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ABSTRACT to deal with bit-precise and word-level models expressed in a rich

Verification approaches based on constraint solvers are successfully
applied in firmware and other low-level code that interfaces with
hardware. While for proving safety of gate-level sequential circuits,
it often suffices to bit-blast and reduce to SAT-based IC3 or Property
Directed Reachability (IC3/PDR), for handling machine-level instruc-
tions that perform arithmetic and data manipulation operations,
word-level reasoning should be conducted. However, because of
poor support for interpolation and quantifier elimination in the the-
ory of bit-vectors (BV), previous attempts to lift IC3/PDR to word
level required integrating it into an external abstraction-refinement
loop. Aiming to reach more scalable bit-precise verification, we
propose to bring useful insights from PDR-based verification algo-
rithms used in software. In particular, instead of using bit-blasting
to eliminate quantifiers from BV-formulas, we present a less expen-
sive method for iterative approximate quantifier elimination in BV.
It naturally supports all bit-operators and can be optimized further
by applying rules inspired by modular linear arithmetic. Finally, we
leverage recent techniques on learning inductive invariants based
on explicit global guidance, thus allowing the approach to bypass
interpolation. Our implementation on top of SPACER, a PDR-based
verifier shows that such a word-level PDR is promising and can be
more effective than state-of-the-art.
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1 INTRODUCTION

Firmware implements key hardware functions, accelerates mainte-
nance, and enables to deploy bugfixes after the system is released.
Such low-level software often performs complex arithmetic oper-
ators, such as adders, multipliers, and variable shifters. Its safety
verification is challenging, especially because the tools are expected
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theory of quantifier-free bit-vectors (QF_BV, or BV in short).

Automated verification makes extensive use of decision proce-
dures for different theories in first-order logic. Whether a safety
invariant or a counterexample is going to be found in software
programs or in hardware designs, their first-order logic encodings
are processed by solvers for satisfiability (SAT) [4, 6, 10, 13, 30] or
satisfiability modulo theories (SMT) [17, 19, 27-29, 34]. Existing
verification frameworks are designed such that plugging a theory
solver does not require changing the verification workflow. Thus,
to meet the scalability criteria, theory solvers should have effi-
cient solving heuristics, rigorous support for quantified reasoning,
and interpolation. However, unfortunately, BV is a known obstacle
for verification approaches — due to the lack of proper support
for quantified reasoning and interpolation, solvers either bit-blast
the verification conditions and use SAT, or implement additional
abstraction-refinement loops [7, 17, 25].

In this paper, we present a novel instantiation of the well known
Property Directed Reachability (IC3/PDR) [4, 10] paradigm that re-
lies on quantifier elimination at word level and does not require an
additional abstraction-refinement loop. It incrementally strength-
ens a given safety property until it either becomes inductive, or
a counterexample is found. Specifically, we built on top of the
SPACER algorithm [23] which maintains over-approximations and
under-approximations of sets of reachable states. The former is
used to block spurious counterexamples, and the latter to create
predecessors to bad states, called proof obligations and block them.

In hardware, proof obligations are computed by SAT and general-
ized by ternary simulation. This does not work for infinite theories,
like linear integer arithmetic (LIA), which prompted researchers to
invent Model-Based Projection (MBP) [3] that under-approximates
existential quantifiers. While for any finite theory, like QF BV, it is
possible to use a model to generate a predecessor, this is extremely
ineffective [31]. In particular, a problem that is trivial over LIA,
becomes very difficult over QF BV without MBP. For BV, defining
an MBP is difficult mainly because the language of bit-operators
(such as shifts, signed comparison, bitwise and/or) is way richer
than the one of a lightweight theory. Finally, even if restricted to
only an arithmetic fragment, the LIA-rules do not work because
of the presence of overflow. We therefore propose first to create a
modular-arithmetic MBP following a set of predetermined rewriting
rules and then to iteratively repair it via a novel lazy MBP algorithm.
The combination of both allows us to eliminate all BV operators.

Once proof obligations are proven to be unreachable, model
checking algorithms usually employ only local interpolation tech-
niques to generalize proofs of unreachability. However, there are
no interpolation strategies for BV, that would be always effective.
Therefore, we instantiate the global guidance rules recently pro-
posed in [24] and obtain an effective alternative to interpolation.
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1 uint32_t x =1; y = 1;
2 while (1) {

3 Xx =x + 2 % nd();
4y =y+2*xndQ;

5 assert(x +y !=1);
6

Figure 1: An example program in C-like syntax. The variables x and y
are unsigned integers. nd() is an external function that returns a non-
deterministically chosen value.

We have implemented the technique, called GSPACERBV, on top of
SPACER [23], a solver for Constrained Horn clauses (CHC). SPACER
is part of the Z3 SMT solver [9] and is used to solve verification
problems of arbitrary structure (i.e., not only transition systems, but
also software with function calls, nested loops, etc). We compared
GSPACERBV against state-of-the-art solver ELpARICA [18] (the only
other CHC solver that supports BV) and experimented on a range
of benchmarks. On hardware benchmarks, GSPACERBV outperforms
ELDARICA and is competitive with SPACER. On software verification
tasks, GSPACERBV exhibits a competitive performance w.r.t. SPACER
and is able to prove more instances SAFE.

