𝑐 = 0⏟ ⏞

Init

∧ 𝑐 ≥ 𝑁 ∧ ¬(𝑥 ≥ 𝑁)⏟ ⏞
Bad

. It is unsa-

tisfiable, and since interpolants are not unique, function getItp(Init ,Bad) could
return proof 1 = {𝑥 ≥ 0, 𝑐 ≤ 0}, proof 2 = {𝑥 = 𝑐}, or proof 3 = {𝑥 ≥ 𝑐}.

4.2 Inductive subset extraction

When checking the consecution of a set of candidate formulas “one-by-one”
(i.e., like in Alg. 1), the order of checks is crucial, and the chance to miss some
important lemma is high. It can be overcome by checking all candidate formulas
at once, identifying which ones brake the validity of implication (2), removing
them from the set, and repeating the “all-at-once” check. Alg. 3 shows a simple
implementation of this iterative algorithm, which is extensively used in PDR
and also known as Houdini [14], Note that Houdini is only meaningful for the
candidate formulas which are already implied by the initial states.

Example 4. Conjunction of formulas from set Seeds in Fig. 1b is unsatisfiable,
and its minimal unsatisfiable core is 𝑐 < 𝑁 ∧𝑐 ≥ 𝑁 . Thus, Alg. 3 would immedi-
ately return the entire set Seeds. Let a set Cands be constructed from Seeds by re-

Algorithm 3: Houdini: Calculating an inductive subset, cf. [14] and keep-
ing counterexamples-to-induction.

Input: 𝑃 = ⟨V ∪V ′, Init ,Tr⟩: program; Cands ⊆ 2Expr ;
CTI ⊆ 2𝑉 →R; CTImap: CTI → 2Expr

Output: inductive Cands ⊆ 2Expr ; updated CTI and CTImap

1 while
⋀︀

cand′∈Cands

cand ′(V) ∧ Tr(V ,V ′) ≠⇒
⋀︀

cand′∈Cands

cand ′(V ′) do

2 for cand ∈ Cands do
3 if ∃𝜋, s.t. 𝜋 |=

(︀ ⋀︀
cand′∈Cands

cand ′(V) ∧ Tr(V ,V ′) ∧ ¬cand(V ′)
)︀
then

4 Cands ← Cands ∖ {cand};
5 CTI ← CTI ∪ {𝜋

⃒⃒
V
};

6 CTImap(𝜋
⃒⃒
V
)← CTImap(𝜋

⃒⃒
V
) ∪ cand ;

moving all elements, for which condition (1) does not hold. Conjunction of the el-
ements in Cands is satisfiable: {𝑥 = 0, 𝑐 = 0, 𝑘 = 0, 𝑘 mod 2 = 0, 𝑘 = 𝑥+𝑐}. Ap-
plying Alg. 3 to Cands gives the inductive subset {𝑘 mod 2 = 0, 𝑘 = 𝑥+ 𝑐}.

Note that we extended Alg. 3 with a routine to extract a counterexample-to-
induction 𝜋 for each element dropped from Cands (lines 3-6). We restrict each
𝜋 to only assignments to variables from V (denoted 𝜋

⃒⃒
V

) and group all non-
inductive formulas from Cands by the particular 𝜋 that killed them. This routine
is important for optimizing the syntax-guided invariant synthesis algorithm, and
it is discussed in more detail in Sect. 5.

5 Reconsidering Syntax-Guided Invariant Synthesis

The lesson we learned when running the FreqHorn algorithm is that the pro-
gram encoding gives many hints on how the shape of lemmas should look like.
However, the encoding itself can barely give any information about the sampling
order. Our main idea to revise the FreqHorn algorithm is to treat seeds and
mutants separately. Indeed, as we have seen in Ex. 2, both seeds and mutants
are needed for constructing an invariant, but seeds do not actually need to be
re-sampled – these candidates are ready to be checked prior to any sampling.

5.1 Overview

We present a new revision of the FreqHorn algorithm which is split into two
main stages, the bootstrapping and the sampling. In the first stage, it exploits
only seeds. The idea is to terminate this stage as quickly as possible and to
populate the set of lemmas with (preferably, the maximal) inductive subset of
seeds. If this subset is not enough for an invariant, the algorithm should proceed
to the next stage, in which it should keep generating and checking only mutants.

