
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

Quantified Invariants via
Syntax-Guided Synthesis

Grigory Fedyukovich1, Sumanth Prabhu2,
Kumar Madhukar2, and Aarti Gupta1

1 Princeton University, Princeton, USA {grigoryf, aartig}@cs.princeton.edu
2 TCS Research, Pune, India {sumanth.prabhu, kumar.madhukar}@tcs.com

Abstract. Programs with arrays are ubiquitous. Automated reasoning
about arrays necessitates discovering properties about ranges of elements
at certain program points. Such properties are formally specified by uni-
versally quantified formulas, which are difficult to find, and difficult to
prove inductive. In this paper, we propose an algorithm based on an enu-
merative search that discovers quantified invariants in stages. First, by
exploiting the program syntax, it identifies ranges of elements accessed in
each loop. Second, it identifies potentially useful facts about individual
elements and generalizes them to hypotheses about entire ranges. Fi-
nally, by applying recent advances of SMT solving, the algorithm filters
out wrong hypotheses. The combination of properties is often enough
to prove that the program meets a safety specification. The algorithm
has been implemented in a solver for Constrained Horn Clauses, Freq-
Horn, and extended to deal with multiple (possibly nested) loops. We
show that FreqHorn advances state-of-the-art on a wide range of public
array-handling programs.

1 Introduction

Formally verifying programs against safety specifications is difficult. This prob-
lem worsens in the presence of data structures like lists, arrays, and maps, which
are ubiquitous in real-world applications. For instance, proving an array-handling
program safe often requires discovering an inductive invariant that is universally
quantified over ranges of array elements. Such invariants help to prove the un-
reachability of error states independently of the size of the array. However, the
majority of invariant synthesis approaches are limited to quantifier-free numer-
ical invariants. The approach presented in this paper advances the knowledge
by an effective technique to discover quantified invariants over arrays and linear
integer arithmetic.

Syntax-guided techniques [3] have recently been applied to synthesize quantifier-
free numerical invariants [16,15,17,34] in the approach called FreqHorn. In a
nutshell, FreqHorn collects various statistics from the syntactical patterns oc-
curring in the program’s source code and uses them to construct a set of formal
grammars that specify a search space for invariants. It is often sufficient to per-
form an enumerative search over the formulas produced from these grammars

and identify a set of suitable inductive invariants among them using an off-the-
shelf solver for Satisfiability Modulo Theories (SMT). The presence of arrays
complicates this reasoning in a few respects: it is hard to find suitable candi-
dates and difficult to prove them inductive.

In this paper, we present a novel technique that extends the approach of
enumerative search in general, and its instantiation in FreqHorn in particular,
to reason about quantifiers. It discovers invariants over arrays in multiple stages.
First, by exploiting the program syntax, it identifies ranges of elements accessed
in each loop. Second, it identifies potentially useful facts about individual ele-
ments and generalizes them to hypotheses about entire ranges. The SMT-based
validation of candidates, which are quantified formulas, is often inexpensive as
they are constructed using the same syntactic patterns that appear in the source
code. Furthermore, for supporting certain corner cases, our approach allows spec-
ifying additional rules that help in generalizing learned properties. The combi-
nation of properties proven inductive by an SMT solver is often enough to prove
that the program meets a safety specification.

We show that FreqHorn advances state-of-the-art on a selection of array-
handling programs from SVCOMP3 and literature. For instance, it can prove
completely automatically that an array is monotone after applying a sorting
algorithm. Furthermore, FreqHorn is able to discover quantifier-free invari-
ants over integer variables in the program, use them as inductive relatives while
checking inductiveness of quantified candidates over arrays; and vice versa.

While a detailed discussion of the related work comes later in the paper
(Sect. 6), it is noteworthy that being syntax-guided crucially helps us overcome
several limitations of other techniques to verify array-handling programs [11,35,2,9].
Most of them avoid inferring quantified invariants explicitly and thus do not pro-
duce checkable proofs. As a result, tools are fragile and in practice often output
false positives (see Sect. 5 for concrete results). By comparison, our approach
never produces false positives, and its results can be validated by existing SMT
solvers.

The core contributions made through this work are:

– a novel syntax-guided approach to generate universally quantified invariants
for programs manipulating arrays;

– an algorithm and its fully automated implementation; and

– a thorough experimental evaluation comparing our technique with state-of-
the-art in verification of array-handling programs.

The rest of the paper is structured as follows. In Sect. 2, we give background
and notation and illustrate our approach on an example. Our main contributions
are then presented in Sect. 3 (main algorithm) and Sect. 4 (important design
choices). In Sect. 5, we show the evaluation and comparison with state-of-the-
art. Finally, the related work and conclusion complete the paper in Sect. 6 and
7, respectively.

3 Software Verification Competition, http://sv-comp.sosy-lab.org/.

http://sv-comp.sosy-lab.org/

2 Background

The Satisfiability Modulo Theories (SMT) task is to decide whether there is
an assignment 𝑚 of values to variables in a first-order logic formula 𝜙 that
makes it true. We write 𝜙 =⇒ 𝜓, if every satisfying assignment to 𝜙 is also
a satisfying assignment to some formula 𝜓. By Expr we denote the space of all
possible quantifier-free formulas in our background theory and by Vars a range
of possible variables.

2.1 Programs as constrained Horn clauses

To guarantee expected behaviors, programs require proofs, such as inductive in-
variants, ranking functions, or recurrence sets. It is becoming increasingly pop-
ular to consider a verification task as a proof synthesis task which is formulated
as a system of SMT formulas involving unknown predicates, also known as con-
strained Horn clauses (CHC). The synthesis goal is to discover a suitable inter-
pretation of all unknown predicates that make all CHCs true. CHCs offer the
advantages of flexibility and modularity in designing verifiers for various systems
and languages. CHCs can be constructed in a way that captures the operational
semantics of a language in question, and an off-the-shelf CHC solver can be used
for solving the resulting formulas.

Definition 1. A linear constrained Horn clause (CHC) over a set of uninter-
preted relation symbols R is a formula in first-order logic that has the form of
one of three implications (called respectively a fact, an inductive clause, and a
query):

𝜙(𝑥1) =⇒ 𝑖𝑛𝑣1(𝑥1)

𝑖𝑛𝑣1(𝑥1) ∧ 𝜙(𝑥1, 𝑥2) =⇒ 𝑖𝑛𝑣2(𝑥2)

𝑖𝑛𝑣1(𝑥1) ∧ 𝜙(𝑥1) =⇒ ⊥

where 𝑖𝑛𝑣1, 𝑖𝑛𝑣2 ∈ R are uninterpreted symbols, 𝑥1, 𝑥2 are vectors of variables,
and 𝜙, called a body, is a fully interpreted formula (i.e., 𝜙 does not have appli-
cations of 𝑖𝑛𝑣1 or 𝑖𝑛𝑣2).