2 MOTIVATING EXAMPLE

Consider verifying an assertion in an example program! in Fig. 1.
The program is safe because the sum x+y is always even. To discover
this inductive invariant, IC3/PDR algorithms like SPACER (see Sec. 7),
computes and blocks predecessors to bad states, i.e., states from
which the assertion is violated. In our example, the immediate
bad states are x + y = 1, and their possible predecessors are:
x=1Ly=0,x=-1Ly=-4,(x+y =1),and (x +y = —3),
where (—) is the additive inverse (recall that all numbers in the
example are unsigned). Clearly, the last two predecessors are more
useful than the first two. Our first contribution is an algorithm that
uses BV arithmetic to generate such good predecessors (see Sec. 5).
Our second contribution is a global guidance technique that allows
model checking algorithms to generalize from predecessors of the
formx+y=1,x+y=-3,...,tox+y mod 2 =1 (see Sec. 7.1).

3 BACKGROUND AND NOTATION

3.1 Preliminaries

Logic. We work on sorted First Order Logic modulo theory of Fixed-
Size Bit-Vectors (BV). Our signature ¥ contains an infinite number
of constant symbols (zero-ary, uninterpreted functions) denoted
with x, y, . . . and numerals (zero-ary, interpreted functions) 1,2, . . ..
A term is a constant, numeral, variable, or a function applied to
terms. An atom is a predicate applied to terms, a literal is either
an atom or the negation of an atom, and a cube is a conjunction of
literals. A formula is a Boolean combination of literals, compiled
w.r.t. the following grammar.

term :=con | num | var | term X term | term div num |
term + term | term — term |

bvop(term) | ... | bvop(term, term, . ..)

! Adopted from https:/github.com/sosy-lab/sv-benchmarks/blob/master/c/bitvector/
jain_2-1.c.
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fla =:=term < term | term < term | term = term | term # term |
—fla| flan fla| flaVv fla| fla = fla

The grammar allows multiplying and dividing terms, as well as
addition and subtraction. Formulas are built using equalities, (un-
signed) inequalities?, and Boolean connectives. The predicates and
functions have the usual meaning, e.g., div is the integer division
(and e.g., 5 div 3 = 1). The grammar supports bit operators (bvop)
such as bit shifts, bitwise and/or, extracts, etc.

We sometimes treat a formula as the set of all its satisfying
assignments. We use const(f) to mean the set of all uninterpreted
constants in f and write f(X) to emphasize that const(f) C X.
Unless otherwise stated, all our formulas are closed.

MBP. Given a cube ¢ with constants X, a subset of its constants
Xs € X, and a model M |= ¢, Model Based Projection (MBP)
computes a model preserving, closed, under-approximation of the
quantified formula 3X - ¢. That is, MBP(Xs, ¢, M) is a cube P such
that P = 3X - ¢, Xs N const(P) = 0, and M |= P. An MBP is finite
if the range of MBP is finite after fixing ¢ and X;. Every theory
that admits quantifier elimination also admits a finite MBP. We
skip mentioning X and write MBP(¢p, M) when the constants that
are eliminated are obvious from the context. The notion of MBP
can be lifted to an arbitrary formula i (which is not necessarily a
cube) by considering a model M of /, conjoining literals of i that
are evaluated to true by M and using the notion of MBP for the
resulting cube.

Interpolation. Given an unsatisfiable formula A A B an inter-
polant is a formula I such that A = I, I A B = L and const(I) C
const(A) N const(B). Intuitively, interpolants summarize the reason
for unsatisfiability of AA B. Various theories have theory specific in-
terpolation strategies which are quite effective in practice. However,
there is a lack of good interpolation strategies for BV. Currently,
UNSAT cores are used as interpolants in BV.

Safety. A transition system is a three tuple (X, Init(X), Tr(X, X”))
where X is the set of constants that represent the state of the sys-
tem (called state variables), Init(X) is a formula representing the set
of initial states of the system, and Tr(X, X”) is the transition relation.
When writing a state formula, we skip the state variables when they
are obvious from the context. We use primed state variables and
formulas to represent state variables and formulas in the post-state.
A transition system T is safe upto a depth d, relative to a set of bad
states Bad, if there are no counterexamples of depth less than d.
That is, there are no sequence of states sg, 51,52, . . . , Sp such that
n<dandsy € nit, VO < i <n-{s;,s;,,} € Trand s, € Bad. The
transition system is sAFE if there are no counterexamples of any
depth. A safe inductive invariant is a certificate for safety. A formula
Inv is a safe inductive invariant if Init = Inv, Inv A Tr = Inv’, and
Inv = -Bad. Throughout the paper, we use invariants to mean
safe inductive invariants.

3.2 Modular linear arithmetic

While reasoning in terms of bitvectors, it is often convenient to
represent them as integers. Let num from the grammar in the pre-
vious subsection belong to a set for integer numbers over a fixed
bitwidth n, Zyn_1 = {0,1,...,2" — 1}.