The pseudocode of the new FreqHorn’s revision is shown in Alg. 4. In
the bootstrapping, the algorithm relies on Alg. 2 to replenish the set of seeds

Algorithm 4: FreqHorn-2: Sampling inductive invariants with Houdini,
bmcItp, and the second-chance candidates.

Input: ⟨𝑃,Bad⟩: verification task, where 𝑃 = ⟨V ∪V ′, Init ,Tr⟩; 𝑁,𝑀,𝐾: knobs
Output: Lemmas ⊆ 2Expr

1 Seeds ← getSubExprs(Init ,Tr ,Bad);
2 for (𝑘 ← 0; 𝑘 < 𝑁 ; 𝑘 ← 𝑘 + 1) do
3 proof ← bmcItp(⟨𝑃,Bad⟩, 𝑘);
4 if proof = ∅ then
5 return;
6 else
7 Seeds ← Seeds ∪ proof ;

8 𝐺← getGrammarAndDistributions(Seeds);
9 CTI ,CTImap ← ∅;

10 #learned ← 0;
11 Cands ← Seeds;

12 while Bad(V) ∧
⋀︀

ℓ∈Lemmas

ℓ(V) ≠⇒ ⊥ do

13 while |Cands| < 𝑀 do
14 Cands ← Cands ∪ {sample(𝐺)};
15 for cand ∈ Cands do
16 if Init(V) ≠⇒ cand(V) then
17 𝐺← adjust(𝐺, cand , false);
18 Cands ← Cands ∖ {cand};

19 ⟨Lemmas ′,CTI ,CTImap⟩ ← Houdini(𝑃,Cands ∪ Lemmas,CTI ,CTImap);

20 for ℓ′ ∈ Lemmas ′ ∖ Lemmas do
21 𝐺← adjust(𝐺, ℓ′, true);

22 NewLemmas = {ℓ′ | ℓ′ ∈ Lemmas ′, s.t.
⋀︀

ℓ∈Lemmas

≠⇒ ℓ′};

23 #learned ← #learned + |NewLemmas|;
24 Lemmas = Lemmas ∪NewLemmas;
25 Cands ← ∅;

26 if #learned > 𝐾 then
27 #learned ← 0;
28 for 𝑚 ∈ CTI do
29 if 𝑚 |̸=

⋀︀
ℓ∈Lemmas

ℓ(V) then

30 CTI ← CTI ∖𝑚;
31 Cands ← Cands ∪ CTImap(𝑚);

by semantically-meaningful candidates, and in the sampling stage, it relies on
Alg. 3 to mitigate the effect of an unpredictably chosen sampling order. Another
algorithmic advantage against Alg. 1 (to be explained in Sect. 5.2) lies in a more
accurate strategy for the search space pruning and the efficient counterexample-
guided method to give some failed candidates a second chance.

The algorithm takes as input a verification task and values of important
configuration parameters 𝑁 , 𝑀 , and 𝐾 (to be explained further). Like Alg. 1, it
starts with obtaining a set of expressions Seeds from Init , Tr , and Bad (line 1).
Then, Seeds gets merged with sets of formulas obtained by Craig interpolation
from proofs of bounded safety for a range of bounds 0, . . . , 𝑁 . Note that if there
is a counterexample of length 𝑘 < 𝑁 discoverable by the BMC engine then an
invariant does not exist (recall Lemma 1), and Alg. 4 terminates (line 5).

The bootstrapping ends when the merged set Seeds is taken as input by
Alg. 3, and it extracts an inductive subset (line 19). However, prior to it, the
algorithm checks the initiation condition for all elements of the merged set, and
the set is filtered accordingly (lines 15-18).

Example 5. Let set Seeds be as in Fig. 1b, and set Cands be constructed from
Seeds by removing all elements, for which condition (1) does not hold. Assume
that a proof of bounded safety for 𝑘 = 0 is {𝑥 = 𝑐} (as one of the options
in Ex. 3). Applying Alg. 3 to Cands ∪ {𝑥 = 𝑐}, we get the inductive subset
{𝑘 mod 2 = 0, 𝑘 = 𝑥 + 𝑐, 𝑥 = 𝑐}. Since the conjunction of these lemmas is an
invariant, the algorithm terminates just after the bootstrapping.