For a CHC 𝐶, by src(𝐶) we denote an application of 𝑖𝑛𝑣 ∈ R in the premise

of 𝐶 (if 𝐶 is a fact, we write src(𝐶)
def
= ⊤). Similarly, by dst(𝐶) we denote

an application of 𝑖𝑛𝑣 ∈ R in the conclusion of 𝐶 (if 𝐶 is a query, we write

dst(𝐶)
def
= ⊥). We define functions rel and args, such that for each 𝑖𝑛𝑣(𝑥⃗),

rel(𝑖𝑛𝑣(𝑥⃗))
def
= 𝑖𝑛𝑣 and args(𝑖𝑛𝑣(𝑥⃗))

def
= 𝑥⃗. For a CHC 𝐶, by body(𝐶) we denote

the body (i.e., 𝜙) of 𝐶.

Example 1. Fig. 1 gives a program in the C programming language that handles
two integer arrays, A and B, both of an unknown size N. The A array has unknown
content, and the program first identifies a value m which is smaller or equal to all
elements of A (it might be either a minimal element among the content of A or 0).

int N = nondetInt ();

int *A = nondetArray(N);

int m = 0;

for (int i = N - 1; i ≥ 0; i--) { if (m > A[i]) m = A[i]; }

int *B = malloc(N*sizeof(int));

for (int i = 0; i < N; i++) { B[N - i - 1] = A[i] - m; }

int s = 0;

for (int i = 0; i < N; i++) { s = s + B[i]; }

assert(s ≥ 0);

Fig. 1: Example program: source code in C.

(A) 𝑖′=𝑁 ′−1∧𝑚′=0 =⇒ 𝑖𝑛𝑣1(𝐴
′,𝑖′,𝑚′,𝑁 ′)

(B) 𝑖𝑛𝑣1(𝐴,𝑖,𝑚,𝑁)∧𝑖≥0∧𝑚′= 𝑖𝑡𝑒(𝑚>𝐴[𝑖],𝐴[𝑖],𝑚)∧𝑖′= 𝑖−1 =⇒ 𝑖𝑛𝑣1(𝐴,𝑖′,𝑚′,𝑁)

(C) 𝑖𝑛𝑣1(𝐴,𝑖,𝑚,𝑁)∧𝑖<0∧𝑖′=0 =⇒ 𝑖𝑛𝑣2(𝐴,𝐵,𝑖′,𝑚,𝑁)

(D) 𝑖𝑛𝑣2(𝐴,𝐵,𝑖,𝑚,𝑁)∧𝑖<𝑁∧𝐵′=𝑠𝑡𝑜𝑟𝑒(𝐵,𝑁−𝑖−1,𝐴[𝑖]−𝑚])∧𝑖′= 𝑖+1 =⇒ 𝑖𝑛𝑣2(𝐴,𝐵′,𝑖′,𝑚,𝑁)

(E) 𝑖𝑛𝑣2(𝐴,𝐵,𝑖,𝑚,𝑁)∧𝑖≥𝑁∧𝑖′=0∧𝑠′=0 =⇒ 𝑖𝑛𝑣3(𝐴,𝐵,𝑖′,𝑚,𝑠′,𝑁)

(F) 𝑖𝑛𝑣3(𝐴,𝐵,𝑖,𝑚,𝑠,𝑁)∧𝑖<𝑁∧𝑠′=𝑠+𝐵[𝑖]∧𝑖′= 𝑖+1 =⇒ 𝑖𝑛𝑣3(𝐴,𝐵,𝑖′,𝑚,𝑠′,𝑁)

(G) 𝑖𝑛𝑣3(𝐴,𝐵,𝑖,𝑚,𝑠,𝑁)∧𝑖≥𝑁∧𝑠<0 =⇒ ⊥

Fig. 2: Example program: CHC encoding.

Then, the program populates B by values of A with m subtracted. Interestingly,
the order of elements A and B is not preserved, e.g., A[0] - m gets written to
B[N - 1], and so on. Finally, the program computes the sum s of all elements
in B and requires us to prove that s is never negative.

Fig. 2 gives a CHC encoding of the program. The system has three uninter-
preted predicates, 𝑖𝑛𝑣1, 𝑖𝑛𝑣2, and 𝑖𝑛𝑣3 corresponding to invariants at heads of
the three loops. The primed variables correspond to modified variables. Rules B,
D, and F encode the loop bodies, and the remaining rules encode the fragments
of code before, after, or between the loops. In particular, rule G ensures that
after the third loop has terminated, a program state with a negative value of 𝑠
is unreachable. Before we describe how our technique solves this CHC system
(see Sect. 2.2), we briefly introduce the notion of satisfiability of CHCs.

Definition 2. Given a set of uninterpreted relation symbols R and a set 𝑆 of
CHCs over R , we say that 𝑆 is satisfiable if there exists an interpretation that
assigns to each 𝑛-ary symbol 𝑖𝑛𝑣 ∈ R a relation over 𝑛-tuples and makes all
implications in 𝑆 valid.

In the paper, we assume that a relation assigned by an interpretation is
represented by a formula 𝜓 over at most 𝑛 free variables.

We call a CHC 𝐶 inductive when rel(src(𝐶)) = rel(dst(𝐶)) = 𝑖𝑛𝑣 for some
𝑖𝑛𝑣. While accessing an array in a loop, we assume the existence of an integer
counter variable. More formally:

Definition 3. Let 𝐶 be an inductive CHC, 𝑥⃗ = args(src(𝐶)), and 𝑥⃗′ = args(dst(𝐶)).
We say that 𝐶 is array-handling if there exist numbers 𝑐 and 𝑎, such that
1) 1 ≤ 𝑐 ≤ |𝑥⃗| and 1 ≤ 𝑎 ≤ |𝑥⃗|; 2) 𝑥⃗[𝑐] (and consequently, its “primed copy”
𝑥⃗′[𝑐]) has type integer, 3) either of these implications holds:

body(𝐶) =⇒ 𝑥⃗[𝑐] < 𝑥⃗′[𝑐] (1)

body(𝐶) =⇒ 𝑥⃗[𝑐] > 𝑥⃗′[𝑐] (2)

4) 𝑥⃗[𝑎] (and consequently 𝑥⃗′[𝑎]) has type array, and 5) there is an access function
𝑓 that identifies a relationship between an access to 𝑥⃗[𝑎] in body(𝐶) and 𝑥⃗[𝑐].