%Signed comparison <s, < is defined via unsigned in the next subsection.
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Algorithm 1: Rew(y, x, M, R): Model-based rewriting

In: Cube ¢, constant x, model M such that M |= , set of rules

R= {(prs, concl)l-}
Out: Formula ¢, such that ¢ = 1/, and either ¢ = falseor M |= ¢

1 if —contains(i, x) or pattern-match(y, term < num X x) or
pattern-match(y, num X x < term) then

2 return y/

3 for each (prs, concl) € R do

4 if pattern-match(y, concl) then
5 res « true

6 @ «— true

7 for each p € prsdo

8 q < rewrite (p, ¢)

9 q < Rew (g, x, M, R)
10 if M |= q then

11 Qp—@Aq

12 else

13 res « false

14 if res then return ¢

15 return false

Note that several essential predicates and functions are not ex-
plicit in the grammar, but can be expressed using grammar’s predi-
cates/functions. We sometimes use them in the text, assuming the
following transformations:

o signed inequalities:
a<sbEite((a< 2T Ab< 2" ) v (" <an2™ ! <b),
a<bh @l <anb<2™h),

o divisibility constraint:
(@l b)E(a=0)V((a-1) div b) <a div b),
e remainder:a mod b= a - (a div b) = b.

In the next two sections we present our novel technique to pro-
ducing an MBP for modular arithmetic, a part of the signature of
BV, and in Sect. 6 we show how it can be used to produce an MBP
even while dealing with non-linear BV formulas.

4 NORMALIZATION RULES FOR MODULAR
ARITHMETIC

In order to produce an MBP for modular arithmetic, we have to
rewrite the formula in a normal form. Similar to the Linear Integer
Arithmetic (LIA) case, we wish to move all terms containing a
variable to be eliminated to the left side of a formula, and everything
else to the right side. However, it turns out to be difficult in general
because of the overflow. Our core insight is to use the model M to
identify the cases when the BV operations behave as their arithmetic
counter-parts. In this section, we present the rules that drive the
process of normalization.

Fig. 2 gives our rewrite rules for BV arithmetic. Each rule (prs, concl)

consists of a set of premises prs (in above case, two) and a conclusion.
Let X be a set of constants const(concl) U Upeprs const(p). We claim
that for all the rules, it holds that VX - /\peprsp(X) = concl(X), i.e.,
the conjunction of premises always implies the conclusion®. The
premises of a rule need to be explicitly checked and conjoined to
yield a normalized formula. Finally and most importantly, when

3We proved the validity of all these rules using the Z3 SMT solver for all bit-widths
up to 128. Our automated script took around fifteen minutes. Note that such proving
needs to be done for any new rules that the user wants to add. All our rules can be
found at https://hgvk94.github.io/gspacerbv/.
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applying some rules, we have to check that the rewritten premises
are satisfied by the given model. This way, whenever the rewriting
is done, the result is guaranteed to be satisfied by the given model.

Intuitively, rules addy, . . . , add; enable moving an x-free operand
of + from the left to right side of an inequality. The direction of
inequality and possible overflow make them different. We prove
that these rules are complete i.e., given a formula t(x) + y < z or
t(x) + y > z, we would always be able to rewrite it to a form with
t(x) as the sole term on one side of the inequality.

Alg. 1 gives pseudocode of a recursive rewriter that is parametrized
by a set of rules. Given an input formula ¢/, the result of the rewriter
isaformula ¢, such that: (1) ¢ is satisfied by the model M, i.e, M |= ¢,
(2) ¢ is conjunctive, (3) each of its conjuncts either has the form
term < num X x or num X x < term, or is x-free, and (4) ¢ = ¥.
Thus, if the given formula ¢y meets (1), (2), and (3), the algorithm
returns ¢ (line 2). Otherwise, it recurses and tries to apply any rule
(by rewriting*and checking the consistency of all premises with M)
and proceeds to trying the next rule if previous ones are not appli-
cable. If it is impossible to get a normalized under-approximation
after all rewriting attempts, the algorithm returns false. Note also
that the algorithm allows specifying custom rules and adjusting the
order of them by the user - if several rules are applicable and result
in different normalizations leveraging these differences might lead
to useful heuristics (which are mot the focus of this paper and left
for future work).

Example 4.1. Assume bit-width of 8. Let us normalize inequality
Y = (c—x)+y < zw.rt. variable x and amodel M = {x — 9,y —
255,z +— 80,c > 84}. It is easy to see that the left side of the
inequality overflows (i.e., (84 — 9) + 255 is greater than the maximal
number that can be represented with bit-width 8). Alg. 1 produces
the following graph from applications of rules and premises/con-
clusions.

xX2c+y—z x<c x<c+y

[inv] [inv] [inv]

—x<z—-Yy—-c —Cc<-—X
[add:]

“-y—-c<—-x -y<c-—1
[adds]

c—x<z—-y “y<c—x
[add:]

(c—-x)+y<z

In order to create this graph, the algorithm begins with ¢ (which
will appear as the root). Each incoming edge represents a success-
fully applied rule and connects the conclusion to its premise (spec-
ified in the corresponding rule), and the formulas on the leaves,
when conjoined (1) are satisfied by M and (2) constitute an impli-
cant of ¢. In particular, in order to construct an incoming edge to
the root, we can either apply [add ], [add2], or [adds]. To decide
which one, we check if premises are satisfied by M: for [add],
M(y < z) = 255 < 80 = false, but for [addy], M(-y <c—x)=1<
(84—-9) = trueand M(c—x < z—y) = 84—9 < 80 = true. Then, the
process continues onward, by applying rules to premises of [add>].