Checking the candidate formulas in batches is an important improvement
over Alg. 1. This way, the algorithm becomes less dependent of the heuristics for
prioritizing the search-space traversal. The size of the batch 𝑀 is configurable,
and if the size of set Cands is less than 𝑀 , then the set gets additional mutants
(lines 13-14). Mutants are sampled from the grammar, which is powered by both,
the program’s encoding (similar to Alg. 1) and the proofs of bounded safety (new
in Alg. 4). This enlarges the search space for the further mutants.

If the initial batch of candidates still misses some lemmas necessary for an
invariant, then Alg. 4 proceeds to a new iteration. In particular, the extracted
inductive subset gets merged with the set of lemmas (line 24), and the assembly
of a new batch of candidates starts from scratch (line 25).

Example 6. Assume that a proof of bounded safety is proof 1 = {𝑥 ≥ 0, 𝑐 ≤ 0}
(as in Ex. 3). However, the initiation condition is fulfilled for none of the elements
of proof 1, so none of them contains in the set of formulas Cands taken as input
by Alg. 3. Thus, proof 1 does not bring any additional value to the set of seeds,
and (contrary to the case in Ex. 5) the algorithm does not terminate after the
bootstrapping. Instead, it proceeds to sampling fresh mutants.

Theorem 1. If Alg. 4 terminates, then either an actual bug is found (line 5),
or an invariant is synthesized (after the while-loop).

5.2 Learning strategy

A substantial distinction between the FreqHorn’s revisions is how they react
to the positive and negative attempts. In Alg. 1, the search space gets adjusted
after each individual check (recall the example after Def. 3). The grammar ad-
justments are performed by changing the probabilities assigned to the produc-
tion rules. In addition to zeroing the probability of sampling a candidate cand

itself, after each positive check, Alg. 1 zeroes the probabilities of sampling some
formulas which are weaker than cand , and after each negative check – the prob-
abilities of sampling some formulas which are stronger than cand (see [13] for
more details).

In contrast, Alg. 4 reacts just to the failed candidates after the initiation check
(line 17) and to the successful candidates after the consecution check (line 21).
Otherwise, if the consecution check failed for a candidate cand (inside Alg. 3),
Alg. 4 does not disqualify cand from being checked again in the future, and this
is done by keeping cand locally and periodically seeking an opportunity to give
cand a second chance.

To efficiently exploit the second-chance candidates, we rely on the exten-
sion of Alg. 3 by the routine to extract counterexamples-to-induction. That is,
for each failed cand there exists 𝑚 ∈ CTI that killed it. To maintain this in-
formation, every application of Alg. 3 updates the map CTImap from CTI to
failed candidates. In Alg. 4, it remains to periodically check whether some 𝑚
is eliminated (line 29), and it would increase chances of all candidates killed
by 𝑚 (line 31) to succeed the consecution check in the next iteration. On the
other hand, if some 𝑚 still models the conjunction of learned lemmas then it is
guaranteed that candidates in CTImap(𝑚) will fail the consecution check again.

Finally, to ensure that the CTI-check happens not too often, we run it only
when at least 𝐾 new lemmas are learned. To make this happen, Alg. 4 perfoms
a redundancy check (line 22) for all lemmas ℓ that have passed the initiation and
the consecution checks: ℓ gets learned only when the conjunction of all lemmas
learned so far does not imply ℓ. Obviously, when no new lemmas (after the
redundancy check) are added, it does not make sense to run the CTI-check since
all CTIs are still valid.

5.3 Optimizations

The following tricks are omitted from the algorithm’s pseudocode to simplify
reading, but they are important for the algorithm’s efficiency.

– As a consequence of calculating frequencies, in the original FreqHorn al-
gorithm, seeds were given priorities, but mutants were considered with a rel-
atively small probability. In contrast, the new FreqHorn’s revision forces
seeds to be checked in the bootstrapping. So while doing sampling, it gives
priorities to mutants, and for that it ignores frequencies.

– The initiation checks (lines 15-18) for proofs of bounded safety are omitted
since by definition of interpolant (Def. 4) they are already fulfilled. The
initiation checks for the second-chance candidates are omitted as well.

– In case a candidate fails the consecution check, and it is queued for a second
chance, it is still possible that Alg. 4 samples it again in the next iterations.
Re-sampling is avoided by additional adjustments to the probabilities of the
sampling grammar in line 6 of Alg. 3.

– Alg. 3 could be optimized if solved with assumptions. However, in our ex-
perience, it may lead to dropping more candidates than needed. Ideas for
getting a maximal inductive subset from [23] could be applied here as well.