2.2 Illustrating Example

The CHC system in Fig. 2 has a solution, indicating that the program meets its
specification. In particular:

𝑖𝑛𝑣1 ↦→ ∀𝑗 . 𝑖 < 𝑗 < 𝑁 =⇒ 𝑚 ≤ 𝐴[𝑗]

𝑖𝑛𝑣2 ↦→ ∀𝑗 . 0 ≤ 𝑗 < 𝑁 =⇒ 𝑚 ≤ 𝐴[𝑗]∧
∀𝑗 . 0 ≤ 𝑗 < 𝑖 =⇒ 𝐵[𝑁 − 𝑗 − 1] = 𝐴[𝑗] −𝑚

𝑖𝑛𝑣3 ↦→ ∀𝑗 . 0 ≤ 𝑗 < 𝑁 =⇒ 𝑚 ≤ 𝐴[𝑗]∧
∀𝑗 . 0 ≤ 𝑗 < 𝑁 =⇒ 𝐵[𝑁 − 𝑗 − 1] = 𝐴[𝑗] −𝑚∧
𝑠 ≥ 0

The interpretation of 𝑖𝑛𝑣1 means that as the first loop progresses (i.e, all
elements 𝐴[𝑁 −1], 𝐴[𝑁 −2], . . . , 𝐴[𝑖+ 1] are sequentially considered), the value
of 𝑚 is always smaller than all the considered elements. Thus, we refer to the
interpretation of 𝑖𝑛𝑣1 as a progress lemma. When the first loop has terminated,
clearly, this property holds for all elements from 𝐴[0] to 𝐴[𝑁 − 1]. Because 𝐴
leaks through the second loop without any changes, the interpretation of 𝑖𝑛𝑣1

gets finalized (thus, it becomes a finalized lemma) and added to an interpretation
of 𝑖𝑛𝑣2.

Additionally, the interpretation of 𝑖𝑛𝑣2 gets a relational fact about pairs of
elements 𝐴[0] and 𝐵[𝑁−1], 𝐴[1] and 𝐵[𝑁−2], . . . , 𝐴[𝑖−1] and 𝐵[𝑁−𝑖−2], which
again appears as a progress lemma and then gets finalized in an interpretation of
𝑖𝑛𝑣3. With these two quantified invariants about all elements of 𝐴, and relation
about pairs of elements of 𝐴 and 𝐵, it is possible to derive the remaining lemma
in the interpretation of 𝑖𝑛𝑣3, namely, 𝑠 ≥ 0; which concludes the proof.

3 Invariants via Enumerative Search

In this work, we aim at discovering a solution for a CHC system 𝑆 over a set
of uninterpreted symbols R enumeratively, i.e., by guessing a candidate formula
for each 𝑖𝑛𝑣 ∈ R , substituting it for all CHCs 𝐶 ∈ 𝑆 and checking their validity.

3.1 Quantifier-free invariants

We build on top of an algorithm, called FreqHorn, recently proposed in [17].
Its key insight is an automatic construction of a set of formal grammars 𝐺(𝑖𝑛𝑣)
for each 𝑖𝑛𝑣 ∈ R based on either source code, program behaviors, or both. Im-
portantly, these grammars are conjunction-free: they cannot be used to produce
a conjunction of clauses and can give rise to only a finite number of formulas, po-
tentially related to invariants (otherwise, the approach does not guarantee strong
convergence). Since invariants are often represented by a conjunction of lemmas,
FreqHorn attempts to sample (i.e., recursively apply production rules) each
lemma from a grammar in separation, until a combination of them is sufficient
for the inductiveness and safety, or a search space is exhausted. FreqHorn
relies on an SMT solver to filter out unsuccessfully sampled lemmas.

The construction of formal grammars is biased by the syntax of CHC en-
coding. First, FreqHorn collects a set of Seeds by converting the body of each
CHC to a Conjunctive Normal Form, extracting, and normalizing each conjunct.
Then, the set of seeds could be optionally replenished by a set of behavioral seeds
and bounded proofs. They are constructed respectively from the concrete values
of variables obtained from actual program runs, and Craig interpolants from
unsatisfiable finite unrollings of the CHC systems. Finally, the production rules
are created in a way to enable producing seeds and also their mutants (i.e.,
syntactically similar formulas to seeds). In general, no specific restriction on a
grammar-construction method is imposed; so in practice, the grammars are al-
lowed to be more (or less) general to enable a broader (or more focused) search
space for invariants.

3.2 Quantified candidates from quantifier-free grammars

The main obstacle for applying the enumerative search to generate array in-
variants is that the grammars do not allow quantifiers. Because grammars are
constructed automatically from syntactic patterns which appear in the original
programs, in the presence of arrays, we can expect expressions involving only
particular elements of arrays (such as ones accessed via a loop counter). How-
ever, since each loop repeats certain operations over a range of array elements,
we have to generalize the extracted expressions about individual elements to
expressions about entire ranges.

Let a set of variables associated with a relation symbol 𝑖𝑛𝑣 be Vars(𝑖𝑛𝑣)
def
=

IntVars(𝑖𝑛𝑣) ∪ ArrVars(𝑖𝑛𝑣), where IntVars(𝑖𝑛𝑣) and ArrVars(𝑖𝑛𝑣) are dis-
joint and contain integer variables and array variables, respectively. A candidate
quantified invariant over arrays consists of three parts:

– a set of quantified integer variables QVars(𝑖𝑛𝑣), which are introduced by
our algorithm and do not appear in Vars(𝑖𝑛𝑣);

– a range formula over QVars(𝑖𝑛𝑣) ∪ IntVars(𝑖𝑛𝑣); and

– a quantifier-free cell property over QVars(𝑖𝑛𝑣) ∪Vars(𝑖𝑛𝑣).

Algorithm 1: Prepare(𝑆,R)

Input: CHCs 𝑆 over R
Output: Formal grammars 𝐺(𝑖𝑛𝑣), quantified variables QVars(𝑖𝑛𝑣) and

progressRange(𝑖𝑛𝑣) for each 𝑖𝑛𝑣 ∈ R

1 for each 𝑖𝑛𝑣 ∈ R do
2 Seeds ← SyntSeeds(𝑖𝑛𝑣) ∪BehavSeeds(𝑖𝑛𝑣);
3 𝑐𝑛𝑡← getCounters(𝑆, 𝑖𝑛𝑣,ArrVars(𝑖𝑛𝑣));
4 if ∅ ̸= 𝑐𝑛𝑡 then
5 QVars(𝑖𝑛𝑣)← copy(𝑐𝑛𝑡);
6 progressRange(𝑖𝑛𝑣)← getRange(𝑐𝑛𝑡);

7 𝐺(𝑖𝑛𝑣)← Replace(getGrammar(Seeds), 𝑐𝑛𝑡,QVars(𝑖𝑛𝑣));

Algorithm 2: SolveArrayCHCs(𝑆,R)

Input: CHCs 𝑆 over R
Output: res ∈ {sat,unknown}, Lemmas : R → 2Expr

1 ⟨𝐺,QVars, progressRange⟩ ← Prepare(𝑆,R);
2 for each 𝑖𝑛𝑣 ∈ R do Lemmas(𝑖𝑛𝑣)← ∅;

3 while ∃𝐶 ∈ 𝑆 .
(︁ ⋀︀

ℓ∈Lemmas(rel(src(𝐶)))

ℓ(args(src(𝐶))) ∧ body(𝐶) ≠⇒ ⊥
)︁
do

4 if ∀𝑖𝑛𝑣 ∈ R .allBlocked(𝐺(𝑖𝑛𝑣)) then return ⟨unknown,∅⟩;
5 𝑖𝑛𝑣 ← pickLoop(R);
6 if QVars(𝑖𝑛𝑣) = ∅ then Cand(𝑖𝑛𝑣)← sample(𝐺(𝑖𝑛𝑣));
7 else Cand(𝑖𝑛𝑣)← ∀QVars(𝑖𝑛𝑣) .