4We use pattern-match and rewrite in pseudocode in the usual sense and implement
them by unification and substitution, respectively.
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Figure 2: Rewrite rules for BV arithmetic. Terms #;(x), t(x), and #(x) contain constant x. Terms y and z do not contain x. Terms a and b may or may not contain x.
Rules add; to add; rewrite unsigned inequalities so that #(x) is the sole term on one side of the inequality. Rules bothx; to bothx, rewrite inequalities that contain

x on both sides. Rules inv remove the negation of the x term.

After the normalization graph is constructed, the normalized under-
approximationy =x > c+y—-zAx<cAx<c+yA-y<c-—-1
can be used to construct MBP. Note that if two or more rules are
applicable, our algorithm picks the smallest with respect to a some
predetermined order. O

The success in the proposed normalization directly affects our
MBP algorithm for modular arithmetic (see Sect. 5). The literals
that cannot be normalized - either because they syntactically do
not fit the arithmetic fragment of our grammar, or because the
normalization graph cannot be constructed with respect to the given
model — are left in the cube untouched. Our lazy MBP algorithm
(see Sect. 6) will take care of them first, by substitution of the values
from the model, and 2) iterative filtering unnecessary literals. But
since the lazy MBP is in general more expensive than the syntactic
rewriting presented in this section, we are interested in populating
our rewriting system with more diverse rules.

5 DEFINING MBP7

In this section, we define our procedure, MBPz, for Model-Based
Projection over an arithmetic signature of BV. The procedure de-
scribed here is lifted to the full signature of BV in Sect. 6. The input
to the procedure is a formula ¢ of the form ¥ A f(x), where ¢ is
x-free and f(x) meets the grammar from Sect. 3.2. We assume that
¢ is satisfiable, and that a model M of ¢ is available. The constant be-
ing eliminated is x. To eliminate multiple constants, the procedure
is applied sequentially.

In the following, we assume that all numeric operators are over a
fixed bit-width n. For simplicity of the presentation, we use arbitrary
precision arithmetic to check for overflow conditions. The basic
idea of MBP7 is to use the model M to identify the cases when the
BV operations behave as their arithmetic counter-parts and adapt
the rules from the MBP for Linear Integer Arithmetic (LIA) (e.g., [3]).
However, to our knowledge, the rules that we use are new, even
when restricted to LIA. For example, we prefer integer division
(div) to divisibility constraints.

Before applying the rewrite rules for MBP, we ensure that the
normalization process from Sect. 4 has succeeded. On top of that,
we rely on additional normalization rules that extract a cube, where
x can occur only in literals of the form a < f(x) or f(x) < b, where
f(x) is a term containing only one constant x, and a, b are x-free.

Note that we can normalize literals of form a < Aand B < b as
follows:

e a < Aisequivalenttoa=0Va—-1<A, and

e B<bisequivalenttob #0AB<b -1,
where we use the model to pick one of the disjuncts in the first
case.

In the rest of the section, we present MBP7 as a series of rewrite

rules, based on the form of f(x), with side-conditions, and describe
them as they are being presented:

e MBPz(M,y A A(Bj X x < b;)) £ . Note that the model M is not
i
used. There always exists a value x — 0, making ¢ = A 0 < b;,
i
and since each b; cannot be negative, ¢ is true.

M»!//A(/_\ai <aiXx)A(/\,b’ijsbj))
! J

def

e MBP; A

(ap X (LCM div ar) div LcM) < (by X (LCM div fy) div LCM) A

/\a,- < (2"-1) div (LcM div aj) A

13

Abj < (2"-1) div (LcM div f) A

J

/\(ai X (LCM div @;j) < ap X (LCM div ar) A

i#L

/\(bU x (LcM div By) < bj X (LM div )

Jj*rU
where the LCM is the least common multiple of {a;} U {f;}, and
the ap and Py are coefficients corresponding to the greatest
lower bound and the least upper bound w.r.t. M, respectively:
- Vi-M(a;) X (LcM div @;) < M(ar) X (LCM div ar,), and
= Vj- M(bj) x (LcM div Bj) = M(by) X (LcM div By );
and, additionally, the following side-conditions are true:
— LCM € Zgn_1,
— M(x) X LCM € Zyn_1, where M(x) is the value of x in M,
— for each i, M |= a; < (2"-1) div (LM div «@;), and
- foreach j: M |= b; < (2"-1) div (LCM div fj).

def

e MBPz(M, ¢ A (f(x) div § <d)) =
MBPz(M,p A (f(x) < (d+ 1) x5 —1) A(d < (2"-1) div §))
under side-condition M |= d < (2"-1) div 6.
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o MBPz(M, 9 A (g < f(x) div y)) &
MBPz(M,p A(g+1) Xy —1< f(x) A(g < (2"-1) div y))

under side-condition M |= g < (2"-1) div y.
def

o MBPz(M, ¢ A ((f(x) div §) X a <d)) =
MBPz(M, o A (f(x)Xa < (d+1)x5—1)A(d < (2"1) div §))

under side-condition M |= (f(x) X a < (d+1) X5 -1)A(d <
(2™-1) div §). The idea is to under-approximate i after check-
ing that M models the under-approximation. We need to check
because ((f(x) div ) X @ < d) might not imply (f(x) X @ <
d+1)x5-1).

o MBPz(M.¢ A (g < (f(x) div ) x f)) £
MBPz(M,pA(g+ 1) Xy —1< f(x) XA (g <(2"1) div y))
under the following side-condition: M = (g+ 1) Xy -1 <
fx)x B A(g<(2™1) div y.

o MBP7z(M, ¢) d:ef(,o[x — M(x)], otherwise.