– For getting proofs of bounded safety for various bounds, an incremental
SMT solver could be used. That is, it could reuse parts of a BMC formula
for bound 𝑘 to encode the BMC formula for bound 𝑘 + 1. Potentially, other
tricks (e.g., [30,5]) could also be applied here. Finally, interpolation could
be replaced by the weakest precondition computation.

6 Evaluation

We implemented FreqHorn-2 on top of our prior implementation FreqHorn4.
The tool takes as input a verification task in a form of linear constrained Horn
clauses (CHC), automatically performs its unrolling, searches for counterexam-
ples, generates proofs of bounded safety, and performs the Houdini-style ex-
traction of inductive subsets. All the symbolic reasoning is performed by the Z3
SMT solver [7].

We evaluated FreqHorn-2 on various safe and buggy programs taken from
SVCOMP5 and literature (e.g., [9,15]). Since most of benchmarks, proposed
by [9], appeared to be solvable during the bootstrapping of FreqHorn-2 (more
details in Sect. 6.1) within (fractions of) seconds, we crafted additional harder
benchmarks by ourselves.

All the programs were encoded using the theories of linear (LIA) and non-
linear integer arithmetic (NIA). We did run FreqHorn-2 on unsafe instances
for the testing purposes only. It was able to detect a counterexample, but since
no invariant exists in these cases, we do not discuss this experience here.

6.1 The bootstrapping experiment

In total, we considered 171 safe programs. For 103 of them, the seeds, gener-
ated by breaking the symbolic encoding to pieces, did already contain all lemmas
needed for invariants. However, when we checked the seeds one-by-one, we re-
vealed invariants for only 63, but using the inductive subset extraction helped
revealing all 103. Each set of seeds contained in average 9 formulas.

For our BMC implementation, we considered bounds 1, 2, and 3. Generated
interpolants already contained all lemmas for invariants for 70 programs.6 Each
set of bounded proofs contained in average 2 formulas. In all these cases, the
output of Alg. 2 was taken as input by Alg. 3, and the final safety check was
performed afterwards. Our most promising results were achieved while running
Alg. 3 for the merged sets of seeds and proofs of bounded safety (i.e., both sets
as in the two prior runs together). The merged sets already contained all lemmas
for invariants for 114 programs.

4 The source code and benchmarks are available at https://github.com/

grigoryfedyukovich/aeval/tree/rnd.
5 Software Verification Competition, http://sv-comp.sosy-lab.org/, loop-* cate-
gories.

6 Currently interpolation in FreqHorn-2 is limited to LIA, so we had to skip inter-
polation for 17 benchmarks over NIA.

https://github.com/grigoryfedyukovich/aeval/tree/rnd
https://github.com/grigoryfedyukovich/aeval/tree/rnd
http://sv-comp.sosy-lab.org/