QVars(𝑖𝑛𝑣) ∈ progressRange(𝑖𝑛𝑣) =⇒ sample(𝐺(𝑖𝑛𝑣));
8 𝐸𝑥𝑡Cand ← extend(𝑆, {𝑖𝑛𝑣},Cand ,Lemmas);
9 if ∀𝑖𝑛𝑣′ ∈ R . 𝐸𝑥𝑡Cand(𝑖𝑛𝑣′) = ⊤ then 𝐺(𝑖𝑛𝑣)← block(𝐺,Cand , 𝑖𝑛𝑣);

10 else
11 for each 𝑖𝑛𝑣′ ∈ R do
12 Lemmas(𝑖𝑛𝑣′)← Lemmas(𝑖𝑛𝑣′) ∪ {𝐸𝑥𝑡Cand(𝑖𝑛𝑣′)};
13 𝐺(𝑖𝑛𝑣′)← block(𝐺,𝐸𝑥𝑡Cand , 𝑖𝑛𝑣′);

14 return ⟨sat,Lemmas⟩;

A naive idea for getting a range formula and a cell property is to sample
them separately, and then to bind them together using some QVars(𝑖𝑛𝑣). But
it would result in a large search space. Alg. 1 gives a more tailored procedure
on the matter. The central role in this process is taken by an analysis of the
loop counters which are used to access array elements (line 3). This analysis is
performed once for each loop before the main verification process, and thus its
results are reused in all iterations of the verification process.

Our algorithm identifies QVars(𝑖𝑛𝑣) by creating a fresh variable for each
counter, including counters of nested loops (line 5). It then generates range
formulas based on the results of the analysis (line 6) such that: 1) the range
formula itself is an inductive invariant for 𝑖𝑛𝑣, and 2) the range formula is
expressed over the initial values of counters of 𝑖𝑛𝑣 and the counters themselves.

Algorithm 3: weaken(𝑆′,R ′,Cand ,Lemmas)

Input: CHCs 𝑆′ over R ′, candidates Cand(𝑖𝑛𝑣); learned Lemmas(𝑖𝑛𝑣) for
each 𝑖𝑛𝑣 ∈ R ′

Output: weakened Cand

1 toRecheck ← ⊥;
2 for all 𝐶 ∈ 𝑆′ do
3 if

⋀︀
ℓ∈Lemmas(rel(src(𝐶)))

ℓ(args(src(𝐶))) ∧ Cand(rel(src(𝐶)))(args(src(𝐶))) ∧

body(𝐶) ≠⇒ Cand(rel(dst(𝐶)))(args(dst(𝐶))) then

4 if isFinalizedArrayCand(Cand , rel(dst(𝐶))) then
5 Cand(rel(dst(𝐶))))← getRegressCand(Cand , rel(dst(𝐶)));
6 else
7 Cand(rel(dst(𝐶)))← ⊤;
8 toRecheck ← ⊤;
9 break;

10 if toRecheck then return weaken(𝑆′,R ′,Cand ,Lemmas);
11 else return Cand ;

Algorithm 4: extend(𝑆,R ,Cand ,Lemmas), cf [17].

Input: CHCs 𝑆 over R ; R ′ ⊆ R , candidates Cand(𝑖𝑛𝑣); learned Lemmas(𝑖𝑛𝑣)
for each 𝑖𝑛𝑣 ∈ R ′

Output: extended Cand
1 Cand ← weaken(𝑆′,R ′,Cand ,Lemmas);
2 for all 𝐶 ∈ 𝑆 s.t. rel(src(𝐶)) ∈ R ′ do
3 Cand(rel(dst(𝐶)))← propagate(𝐶,Cand);
4 Cand ← extend(𝑆,R ′ ∪ {rel(dst(𝐶))},Cand ,Lemmas);

5 return Cand ;

Finally, only a cell property is going to be produced from the grammar 𝐺(𝑖𝑛𝑣),
constructed from the seeds (recall Sect. 3.1), in which all counters are replaced
by the corresponding variables from QVars(𝑖𝑛𝑣) (line 7). Thus, the only part
of the candidate formula where the counter can appear is the range formula.

Once grammars, QVars, and ranges are detected, our approach proceeds to
sample candidates and to check them with an SMT solver. The general flow
of this algorithm is illustrated in Alg. 2. For each 𝑖𝑛𝑣 ∈ R , it initiates a set
Lemmas(𝑖𝑛𝑣) (line 2). Then it iteratively guesses lemmas until a combination
of them is inductive and safe, or a search space is exhausted (lines 3-4).

Compared to the baseline approach from [17], our new algorithm fixes a shape
for the candidates for arrays. At the same time, it permits to sample quantifier-
free candidates (line 6): they could be either formulas over counters or any other
variables in the loop, or even formulas over isolated array elements (if, e.g.,
accessed by a constant). Then (line 8), Alg. 2 propagates candidates through all
available implications in CHCs using quantifier elimination and identifies lemmas
among the candidates. This step is similar to the baseline approach from [17], but

for completeness of presentation, we provide the pseudocode in Alg. 4 and Alg. 3.
The only differences are 1) in the implementation of the candidate propagation
for array candidates and 2) in the weakening of failed candidates (both in Alg. 3,
to be discussed in Sect. 4.3 and Sect. 4.4, respectively).

Both successful and unsuccessful candidates are “blocked” from their gram-
mars to avoid re-sampling them in the next iterations. This fact together with
the property of grammars being conjunction-free gives the main hint for proving
the following theorem.

Theorem 1. Alg. 2 always makes a finite number of iterations, and if it returns
with SAT then the CHC system is satisfiable.

Next section discusses a particular instantiation of important subroutines
that make our invariant synthesizer effective in practice.

4 Design Choices

Our main contribution is a completely automated algorithm for finding quan-
tified invariants for array-handling loops. In this section, we first show how by
exploiting the program syntax we can identify ranges of elements accessed in each
loop (Sect. 4.1). Second, we present an intuitive justification to why our candi-
dates can often be proved as lemmas by an off-the-shelf SMT solver (Sect. 4.2).
Finally, we extend our algorithm to handle more complicated cases of multiple
loops (Sect. 4.3 – Sect. 4.4), and benchmarks of the tiling [9] technique, which
are adapted from the industrial code of battery controllers (Sect. 4.5).

4.1 Discovery of progress lemmas

We start with the simplest scenario of a single loop handling just one array.
Let 𝑆 be a system of CHCs over a set of uninterpreted relation symbols R . Let
𝑖𝑛𝑣 ∈ R correspond to a loop, in which arrays are accessed using some counter
variable 𝑖 (counters are automatically identified by posing and solving queries of
forms (1) and (2)).