The last step above ensures that MBP7 is complete - in the worst
case, x is projected by its value in the model. The soundness follows
from soundness of the individual rewrite rules. While the rules
themselves are non-trivial, we have checked their validity for many
common bit-widths using Z3.

We conclude this section with two examples, where we assume
that the bit-width n is set to 8, i.e., Zyn_1 = {0, 1,...,255}.

Example 5.1. Given a formulaa < 4 Xx A6 X x < band a
model M = {a +— 10,b + 100, x  5}. The LcCM = 12, and it does
not overflow. Furthermore, LcM X M(x) = 12 X 5 = 60 does not
overflow either. We then check if M |= a < 255 div (12 div 4),
ie, 10 < 85, and if M |= b < 255 div (12 div 6), ie., 100 < 127.
All side-conditions hold, thus we can construct the following MBP:

MBPyz(x, ) =((3a div 12) < (2b div 12)) Aa <85 Ab < 127

Example 5.2. Given a formulaa < 99X x A 100 X x < band a
model M = {a + 0,b — 200, x +— 1}. The LCM = 9900 overflows.
We thus, create an MBP by substituting 1 for x: a < 99 A 100 < b.

6 LAZY MBP FOR BV

Alg. 2 gives our procedure to compute MBP for BV formulas (i.e.,
mixing both arithmetic and bit-manipulating operators). It first
splits the input formula into two parts: A¢; involving linear arith-
metic only, and Azx; involving everything else (including non-linear
arithmetic and bit operations). For the former, it applies the al-
gorithm from the previous section (thus, getting P). For the latter
(called residual part in the rest of the paper), it creates the projection
by substitution (thus, getting S).

Note that it is not true in general that the conjunction of two
projections (P and S) for the two parts of the formula ¢ yield a pro-
jection of Jx - . Thus, it might be necessary to strengthen the MBP
with additional substitutions, i.e., for literals in A@;. Afterwards, the
algorithm proceeds in the reverse direction by weakening the result-
ing conjunction. The algorithm enumerates substitutions in S, tries
removing them and checks if the result is an under-approximation.
At the end of the loop, the under-approximation is maximal in a
sense that no substitutions can be dropped®.

>Note that this does not mean that the under-approximation is the weakest possible.
Finding the weakest under-approximation requires enumeriation all subsets of S,
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Algorithm 2: Lazy MBP computation for BV

In: formula ¥/ (x, y), constant x, and M, such that M |=
Out: P(y), such that M |= P and P(y) = Ix - Y(x, y)

let y = A i A A\ @j such that MBPz is applicable to A ;
i j i

-

o

J
P — MBPz(M, A ¢;)
J

3 S« {n,—[x - M(x)]}
if PA A o5 3x-¢Y(x,y)thenS « SU {gaj[x - M(x)]}
o€eS
for each i do
ifPA A

oes\{s;}

return PA A o
o€eS

-

o @

o= 3x - Y(x,y) thenS « S\ {S;}

<

Example 6.1. Assume bit-width 8 and constant x that needs to
be eliminated from the following formula.

Y =a<xAx<bAextract(x,7,7) =0

Here, the arithmetic part of the formula imposes an upper and a
lower bound on x, and the residual part requires that the most
significant bit of x is set to zero. We are also given a model M such
that M(x) = 64.

Alg. 2 first creates = MBPz(M,a < x Ax < b) = a < b. Note
that £ = 3x - ¢ because, e.g,, if a is instantiated with 199, and
b with 200, then the only value of x satisfying a < x Ax < b is
199, the most significant bit of which is 1. Alg. 2 then proceeds
to strengthening of the MBP by taking into account the residual
constraint and literals a < x and x < b with M(x) = 64 substituted
for x. Since extract(x,7,7) = 0 has the only appearance of a
single variable x, the substitution is trivially true, and thus ignored.
Finally, Alg. 2 iteratively weakens the MBP by posing and solving
a sequence (in our case, two) of quantified formulas:

a<bAN64d<b=Tx-y does not hold,
a<bAha<64=3Ix-y holds.

Intuitively, Alg. 2 found a yet another upper bound of x and in-
stantiated it with the value of x from the model. The final MBP is
a<bAa<o64. ]

7 SPACER

SPACER is a state of the art solver for Constrained Horn Clauses (CHCs)
based on the IC3/PDR paradigm. In this section, we describe the in-
ternals of SPACER including the use of MBP to compute predecessors
and global guidance rules. Then, we present our second main contri-
bution: that of extending the global guidance rules to BV (Sec. 7.1).
We simplify the presentation by focusing on how SPACER estab-
lishes safety of transition systems. We stress that SPACER as well
as our main ideas and implementation work on the more general
setting of satisfiability of CHCs.