Table 1: Exact timings.
Benchmark FreqHorn 2 FreqHorn 𝜇Z Spacer

abdu 01 𝜖 1.27 𝜖 𝜖
abdu 04 𝜖 8.64 𝜖 𝜖
bouncy three 6.87 6.76 𝜖 𝜖
bouncy two 2.74 2.41 ∞ ∞
cegar1 𝜖 2.18 𝜖 𝜖
cggmp iter 1 3.09 8.73 𝜖 𝜖
cggmp iter 2 10.50 24.92 𝜖 𝜖
cggmp iter 3 18.80 55.86 𝜖 𝜖
const div 1 𝜖 2.61 𝜖 𝜖
const div 2 𝜖 1.40 𝜖 𝜖
const div 3 ∞ ∞ 21.31 ∞
const mod 3 𝜖 ∞ 𝜖 𝜖
count by 2 modif 3.28 10.98 ∞ ∞
count by 2 2.80 1.62 ∞ ∞
countud 3.60 15.96 ∞ 𝜖
css2003 𝜖 9.59 𝜖 𝜖
dillig02 10.91 35.48 𝜖 𝜖
dillig03 𝜖 𝜖 ∞ ∞
dillig05 4.74 2.04 ∞ ∞
dillig07 1.93 2.58 𝜖 𝜖
dillig08 𝜖 1.26 ∞ 𝜖
dillig10 2.28 2.72 𝜖 𝜖
dillig13 1 ∞ ∞ 𝜖 𝜖
dillig13 ∞ ∞ 𝜖 𝜖
dillig14 1.90 6.98 𝜖 𝜖
dillig15 3.28 3.61 ∞ 𝜖
dillig16 20.14 15.35 ∞ 𝜖
dillig20 1 𝜖 1.65 𝜖 𝜖
dillig20 2 𝜖 4.97 𝜖 𝜖
dillig20 3 34.51 4.53 𝜖 𝜖
dillig21 𝜖 4.06 7.5 3.98
dillig22 2 𝜖 8.59 𝜖 𝜖
dillig22 3 29.77 15.43 𝜖 𝜖
dillig22 4 9.99 15.20 𝜖 𝜖
dillig22 5 14.12 12.02 𝜖 𝜖
dillig22 6 25.88 13.75 ∞ 𝜖
dillig22 𝜖 7.25 𝜖 𝜖
dillig37 1.48 1.67 𝜖 𝜖
dillig41 𝜖 1.41 ∞ ∞
dillig42 1 23.88 ∞ 𝜖 𝜖
dillig42 52.13 ∞ 𝜖 𝜖
dillig44 1 𝜖 ∞ 𝜖 𝜖
dillig44 𝜖 ∞ 𝜖 𝜖
dillig46 6.20 4.86 𝜖 𝜖
ex7 2.28 8.93 𝜖 𝜖
exact iters 1 26.55 35.58 𝜖 𝜖
exact iters 2 ∞ 22.76 ∞ ∞
exact iters 3 23.96 26.60 ∞ ∞
exact iters 4 ∞ 29.19 𝜖 𝜖
fig3 𝜖 21.82 𝜖 𝜖
formula22 𝜖 11.34 𝜖 𝜖
formula25 𝜖 1.12 𝜖 𝜖
formula27 𝜖 20.31 𝜖 𝜖
gcd 2 2.15 1.84 𝜖 𝜖
gcd 3 2.40 3.58 𝜖 𝜖
gj2007 ∞ ∞ ∞ 𝜖
half true modif ∞ 58.15 𝜖 𝜖
half true orig 35.58 45.00 𝜖 𝜖
hhk2008 6.60 28.46 𝜖 𝜖
menlo park term simpl 1 𝜖 1.39 ∞ 15.84
menlo park term simpl 2 12.29 58.36 ∞ ∞
n c11 𝜖 ∞ 𝜖 𝜖
nonlin div 26.00 ∞ ∞ ∞
nonlin factorial 𝜖 ∞ ∞ ∞
nonlin minus 1 𝜖 1.78 ∞ ∞