Recall that we do not necessarily require the array elements to be accessed
directly by 𝑖, and we allow an access function 𝑓 to identify relationships between
𝑖 and an index of the accessed element. However, we assume that the counter is
unique in the loop because it is the case in most of the practical applications. In
principle, our algorithm can be extended to loops handling several independent
counters (although it is rare in practice), with the help of additionally discovered
lemmas that describe relationships among counters. We leave a discussion about
this to future work.

Definition 4. A range of 𝑖𝑛𝑣 and a counter 𝑖 is a formula over IntVars(𝑖𝑛𝑣)
and a free variable 𝑣 having form 𝐿 < 𝑣 ∧ 𝑣 < 𝑈 , such that either of formulas
𝐿 < 𝑖 or 𝑖 < 𝑈 is a lemma for 𝑖𝑛𝑣. A progress lemma is either a formula
𝐿 < 𝑣 ∧ 𝑣 < 𝑖 (if 𝐿 < 𝑖 is a lemma), or a formula 𝑖 < 𝑣 ∧ 𝑣 < 𝑈 (if 𝑖 < 𝑈 is a
lemma).

Both ranges and progress ranges can be identified statically. Let 𝐶1 and 𝐶2

be two CHCs, such that 𝑖𝑛𝑣 = rel(dst(𝐶1)) = rel(src(𝐶2)) = rel(dst(𝐶2)) and
𝑖𝑛𝑣 ̸= rel(src(𝐶1)). It is common in practice that 𝑏𝑜𝑑𝑦(𝐶1) identifies a symbolic
bound 𝑏 on the initial value of 𝑖: it could be either a lower bound (if 𝑖 increments
in 𝑏𝑜𝑑𝑦(𝐶2)) or an upper bound (if 𝑖 decrements). In this case, a progress range
of 𝑖𝑛𝑣 is simply computed as a lemma for 𝑖𝑛𝑣 over 𝑖 and 𝑏. A range of 𝑖𝑛𝑣 can
often be constructed as a conjunction of the progress range with the negation of
the termination condition of 𝑏𝑜𝑑𝑦(𝐶2).4

Example 2. For the CHC-encoding of the program is shown in Fig. 2, the ranges
of 𝑖𝑛𝑣1, 𝑖𝑛𝑣2 and 𝑖𝑛𝑣3 are all equal to −1 < 𝑣 < 𝑁 . The progress range of 𝑖𝑛𝑣1

is 𝑖 < 𝑣 < 𝑁 , and the progress ranges of 𝑖𝑛𝑣2 and 𝑖𝑛𝑣3 are −1 < 𝑣 < 𝑖.

We call candidates, that use progress ranges in their left sides, progress can-
didates:

∀𝑞⃗ . progressRange(𝑖𝑛𝑣)(𝑞⃗) =⇒ 𝑐𝑎𝑛𝑑

where 𝑞⃗ = QVars(𝑖𝑛𝑣) and 𝑐𝑎𝑛𝑑 is a quantifier-free formula over QVars(𝑖𝑛𝑣)∪
IntVars(𝑖𝑛𝑣). As can be seen from Alg. 1, all sampled candidates are progress
candidates. However, during the next steps of the algorithm (i.e., propagation
and weakening) we will use other kind of candidates (namely, regress and final-
ized, see Sect. 4.3 and Sect. 4.4 respectively).

If a progress candidate is proven inductive, we call it a progress lemma.

4.2 SMT-based inductiveness checking

We rely on recent advances of SMT solving to identify successful candidates, a
conjunction of which is directly used to prove the desired safety specification. In
general, solving quantified formulas for validity is a hard task, however, in certain
cases, the initiation and inductiveness queries can be simplified and reduced to
a sequence of (sometimes even quantifier-free) formulas over integer arithmetic.
We illustrate such proving strategy, inspired by the tiling approach [9], on the
following example.

Example 3. Recall the CHC system from Fig. 2. Consider a progress candidate
∀𝑗 . 𝑖 < 𝑗 < 𝑁 =⇒ 𝑚 ≤ 𝐴[𝑗] for 𝑖𝑛𝑣1. Checking its initiation (i.e., for CHC A)
requires deciding validity of the following quantified formula:

𝑖′ = 𝑁 ′ − 1 ∧𝑚′ = 0 =⇒
(︁
∀𝑗 . 𝑖′ < 𝑗 < 𝑁 ′ =⇒ 𝑚′ ≤ 𝐴′[𝑗]

)︁
(3)

The range formula 𝑖′ < 𝑗 < 𝑁 ′ simplifies to 𝑁 ′ − 1 < 𝑗 < 𝑁 ′, which is always
false, makes formula (3) always valid.

4 Thus, we explicitly require guards of loops to have the forms of an inequality, which
is the most common array access pattern.

Checking the inductiveness of the candidate (i.e., for CHC B) boils down to
solving a more complicated formula:(︁

∀𝑗 . 𝑖 < 𝑗 < 𝑁 =⇒ 𝑚 ≤ 𝐴[𝑗]
)︁
∧

𝑖 ≥ 0 ∧𝑚′ = 𝑖𝑡𝑒(𝑚 > 𝐴[𝑖], 𝐴[𝑖],𝑚) ∧ 𝑖′ = 𝑖− 1 =⇒(︁
∀𝑗 . 𝑖′ < 𝑗 < 𝑁 =⇒ 𝑚′ ≤ 𝐴[𝑗]

)︁
(4)

Although quantifiers are present on both sides of (4), proving its validity is not
hard. Indeed, the query is reducible to two implications:(︁

∀𝑗 . 𝑖 < 𝑗 < 𝑁 =⇒ 𝑚 ≤ 𝐴[𝑗]
)︁
∧𝑚′ = 𝑖𝑡𝑒(𝑚 > 𝐴[𝑖], 𝐴[𝑖],𝑚) =⇒ 𝑚′ ≤ 𝐴[𝑖]

(︁
∀𝑗 . 𝑖 < 𝑗 < 𝑁 =⇒ 𝑚 ≤ 𝐴[𝑗]

)︁
∧

𝑚′ = 𝑖𝑡𝑒(𝑚 > 𝐴[𝑖], 𝐴[𝑖],𝑚) =⇒
(︁
∀𝑗 . 𝑖 < 𝑗 < 𝑁 =⇒ 𝑚′ ≤ 𝐴[𝑗]

)︁
The former does not require any information about 𝐴[𝑖+1], . . . , 𝐴[𝑁 −1], so the
entire quantified conjunction is ignored, and 𝐴[𝑖] could be replaced by a fresh
integer variable. The latter is trickier: it requires to prove that if all elements
in a range are greater or equal than 𝑚, then they are also greater or equal to
𝑖𝑡𝑒(𝑚 > 𝐴[𝑖], 𝐴[𝑖],𝑚). This again is reduced to a quantifier-free formula over
integer arithmetic:

𝑚 ≤ 𝐴[𝑗] ∧𝑚′ = 𝑖𝑡𝑒(𝑚 > 𝐴[𝑖], 𝐴[𝑖],𝑚) =⇒ 𝑚′ ≤ 𝐴[𝑗]

Thus, because formulas (3) and (4) are valid, the progress candidate is proved a
progress lemma.