Given a transition system and a set of bad states, SPACER itera-
tively establishes safety at larger and larger depths until it either
finds a counterexample or an invariant. To establish safety at a
particular depth, SPACER recursively computes and blocks proof
obligations (POB). A POB is a tuple (¢, i), where ¢ is a set of states
that can lead to either a bad state, or another poB, at depth i + 1.
It is reachable if ¢ is reachable from Init at depth i. Alg. 3 explains

dropping the corresponding substitutions and checking mutual implications. This is
expensive, and, thus, we do not do it.
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Algorithm 3: SPACER algorithm as a set of guarded com-
mands. A command can be executed whenever its precondi-
tions are met. We use the shorthand F(¢) = U’ V (¢ A Tr).
We use ¢[x — y] to mean replacing each occurrence of x
in ¢ with y.

In: A transition system (X, Init, Tr)
In: A set of bad states Bad
Out: (SAFE, Inv) or UNSAFE

1 Q<0 // pob queue
2 N«0 // maximum safe level
3 Oy « Init, O; « T foralli > 0 // inductive trace
1+ U « Init // reachable states
5 Bad «— —¢ // bad states
6 forever do

Candidate [ 1sSAT(ON A Bad) |
7 Q «— QU (Bad, N)

Predecessor [ (¢, i+1) e Q.M O; ATrA ¢’ ]
8 Q— QU(PX', TrA¢', M), i)

Successor [ (¢, i+1) € O, M = F(U) A ¢’ ]
9 U — UV PX, F(U), M)[ X" — X]

Conflict [ (¢, i +1) € Q, F(O;) = —¢’ ]
10 Oj « (0 ATe(F(0;), @)X+ X]) forall j < i+1

Propagate [ £ € O;, O; ATr= (']
1 Ois1 « (0is1 A O)

Subsume [ L C O,V e L-y =€,k =i, F(Ox) =Y’ ]
12 Oj —(0jAY) forall j <k+1

Conjecture [ L C O, (¢, k) € Q, p=a A f,

Vee L= -fA1sSa(EAa), U= -a]

13 Q « QU (e, k +1), where k = max{j | O; = -a}

Unfold [ On = —Bad |
14 N« N+1

Safe [ Oj41 = O; for some i < N |
15 return (sark, O;)

Unsafe [ 1sSaT (Bad A U) |
16 return UNSAFE

SPACER as a set of guarded commands. The state of SPACER consists
of the following. A queue of proof obligations (Q). The depth upto
which the system is saFE (N). An inductive trace (O) and a set of
reachable states (U). The inductive trace is a sequence of frames
0y, 01, . . . Ok. Each frame is a conjunction of clauses called lemmas.
The intuition is that frame O; over-approximates the set of states
reachable in i steps from Init. This is achieved by keeping the trace
monotone (Vi - O; = O;4+1) and inductive (Vi- O; A Tr = Oi,+1)'
The Candidate rule adds the poB (Bad, N) to the queue of PoBs.
When a poB is shown to be reachable from the set of reachable
facts, Successor rule extends the set of reachable facts. When a
PoB cannot be blocked by a frame, the Predecessor rule computes
a predecessor poB using MBP. If a poB is blocked by a frame O;,
the Conflict rule uses interpolation to strengthen frame i + 1 (as
well as all other frames before it). If a lemma is true at a higher
frame, the Propagate rules pushes it forward. Once Bad has been
shown to be unreachable, the Unfold rule increases the depth N.
The Safe rule returns an inductive frame if it exists and the Unsafe
rule returns UNSAFE if the reachable states intersect with Bad.

Global Guidance for SPACER. [24] introduced three global guid-
ance rules for SPACER. These rules were designed to allow SPACER
to detect and correct itself when it diverges. In this work, we use
two of them: Subsume and Conjecture. Both of them operate on a
subset £ of the lemmas in the trace. The Subsume rule summarizes
L by generating a single lemma ¢ that is stronger than all the
lemmas in L. ¢ is then added to the trace to replace all the lemmas
in L. Intuitively, this rule guides SPACER towards a succinct proof.

Hari Govind V K, Grigory Fedyukovich, and Arie Gurfinkel

The Conjecture rule gets the solver unstuck from a bad place in
the search space. This rule is applied when SpPACER learns multiple
lemmas to block the same part of a PoB. The rule creates an abstract
poB and adds it to the queue, thereby allowing SPACER to focus on
a different part of the search space.

7.1 Global Guidance for BV

In this section, we explain an instantiation of the global guidance
rules for the theory of BV. In Sec. 7.2, we explain how we select the
subset of lemmas in which to apply the rules. In Sec. 7.3, we explain
an instantiation of the Subsume rule and in Sec. 7.4, we explain an
instantiation of the Conjecture rule.

7.2 Clustering

We select subsets of lemmas based on syntactic pattern matching.
A pattern is a formula with free variables. A formula f matches a
pattern r if there is a substitution o from free variables to terms
such that 7o = f. A substitution is called numeric if its maps free
variables to BV numerals. Given a pattern r and a set of formulas @,
a cluster Cg(r), is the set of all formulas in @ that matches 7 with
numeric substitutions. We apply the guidance rules on clusters of
lemmas.

In practice, given a set of lemma, we use the concept of anti-
unification to generate patterns and hence identify clusters. Note
that all definitions are syntactic. Therefore, a formula x + 1 can
match a pattern x + v but the formula 1+ x cannot. To avoid missing
lemmas when picking subsets of lemmas, we use the normalization
scheme for BV inside Z3 to normalize all lemmas before computing
clusters of lemmas.