Benchmark FreqHorn 2 FreqHorn 𝜇Z Spacer

nonlin minus 2 𝜖 2.60 ∞ ∞
nonlin mod 1 5.78 16.13 ∞ ∞
nonlin mod 2 ∞ 18.46 ∞ ∞
nonlin mod mult 𝜖 𝜖 ∞ ∞
nonlin mult 1 𝜖 𝜖 ∞ ∞
nonlin mult 2 𝜖 2.28 ∞ ∞
nonlin mult 3 𝜖 2.86 ∞ ∞
nonlin mult 4 𝜖 2.48 ∞ ∞
nonlin mult 5 ∞ 3.22 ∞ ∞
nonlin mult 6 𝜖 3.27 ∞ ∞
nonlin power 𝜖 ∞ 𝜖 𝜖
nonlin square 𝜖 𝜖 ∞ ∞
nonterm 01 𝜖 𝜖 ∞ 𝜖
phases1 ∞ 10.81 ∞ ∞
s disj ite 01 8.77 5.43 𝜖 𝜖
s disj ite 02 3.98 5.98 𝜖 𝜖
s disj ite 03 13.15 2.71 𝜖 ∞
s disj ite 04 7.01 4.13 𝜖 𝜖
s disj ite 05 4.64 ∞ 18.66 40.38
s disj ite 06 6.43 ∞ 𝜖 𝜖
s mutants 01 𝜖 𝜖 ∞ ∞
s mutants 02 𝜖 2.40 ∞ ∞
s mutants 03 𝜖 𝜖 ∞ ∞
s mutants 05 7.86 1.90 ∞ ∞
s mutants 06 𝜖 𝜖 ∞ ∞
s mutants 07 1.63 1.75 𝜖 𝜖
s mutants 09 𝜖 3.41 𝜖 𝜖
s mutants 11 𝜖 1.86 4.72 𝜖
s mutants 12 𝜖 4.09 𝜖 𝜖
s mutants 13 𝜖 10.42 𝜖 𝜖
s mutants 14 𝜖 11.47 𝜖 𝜖
s mutants 15 𝜖 14.50 𝜖 𝜖
s mutants 16 14.38 ∞ ∞ ∞
s mutants 17 14.56 5.83 ∞ ∞
s mutants 18 39.85 ∞ 𝜖 𝜖
s mutants 19 𝜖 1.31 1.44 𝜖
s mutants 20 41.15 36.47 ∞ ∞
s mutants 21 ∞ 24.68 ∞ ∞
s mutants 22 14.82 16.52 ∞ ∞
s mutants 23 1.61 1.11 ∞ ∞
s mutants 24 1.58 2.81 ∞ 𝜖
s seeds 04 𝜖 ∞ 20.49 𝜖
s seeds 05 𝜖 𝜖 ∞ 𝜖
s seeds 06 𝜖 1.78 𝜖 ∞
s seeds 10 𝜖 ∞ 𝜖 𝜖
s triv 01 𝜖 1.33 𝜖 𝜖
s triv 07 𝜖 1.15 𝜖 𝜖
s triv 08 𝜖 ∞ 𝜖 𝜖
s triv 09 𝜖 ∞ 𝜖 𝜖
s triv 11 𝜖 ∞ 𝜖 𝜖
s triv 12 𝜖 ∞ 𝜖 𝜖
s triv 14 𝜖 𝜖 ∞ 𝜖
s triv 16 𝜖 ∞ 𝜖 𝜖
s triv 17 𝜖 ∞ 𝜖 𝜖
sn 1024 6.14 14.64 24.83 7.12
sn 2048 25.91 26.11 ∞ 30.87
sn 4096 7.57 ∞ ∞ ∞
sn 8192 11.82 41.01 ∞ ∞
three dots moving 1 𝜖 58.48 10.28 𝜖
three dots moving 2 𝜖 ∞ 𝜖 𝜖
three dots moving 3 𝜖 ∞ 𝜖 𝜖
trex3 𝜖 8.23 𝜖 𝜖
yz plus minus 4.35 ∞ ∞ ∞

100 101

100

101

100 101

100

101

100 101

100

101

Fig. 2: FreqHorn-2 vs respectively FreqHorn, Spacer3, and 𝜇Z.

This experiment lets us to conclude that the bootstrapping is exceptionally im-
portant for accelerating syntax-guided invariant synthesis. In contrast to Freq-
Horn’s fully randomized workflow, FreqHorn-2’s behavior at the bootstrap-
ping is predictable. FreqHorn-2 uses the randomized search only to discover
mutants, and in our experiments, it was required only in 57 out of 171 cases.

6.2 Overall statistics

Since technically FreqHorn-2 is a CHC-solver, we compared it against other
CHC-solvers, namely 𝜇Z [17,22] and Spacer3 [22]. All the tools were provided
with the same CHC-encodings of verification problems (and thus, the results
do not directly depend on a process of encoding a C-program to a CHC-file).
Both 𝜇Z and Spacer3 are PDR-based, and despite the latter is faster than the
former and can solve more benchmarks, there are 26 instances, for which the
former outperforms the latter.

Table 1 shows the precise running times of FreqHorn-2, FreqHorn, 𝜇Z,
and Spacer3. To simplify reading, we removed non-representative “noise”-runs
which took less that 1 second or exceeded a timeout of 60 seconds by all tools. In
the table, 𝜖 denotes an insignificant amount of time (≤ 1 second), and∞ denotes
the timeout. The numbers of FreqHorn and FreqHorn-2 are the means of
three individual runs. In total, the table contains 128 instances. Additionally,
Fig. 2 shows three scatter plots comparing running times of FreqHorn-2 vs
FreqHorn, 𝜇Z, and Spacer3 respectively. Each point in a plot represents a
pair of the FreqHorn-2 run (x-axis) and the competing tool run (y-axis).

FreqHorn-2 outperformed its predecessor in 90 out of 128 cases. We wit-
nessed the speedup up to 233X, and in average FreqHorn-2 was four times
faster than FreqHorn. In 40 cases FreqHorn-2 outperformed Spacer3, and
in 38 cases Spacer3 outperformed FreqHorn-2. In 51 cases FreqHorn-2 out-
performed 𝜇Z, and in 34 cases 𝜇Z outperformed FreqHorn-2. Unfortunately,
FreqHorn-2 still has some performance anomalies, which we believe are con-
nected to the often blind grammar-construction mechanism, inability to generate
large disjunctions, and possible inefficiencies of the black-box interpolation en-
gine.