In general, we cannot always conduct proofs that easily. Often, the prereq-
uisite for success is the commonality of an access function 𝑓 in the candidate
and the body of the CHC. Fortunately, our algorithm ensures that all access
functions used in the candidates are borrowed directly from bodies of CHCs.
Thus, in many cases, FreqHorn is able to check large amounts of candidates
quickly.

4.3 Strategy of lemma propagation

In this subsection, we identify a useful strategy for propagation of quantified
lemmas through adjacent CHCs in the given system, inspired by [17]. Let some
𝑖𝑛𝑣1 ∈ R have the following lemma:

∀𝑞⃗ . 𝜌(𝑞⃗) =⇒ ℓ

where 𝑞⃗ = QVars(𝑖𝑛𝑣1), formula 𝜌 over 𝑞⃗ ∪ IntVars(𝑖𝑛𝑣1) is either a range or
a progress range, and ℓ is over 𝑞⃗ ∪Vars(𝑖𝑛𝑣1). Let then a CHC 𝐶 be such that
rel(src(𝐶)) = 𝑖𝑛𝑣1 and rel(dst(𝐶)) = 𝑖𝑛𝑣2, and its body be 𝜙(𝑥⃗1, 𝑥⃗2).

Definition 5. Forward propagation of lemma ∀𝑞⃗ . 𝜌(𝑞⃗) =⇒ ℓ through 𝐶 gives
a formula of the following form:

∀𝑞⃗ . (∃𝑥⃗1 . 𝜌(𝑞⃗)(𝑥⃗1) ∧ 𝜙(𝑥⃗1, 𝑥⃗2)) =⇒ (∃𝑥⃗1(𝑥⃗1, 𝑞⃗) . ℓ ∧ 𝜙(𝑥⃗1, 𝑥⃗2))

Example 4. Recall the example from Fig. 2 and the following lemma for 𝑖𝑛𝑣1:

∀𝑗 . 𝑖 < 𝑗 < 𝑁 =⇒ 𝑚 ≤ 𝐴[𝑗]

The body of C is 𝑖 < 0∧ 𝑖′ = 0, thus the forward propagation gives the following
formula:

∀𝑗 . (∃𝑖 . 𝑖 < 𝑗 < 𝑁 ∧ 𝑖 < 0 ∧ 𝑖′ = 0) =⇒ (∃𝑖 .𝑚 ≤ 𝐴[𝑗] ∧ 𝑖 < 0 ∧ 𝑖′ = 0)

Applying quantifier elimination to both sides of the implication, we get the
following formula:

∀𝑗 . 0 ≤ 𝑗 < 𝑁 =⇒ 𝑚 ≤ 𝐴[𝑗]

Note that this formula is not going to be immediately learned as a lemma,
but instead should be checked by the solver for inductiveness. Intuitively, such a
candidate represents some facts about array elements that were accessed during a
loop that has terminated. If after the propagation it appeared that the candidate
uses the entire range then we refer to such candidate to as a finalized candidate.

4.4 Weakening strategy

Whenever a finalized candidate cannot be proven inductive, we often do not want
to withdraw it completely. Instead, our algorithm runs weakening and proposes
regress candidates. The main idea is to calculate a range of elements which have
not been touched by the loop yet. This is an inverse of the procedure outlined
in Sect. 4.1.

Definition 6. Given 𝑖𝑛𝑣 ∈ R , its Range(𝑖𝑛𝑣) and progressRange(𝑖𝑛𝑣) formu-
las, we call a regress range a formula of the following kind:

regressRange(𝑖𝑛𝑣)
def
= Range(𝑖𝑛𝑣) ∧ ¬progressRange(𝑖𝑛𝑣)

We call candidates that use regress ranges in their left sides as regress can-
didates. Clearly, a regress candidate is weaker than the corresponding finalized
candidate. Thus, from the failure to prove inductiveness of the finalized candi-
date it does not follow that the regress candidate is not inductive; and it makes
sense to try proving it in the next iteration.

4.5 Learning from sub-ranges

In complicated scenarios of loops with multiple iterators, multiple array variables
or multiple access functions, the iterative process of lemma discovery, might end

int N = nondetInt ();

int *A = nondetArray (2*N);

int val1 = 1, val2 = 3, m = nondetInt ();

for (int i = 1; i ≤ N; i++) {

if (m < val2) A[2*i-2] = val2; else A[2*i-2] = 0;

if (m < val1) A[2*i-1] = val1; else A[2*i-1] = 0; }

for (int i = 0; i < 2*N; i++) assert(A[i]==0 || A[i] ≤ m);

Fig. 3: Learning from sub-ranges.

up in a large number of quantified formulas and get lost while checking a can-
didate for inductiveness (recall Sect. 4.2). To overcome current limitations in
existing SMT solvers, it appeared to be useful to help the solver while generaliz-
ing learned lemmas. In particular, a property could be learned for two subranges
of an array, and then combined in the following way:

Lemma 1. Let for some 𝑖𝑛𝑣 ∈ R two lemmas be of the following kind:

∀𝑞⃗ . 𝜌1(𝑞⃗) =⇒ ℓ ∀𝑞⃗ . 𝜌2(𝑞⃗) =⇒ ℓ

Then, the following is also a lemma for 𝑖𝑛𝑣:

∀𝑞⃗ . 𝜌1(𝑞⃗) ∨ 𝜌2(𝑞⃗) =⇒ ℓ

Example 5. Fig. 3 shows a program from the tiling benchmark suite [9]. If
lemmas ∀𝑗 . 0 < 𝑗 < 𝑁 =⇒ 𝐴[2 * 𝑗 − 1] = 0 ∨ 𝐴[2 * 𝑗 − 1] ≤ 𝑚 and
∀𝑗 . 0 < 𝑗 < 𝑁 =⇒ 𝐴[2 * 𝑗 − 2] = 0 ∨ 𝐴[2 * 𝑗 − 2] ≤ 𝑚 are discovered,
then formula ∀𝑗 . 0 ≤ 𝑗 < 2 *𝑁 − 1 =⇒ 𝐴[𝑗] = 0 ∨𝐴[𝑗] ≤ 𝑚 is also a lemma.

5 Evaluation

We have implemented our algorithm on top of the FreqHorn5 tool. It takes
a system of CHCs with arrays as input and performs an enumerative search as
presented in Sect. 4. The tool uses Z3 [12] to solve SMT queries.