7.3 Subsume

We apply the subsume rule to a cluster Cp(n) if 7 = ¢ V \/fil 4
where ¢ is a ground formula and each literal ¢; is either of the form
v; + t1 < tp or of the form v; >« t3 where »€ {<, <, <, <5,=}. We
also have the additional constraint that all the variables in 7 are of
the same bit-width.

This computation works in the cube space C_¢(7’) where 7’ =
—7. We compute an over-approximation Q of (A C-¢(r”)). There-
fore, =Q = (\/ Cg (7)) subsumes all the lemmas in Cg (7).

To compute such a cube Q, we compute a set of linear equalities
that hold between the free variables vy, . . . vy that are implied by
the cubes in C_¢ (). Let Py be the ordered set of numeric values
corresponding to cube ¢ in C_¢(n’). That is Py = (n1,...,nN)
such that o = /\ﬁ\i1 v; = n; and mop = ci. Let Z be the inte-
ger relaxation of Py. Let A be the matrix whose rows are [Z, 1].
The dimension of A is K X (N + 1), where K is the number of
cubes in C_p(7’). Let r be a row in a kernel of A. Then we know
that r[vy,...,oN,1]7 = 0 is an equality implied by the cubes in
C-¢(n’). Thus, we get one equality per row of the kernel. Let E be
the conjunction of all these equalities.

The cluster of cubes might also imply divisibility constraints
between the variables in the pattern. For variable v;, let S; be the
set of values that v; can be substituted into. Thatis S; = {n | o[v;] =
nAn’c € C-¢(n’)}. We add a divisibility constraint (a | (v; — b)) if
(a|(s—Db))Aa+1foralls € S;.If there are multiple such a’s, the
largest one is chosen. Let M be a conjunction of all such divisibility
constraints.



Word Level Property Directed Reachability

Table 1: Verification results (time in seconds; TO = 1200s). SPACER is the latest
public version of SPACER.

Benchmark  GSPACERBV ~ SPACER  SPACER'  ELDARICA
RC 1 0.70 0.57 0.06 35.43
sp 1 0.26 0.26 0.07 TO

2 0.48 0.61 0.08 294.49
1 0.68 0.67 0.21 TO
GBA 2 0.67 0.70 0.23 TO
3 0.75 0.67 0.25 TO
1 17.59 2.08 20.3 TO
2 57.89 48.00 12.35 TO
3 TO TO TO TO
AES 4 TO TO TO TO
5 0.45 0.43 0.23 TO
6 21.13 10.41 2.8 TO
7 2.85 2.57 0.89 TO
1 7.23 7.30 TO TO
2 4.15 4.34 TO TO
3 7.06 7.14 TO TO
4 2.75 2.81 TO TO
PP 5 21.35 20.95 TO TO
6 6.04 6.12 TO TO
7 6.10 6.33 TO TO
8 12.92 13.32 TO TO
9 2343 12.10 TO TO

Let C = n” A E A M. To get an over-approximation, we eliminate
the variables in the pattern 7’: Q = Jvy, ... vn -C. In our implemen-
tation, we use MBP to under-approximate quantifier elimination. In
order to achieve good MBP results, whenever possible, we choose a
model that is not satisfied by any cube in C_¢ (") but by C. Since
MBP produces under-approximations of quantifier elimination, we
drop literals from the result of MBP until it over-approximates
Foy,...,oN - C.

7.4 Conjecture

The Conjecture rule is applied when a single proof obligation is
blocked by many lemmas. Syntactically, this happens when the
negation of the proof obligation and the lemma shares some com-
mon literals.

The Conjecture rule is applied to a cluster C (;r) with a pattern
7 = (¢1 V @2), where ¢ is ground, and a proof obligation p =
c1 A ¢z A c3 under the following conditions: (1) one lemma in the
cluster subsumes all others. The following syntactic restriction
achieves this: g2 = v < t with € {<, <, <, <s}; (2) all the lemmas
block one part of the proof obligation. This happens when there
exists a substitution o such that 7o € Cg(r), p20 = —c3 and
@1 = c2; (3) all the lemmas do not block the other part of the proof
obligation: for each £ € Cg(r), £ A c1 A ¢y is satisfiable; (4) The
other part of the proof obligation is not reachable: U # c1 A ca.

8 EVALUATION

We have implemented both global guidance and BV MBP on top of
the Spacer CHC engine [23] of the Z3 SMT solver [9]. We call the
new tool GSPACERBV. We have compared GSPACERBV against the
baseline SPACER, i.e., with our MBP and global guidance disabled,
and to ELDARICA [18], which, to the best of our knowledge, is the
only other CHC solver that supports BV. The rest of the section
elaborates on two of our cases studies: applying word-level PDR to
verify hardware and software, respectively.
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8.1 Hardware Verification

We considered benchmarks from the GRAIN suite [34] on discover-
ing adequate environment abstractions for instruction-based (ILA)
equivalence checking. GRAIN adopts an abstraction-refinement
strategy to refine the environment by blocking spurious counterex-
amples that are found during equivalence checking, i.e., by solving
a sequence of safety-verification tasks (encoded as CHC systems).