7 Related Work

In this work we exploit a range of techniques originated from symbolic model
checking, and in particular from IC3/PDR [4,10], e.g., the idea of keeping CTIs
and analyzing them to push previously considered lemmas [29]. Various strategies
could be applied for making the lemma pushing more or less eager, i.e., as soon
as a newly-added lemma invalidates some CTI. In some IC3 implementations
(e.g., [16]), eager pushing does not pay off, but avoiding to push certain lemmas
during the regular pushing stage of IC3 results in an improvement. Since we do
not have many lemmas, eager pushing also pays off.

The idea of applying Houdini to extract invariants from proofs of bounded
safety was fundamental for the first version of Spacer [23]. They, however, keep
obtaining proofs along the entire verification process. In contrast, we use proofs
mainly for the bootstrapping, while the remaining progress of the algorithm is
entirely dictated by the success of sampling.

Most of the successful verification tools today use various combinations of
different techniques. In particular, approaches [28,2] use invariants from abstract
interpretation to force convergence of k-induction. Recently, k-induction was
benefitted from lemmas obtained from PDR [21]. A promising idea to exploit
the data from traces [12,15] while creating and manipulating the candidates
for invariants could also be used in our syntax-guided approach: at least we
could add more constants to the grammar. However we are currently unaware
of a strategy to find meaningful constants and to avoid over-population of the
grammar by too many constants. Our preliminary experiments resulted so far
in the performance decrease.

Techniques for automatic construction of grammars were applied outside of
formal verification, but in the domains of security analysis and dynamic test
generation [18,19]. Indeed, mutations of the input data for some program can in
fact be used as new input data and therefore can increase the testing coverage.

Finally, syntax-guided techniques [1] keep being used in program synthe-
sis more frequently than in the inductive invariant synthesis. For instance, in
applications [27,26,11,20] a formal grammar is additionally provided, and it is
considered a part of specification. In contrast, in our application, the verification
condition contains the encoding of the entire program and the safety specifica-
tion, which together are enough for construction of formal grammars completely
automatically. This is in fact the main driving idea behind FreqHorn, and
it leaves us a spacious room for its further adaptations, e.g., in proving and
disproving program termination, automated repair of software regressions, and
security analysis.

8 Conclusion

We have presented the new revision of the FreqHorn algorithm to synthe-
size safe inductive invariants based on syntactic features of the source code
and the proofs of bounded safety. The new algorithm contains the determin-
istic bootstrapping stage and the nondeterministic sampling stage, which make
it more predictable than its predecessor, allows converging more frequently and
in average four times faster. Similarly to most of the state-of-the-art verification
techniques, our approach enjoys a tight integration with well renowned formal
methods and should be treated as an example of successful interchange of ideas
across application domains.

Acknowledgments It is hard to underestimate the value of discussions with
Alexander Ivrii, Arie Gurfinkel, Michael W. Whalen, and other attendees of the
International Conference on Formal Methods in Computer-Aided Design (FM-
CAD 2017) which gave rise to many interesting ideas and inspired this work.

References

1. R. Alur, R. Bod́ık, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A. Seshia,
R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-guided synthesis. In
FMCAD, pages 1–17. IEEE, 2013.

2. D. Beyer, M. Dangl, and P. Wendler. Boosting k-Induction with Continuously-
Refined Invariants. In CAV, Part I, volume 9206 of LNCS, pages 622–640, 2015.

3. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic Model Checking without
BDDs. In TACAS, volume 1579 of LNCS, pages 193–207. Springer, 1999.

4. A. R. Bradley. SAT-Based Model Checking without Unrolling. In VMCAI, volume
6538 of LNCS, pages 70–87. Springer, 2011.

5. G. Cabodi, P. Camurati, M. Palena, P. Pasini, and D. Vendraminetto.
Interpolation-based learning as a mean to speed-up bounded model checking (short
paper). In SEFM, volume 10469 of LNCS, pages 382–387, 2017.

6. W. Craig. Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. In J. of Symbolic Logic, pages 269–285, 1957.

7. L. M. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In TACAS, volume
4963 of LNCS, pages 337–340. Springer, 2008.

8. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for program
checking. J. ACM, 52(3):365–473, 2005.