We have evaluated FreqHorn on 137 satisfiable CHC-translations of pub-
licly available C programs (whose assertions are safe) taken from the SVCOMP
ReachSafety Array subcategory and literature. These programs include variations
of standard array copying, initializing, maximum, minimum, sorting, and tiling
benchmarks. Among these 137 benchmarks, 79 have a single loop, and 58 have
multiple loops, including 7 that have nested loops. These programs are encoded
using the theories of Arrays, Linear (LIA) and Non-linear Integer Arithmetic
(NIA). Our experiments have been performed on an Ubuntu 18.04 machine run-
ning at 2.5 GHz and having 16 GB memory, with a timeout of 100 seconds for

5 The source code and benchmarks are available at https://github.com/

grigoryfedyukovich/aeval/tree/rnd.

https://github.com/grigoryfedyukovich/aeval/tree/rnd
https://github.com/grigoryfedyukovich/aeval/tree/rnd

100 101 102

100

101

102

vs Spacer

100 101 102

100

101

102

vs VeriAbs

100 101 102

100

101

102

vs VIAP

100 101 102

100

101

102

vs Booster

Fig. 4: FreqHorn vs competitors. Each point in a plot represents a pair of the run times (sec ×
sec) of FreqHorn (x-axis) and a competitor (y-axis). Timeouts are placed on the inner dashed lines;
false alarms, unsupported cases, and crashes are on the outer dashed lines.

every benchmark. FreqHorn solved 129 benchmarks within the timeout, of
which 73 solved benchmarks had a single loop and 56 had multiple loops.

We have compared our tool with Spacer (Z3 v4.8.3) [26], that implements
a recent QUIC3 [22] algorithm, Booster (v0.2) [2], VIAP(v1.0) [35], and Ve-
riAbs (v1.3.10) [11]. The last two tools performed well in the ReachSafety Array
subcategory at SVCOMP 20196. Fig. 4 gives a comparison of FreqHorn tim-
ings against timings of these tools.7

Compare to 129 benchmarks solved by FreqHorn, only 81 were solved by
Spacer, 108 – by VeriAbs, 70 – by VIAP, and 48 – by Booster.

FreqHorn solved 54 benchmarks on which Spacer diverged. Our intuition
is that Spacer works poorly on programs with non-deterministic assignments
and NIA operations, which our tool can handle.

FreqHorn solved 27 benchmarks on which VeriAbs diverged. VeriAbs
failed to solve programs with nested loops and when array values were depen-

6 https://sv-comp.sosy-lab.org/2019/results/results-verified/.
7 The time taken for every benchmark is available at: http://bit.ly/2VS5Mtf.

https://sv-comp.sosy-lab.org/2019/results/results-verified/
http://bit.ly/2VS5Mtf

dent on access indices. Furthermore, it decided one of the programs as unsafe,
Time-wise, FreqHorn significantly outperformed VeriAbs on all benchmarks.
Importantly, the short time taken by FreqHorn includes the time for generat-
ing a checkable witness – quantified invariant – an essence that VeriAbs cannot
produce by design. On the other side, VeriAbs solved several benchmarks after
merging loops. No quantified invariant satisfying the FreqHorn’s restrictions
exists for these benchmarks before this program transformation.

FreqHorn solved 60 programs on which VIAP diverged. VIAP decided
one program as unsafe. There were no programs on which FreqHorn took more
time than VIAP. Finally, FreqHorn solved 83 programs on which Booster
diverged. And again, Booster decided two programs as unsafe.

6 Related Work

Our algorithm for quantified invariant synthesis extends the prior work on check-
ing satisfiability of CHCs [16,15,17], where solutions do not permit quantifiers.
It works in a similar – enumerate-and-check – manner, but there are two crucial
changes: 1) introduction of quantifiers, to formulate hypotheses over a subset of
array indices, and 2) a generalization mechanism, to derive properties that may
hold over the entire range of array indices.

Many existing approaches for verifying programs over arrays are extensions
of well-known techniques for programs over scalar variables to quantified in-
variants. For example, by extending predicates with Skolem variables in predi-
cate abstraction [30], by exploiting the MCMT [19] framework in lazy abstrac-
tion with interpolants [1] and its integration with acceleration [2], and, recently,
QUIC3 [22], that extends IC3 [8,14] to universally quantified invariants. Apart
from the skeletal similarity, however, these approaches rely on orthogonal tech-
niques.

Partitioning of arrays has also been used to infer invariants in many different
ways. It refers to splitting an array into symbolic segments, and may be based
on syntax [20,23,25] or semantics [10,31]. Invariants may be inferred for each
segment separately and generalized for the entire array. The partitioning need
not be explicit, as in [13]. However, most of these techniques (except [31,13]) are
restricted to contiguous array segments, and work well when different loop itera-
tions write to disjoint array locations or when the segments are non-overlapping.
Tiling [9], a property-driven verification technique, overcomes these limitations
for a class of programs by inferring array access patterns in loops. But identifying
tiles of array accesses is itself a difficult problem, and the approach is currently
based on heuristics developed by observing interesting patterns.

There are a number of approaches that verify array programs without in-
ferring quantified invariants explicitly. A straightforward way is to smash all
array elements into a single memory location [4], but it is quite imprecise. Every
array element might also be considered a separate variable, but it is not possi-
ble with unknown array sizes. There are also techniques that abstract an array
to a fixed number of elements, e.g. 𝑘-distinguished cell abstraction [33,32] and

𝑘-shrinkability [29,24]. Such abstractions usually reduce array modifying loops
with unknown bounds to a known, small bound. It may even be possible to get
rid of such loops altogether, by accelerating (computing transitive closures of)
transition relations involving array updates in that loop [7]. Along similar lines,
VIAP [35] resorts to reasoning with recurrences instead of loops. It translates
the input program, including loops, to a set of first-order axioms, and checks if
they derive the property. But all these techniques do not obtain quantified in-
variants explicitly, unlike ours. Besides, many of these transformations produce
an abstraction of the original program, i.e., they do not preserve safety.

Alternatively, there are approaches that use sufficiently expressive templates
to infer quantified invariants over arrays [21,5,27]. However, the templates need
to be supplied manually. For instance, [6] uses a template space of quantified
invariants and reduces the problem to quantifier-free invariant generation. Thus,
universally quantified solutions for unknown predicates in a CHC system may
be obtained by extending a generic CHC solver to handle quantified predicates.
Learning need not be limited to user-supplied templates; one may do away with
the templates entirely and learn only from examples and counterexamples [18].
Alternatively, [36] chooses a template upfront and refurbishes it with constants
or coefficients appearing in the program source. Similarly, [28] proposes to in-
fer array invariants without any user guidance or any user-defined templates or
predicates. Their method is based on automatic analysis of predicates that up-
date an array and allows one to generate first-order invariants, including those
that contain alternations of quantifiers. But it does not work for nested loops.
By comparison, our technique supports multiple as well as nested loops, en-
ables candidate propagation between loops and, more importantly, generates
the grammar automatically from the syntactical constructions appearing in the
program’s source.

7 Conclusion

We have presented a new algorithm to synthesize quantified invariants over array
variables, systematically accessed in loops. Our algorithm implements an enu-
merative search that guesses invariants based on syntactic constructions which
appear in the code and checks their initiation, inductiveness, and safety with
an off-the-shelf SMT solver. Key insights behind our approach are that indi-
vidual accesses to array elements performed in the loop can be generalized to
hypotheses about entire ranges, and the existing SMT solvers can be used to val-
idate these hypotheses efficiently. Our implementation on top of a CHC solver
FreqHorn confirmed that such strategy is effective on a variety of practical
examples. In a vast majority of cases, our tool outperformed competitors and
provided checkable guarantees that prevented from reporting false positives.