9. I. Dillig, T. Dillig, B. Li, and K. L. McMillan. Inductive invariant generation via
abductive inference. In OOPSLA, pages 443–456. ACM, 2013.

10. N. Eén, A. Mishchenko, and R. K. Brayton. Efficient implementation of property
directed reachability. In FMCAD, pages 125–134. IEEE, 2011.

11. G. Fedyukovich, M. B. S. Ahmad, and R. Bod́ık. Gradual Synthesis for Static
Parallelization of Single-Pass Array-Processing Programs. In PLDI, pages 572–
585. ACM, 2017.

12. G. Fedyukovich, A. Callia D’Iddio, A. E. J. Hyvärinen, and N. Sharygina. Symbolic
Detection of Assertion Dependencies for Bounded Model Checking. In FASE,
volume 9033 of LNCS, pages 186–201. Springer, 2015.

13. G. Fedyukovich, S. Kaufman, and R. Bod́ık. Sampling Invariants from Frequency
Distributions. In FMCAD, pages 100–107. IEEE, 2017.

14. C. Flanagan and K. R. M. Leino. Houdini: an Annotation Assistant for ESC/Java.
In FME, volume 2021 of LNCS, pages 500–517. Springer, 2001.

15. P. Garg, D. Neider, P. Madhusudan, and D. Roth. Learning invariants using
decision trees and implication counterexamples. In POPL, pages 499–512. ACM,
2016.

16. A. Gurfinkel and A. Ivrii. Pushing to the top. In FMCAD, pages 65–72. IEEE,
2015.

17. K. Hoder and N. Bjørner. Generalized property directed reachability. In SAT,
volume 7317 of LNCS, pages 157–171. Springer, 2012.

18. M. Höschele and A. Zeller. Mining input grammars from dynamic taints. In ASE,
pages 720–725. ACM, 2016.

19. M. Höschele and A. Zeller. Mining input grammars with AUTOGRAM. In ICSE
- Companion Volume, pages 31–34. IEEE Computer Society, 2017.

20. J. P. Inala, N. Polikarpova, X. Qiu, B. S. Lerner, and A. Solar-Lezama. Synthesis
of recursive ADT transformations from reusable templates. In TACAS, Part I,
volume 10205 of LNCS, pages 247–263, 2017.

21. D. Jovanovic and B. Dutertre. Property-directed k-induction. In FMCAD, pages
85–92. IEEE, 2016.

22. A. Komuravelli, A. Gurfinkel, and S. Chaki. SMT-Based Model Checking for
Recursive Programs. In CAV, volume 8559 of LNCS, pages 17–34, 2014. https:

//bitbucket.org/spacer/code/branch/spacer3.
23. A. Komuravelli, A. Gurfinkel, S. Chaki, and E. M. Clarke. Automatic Abstraction

in SMT-Based Unbounded Software Model Checking. In CAV, volume 8044 of
LNCS, pages 846–862. Springer, 2013.

24. K. L. McMillan. Interpolation and SAT-Based Model Checking. In CAV, volume
2725 of LNCS, pages 1–13. Springer, 2003.

25. K. L. McMillan. Lazy annotation revisited. In CAV, volume 8559 of LNCS, pages
243–259. Springer, 2014.

26. P. M. Phothilimthana, T. Jelvis, R. Shah, N. Totla, S. Chasins, and R. Bod́ık.
Chlorophyll: synthesis-aided compiler for low-power spatial architectures. In PLDI,
pages 396–407. ACM, 2014.

27. Y. Pu, R. Bod́ık, and S. Srivastava. Synthesis of first-order dynamic programming
algorithms. In OOPSLA, pages 83–98. ACM, 2011.

28. P. Roux, R. Delmas, and P. Garoche. SMT-AI: an abstract interpreter as oracle
for k-induction. Electr. Notes Theor. Comput. Sci., 267(2):55–68, 2010.

29. M. Suda. Triggered clause pushing for IC3. CoRR, abs/1307.4966, 2013.
30. Y. Vizel, A. Gurfinkel, and S. Malik. Fast interpolating BMC. In CAV, volume

9206 of LNCS, pages 641–657. Springer, 2015.

https://bitbucket.org/spacer/code/branch/spacer3
https://bitbucket.org/spacer/code/branch/spacer3

	Accelerating Syntax-Guided Invariant Synthesis
	Grigory Fedyukovich and Rastislav Bodík