Acknowledgements This work was supported in part by NSF Grant 1525936. Any
opinions, findings, and conclusions expressed herein are those of the authors and
do not necessarily reflect those of the NSF.

References

1. F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise, and N. Sharygina. Lazy ab-
straction with interpolants for arrays. In LPAR, volume 7180 of LNCS, pages
46–61. Springer, 2012.

2. F. Alberti, S. Ghilardi, and N. Sharygina. Booster: An acceleration-based veri-
fication framework for array programs. In ATVA, LNCS, pages 18–23. Springer,
2014.

3. R. Alur, R. Bod́ık, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A. Seshia,
R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-guided synthesis. In
FMCAD, pages 1–17. IEEE, 2013.

4. J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival.
Static analysis and verification of aerospace software by abstract interpretation.
Foundations and Trends in Programming Languages, 2(2-3):71–190, 2015.

5. D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Invariant synthesis
for combined theories. In VMCAI, volume 4349 of LNCS, pages 378–394. Springer,
2007.

6. N. Bjørner, K. McMillan, and A. Rybalchenko. On solving universally quantified
horn clauses. In F. Logozzo and M. Fähndrich, editors, SAS, volume 7935 of LNCS,
pages 105–125. Springer, 2013.

7. M. Bozga, P. Habermehl, R. Iosif, F. Konečný, and T. Vojnar. Automatic verifi-
cation of integer array programs. In CAV, volume 5643 of LNCS, pages 157–172.
Springer, 2009.

8. A. R. Bradley. SAT-Based Model Checking without Unrolling. In VMCAI, volume
6538 of LNCS, pages 70–87. Springer, 2011.

9. S. Chakraborty, A. Gupta, and D. Unadkat. Verifying array manipulating programs
by tiling. In SAS, volume 10422 of LNCS, pages 428–449. Springer, 2017.

10. P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for fully
automatic and scalable array content analysis. POPL, pages 105–118, 2011.

11. P. Darke, S. Prabhu, B. Chimdyalwar, A. Chauhan, S. Kumar, A. Basakchowd-
hury, R. Venkatesh, A. Datar, and R. K. Medicherla. VeriAbs: Verification by
Abstraction and Test Generation - (Competition Contribution). In TACAS, Part
II, volume 10806 of LNCS, pages 457–462. Springer, 2018.

12. L. M. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In TACAS, volume
4963 of LNCS, pages 337–340. Springer, 2008.

13. I. Dillig, T. Dillig, and A. Aiken. Fluid updates: Beyond strong vs. weak updates.
In ESOP, volume 6012 of LNCS. Springer, 2010.

14. N. Eén, A. Mishchenko, and R. K. Brayton. Efficient implementation of property
directed reachability. In FMCAD, pages 125–134. IEEE, 2011.

15. G. Fedyukovich and R. Bod́ık. Accelerating Syntax-Guided Invariant Synthesis.
In TACAS, Part I, volume 10805 of LNCS, pages 251–269. Springer, 2018.

16. G. Fedyukovich, S. Kaufman, and R. Bod́ık. Sampling Invariants from Frequency
Distributions. In FMCAD, pages 100–107. IEEE, 2017.

17. G. Fedyukovich, S. Prabhu, K. Madhukar, and A. Gupta. Solving Constrained
Horn Clauses Using Syntax and Data. In FMCAD, pages 170–178. IEEE, 2018.

18. P. Garg, C. Löding, P. Madhusudan, and D. Neider. Learning Universally Quan-
tified Invariants of Linear Data Structures. In CAV, volume 8044 of LNCS, pages
813–829. Springer, 2013.

19. S. Ghilardi and S. Ranise. MCMT: A model checker modulo theories. In IJCAR,
volume 6173, pages 22–29. Springer, 2010.

20. D. Gopan, T. Reps, and M. Sagiv. A framework for numeric analysis of array
operations. POPL, pages 338–350, 2005.

21. S. Gulwani, B. McCloskey, and A. Tiwari. Lifting abstract interpreters to quantified
logical domains. In POPL, pages 235–246. ACM, 2008.

22. A. Gurfinkel, S. Shoham, and Y. Vizel. Quantifiers on demand. In ATVA, volume
11138 of LNCS, pages 248–266, 2018.

23. N. Halbwachs and M. Péron. Discovering properties about arrays in simple pro-
grams. PLDI, pages 339–348, 2008.

24. A. Jana, U. P. Khedker, A. Datar, R. Venkatesh, and N. C. Scaling bounded
model checking by transforming programs with arrays. In LOPSTR, volume 10184
of LNCS, pages 275–292. Springer, 2016.

25. R. Jhala and K. L. McMillan. Array abstractions from proofs. In CAV, volume
4590 of LNCS, pages 193–206. Springer, 2007.

26. A. Komuravelli, A. Gurfinkel, and S. Chaki. SMT-Based Model Checking for
Recursive Programs. In CAV, volume 8559 of LNCS, pages 17–34, 2014.

27. S. Kong, Y. Jung, C. David, B.-Y. Wang, and K. Yi. Automatically Inferring
Quantified Loop Invariants by Algorithmic Learning from Simple Templates. In
APLAS, volume 6461 of LNCS, pages 328–343. Springer, 2010.

28. L. Kovács and A. Voronkov. Finding loop invariants for programs over arrays using
a theorem prover. In FASE, volume 5503 of LNCS, pages 470–485. Springer, 2009.

29. S. Kumar, A. Sanyal, R. Venkatesh, and P. Shah. Property checking array programs
using loop shrinking. In TACAS, Part I, volume 10805 of LNCS, pages 213–231.
Springer, 2018.

30. S. K. Lahiri and R. E. Bryant. Constructing quantified invariants via predicate
abstraction. In VMCAI, volume 2937 of LNCS, pages 267–281. Springer, 2004.

31. J. Liu and X. Rival. Abstraction of arrays based on non contiguous partitions. In
VMCAI, volume 8931 of LNCS, pages 282–299. Springer, 2015.

32. D. Monniaux and F. Alberti. A simple abstraction of arrays and maps by program
translation. In SAS, volume 9291 of LNCS, pages 217–234. Springer, 2015.

33. D. Monniaux and L. Gonnord. Cell morphing: From array programs to array-free
horn clauses. In SAS, volume 9837 of LNCS, pages 361–382. Springer, 2016.

34. S. Prabhu, K. Madhukar, and R. Venkatesh. Efficiently learning safety proofs from
appearance as well as behaviours. In SAS, volume 11002 of LNCS, pages 326–343.
Springer, 2018.

35. P. Rajkhowa and F. Lin. Extending VIAP to handle array programs. In VSTTE,
volume 11294 of LNCS, pages 38–49. Springer, 2018.

36. R. Sharma and A. Aiken. From Invariant Checking to Invariant Inference Using
Randomized Search. In CAV, volume 8559 of LNCS, pages 88–105. Springer, 2014.

	Quantified Invariants viaSyntax-Guided Synthesis