The suit has 22 CHC instances that belong to five top-level equiv-
alence checking tasks, i.e., for five hardware designs®:

o Redundant Counters (RC) that uses two 4-bit counters, one
of which is for redundancy - stored as 1’s-complement (rep-
resented by one CHC system);

o Simple Pipeline (SP) with the back-end of a simple pipelined
processor which has three stages and four 8-bit wide registers
(two CHC systems);

o Gaussian Blur Accelerator (GBA) that uses the multiplication-
accumulation units for convolution of an image with a Gauss-
ian kernel (three CHC systems);

o AES Block Encryption Accelerator (AES) with a “load-compute-
store” loop that works block-by-block (seven CHC systems);

o PicoRV32 Processor (PP) that implements the RISC-V RV32IMC
instruction set and has some pipelining features (nine CHC
systems).

Table 1 outlines an experimental comparison of GSPACERBV,
different versions of SPACER, and ELDARICA. Additionally, the com-
parison to GRAIN itself and ABC [17] can be derived from [34].
While GRAIN can solve all the instances, it should be parametrized
by tailor-made templates for invariants. ELDARICA, while fully auto-
mated, cannot solve most of these instances. SPACER and GSPACERBYV,
in contrast, are fully automated and can solve 20 (out of 22) in-
stances. SPACER is the latest public version of SPACER in the Z3
repository’. It contains an orthogonal bug that prevents it from
converging on many of these instances. However, GSPACERBV could
solve these instances irrespective of the bug. Additionally, we
present a version of SPACER in which we fixed the bug (the SPACER
column). Clearly, GSPACERBV is competitive with SPACER. The re-
sults shown here are obtained by running SPACER and GSPACERBV
with the default random seed. We experimented with different ran-
dom seeds and saw that the choice of random seed affect the results
in favor of GSPACERBV.

8.2 Software Verification

Our technique targets verification problems of arbitrary structure
(i.e., not only transition systems, but also software with function
calls, nested loops, etc.). Therefore, we have also considered 631
open-source benchmarks from software verifiers: vmt [7] and Er-
DARICA [2]. GSPACERBV has two configurations: with/without the
global guidance, which, in combination, can solve more instances
(and faster) than the baseline SPACER: 404 vs 398. ELDARICA solved
only 225 instances. 192 instances were not solved by any tool.

In the interest of saving space, we present the comparison in two
scatterplots in Fig. 3. It is clear that in most of the cases GSPACERBV
outperforms the baseline SPACER. However, there are some in-
stances where the baseline SPACER outperforms us. Interestingly,

®We refer the reader to [34] for a complete description of designs.
7https://github.com/Z3Prover/z3/releases/tag/z3-4.8.8.
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Figure 3: Scatterplots comparing against competitors (secxsec): triangles
above the diagonal represent runtimes for benchmarks on which the best con-
figuration of GSPACERBV outperformed the competitor; blue triangles = safe
instances, orange = unsafe; timeouts (1200 sec) are placed on the boundaries.

most of these instances are UNSAFE. More importantly, there are
no SAFE instances (which are in general much harder) that SpAcer
can solve, but GSPACERBV cannot solve. GSPACERBV can solve 2
SAFE instances that the baseline SPACER cannot solve. While solving
179 more instances than ELDARICA, GSPACERBV is unable to solve
34 instances that ELDARICA solved (possibly, because their recent
quantifier elimination and interpolation techniques [2] which in
principle can be integrated to GSPACERBV). This lets us conclude
that our technique is promising in practice, and we are looking
forward to its optimizations and extensions.

9 RELATED WORK

Prior approaches to word-level unbounded model checking (induc-
tive invariant synthesis) are accomplished mainly via an integration
with Counterexample-Guided Abstraction Refinement (CEGAR) [8],
attempting to reduce the use of bit-precise reasoning. In particu-
lar, [25] for a hardware design, prunes most of the state space using
uninterpreted predicates and delegates the “residual” control space
to IC3/PDR. This idea further evolved to an approach for model
checking C programs [5] and Verilog designs [14]. A Word-Level
Abstraction for hardware [17] is also based on this idea, but it is
more optimized by the re-use of PDR traces and tailor-made refine-
ment strategies. Our approach is substantially different in the way
that there is no need to use the abstraction-refinement loop explic-
itly. This affords us a significant degree of flexibility in guiding the
PDR algorithm as it explores the state space.

To bypass the need to extend the decision procedures with the
support for quantifier elimination and interpolation, [7] proposed
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to integrate IC3 with predicate abstraction. This way, IC3 operates
only at the Boolean level, and theory reasoning is conducted only
by the underlying SMT solver. Another approach to get bit-precise
invariants, proposed in [16], suggests to unsoundly translate ma-
chine integers by unbounded integers, use the LIA-verification tool
and finally validate the resulting invariants on the original problem.
Recently, in [34], it was proposed to to use user-given templates
and Syntax-Guided Synthesis (SyGuS) [1] to guess-and-check bit-
precise invariants. Our approach, in contrast, enjoys the native
support for quantifier elimination and does not rely on predeter-
mined predicates or templates, as well as on any external tools.

The closest approach to ours is on Property Directed Reachability
for QF BV [31] which was further extended to mixed type atomic
reasoning units [32]. They proposed a version of the Subsume rule
for QF_BV but did not use global guidance. Hybrid simulation and
mixed types of atomic reasoning units are used for inductive and
counterexample generalization. However, their method works only
on the arithmetic level, and ours supports the all bitvector operators,
thanks to state-of-the-art decision procedures.

An earlier approach to Word Level Predicate Abstraction [20]
proposes to use weakest preconditions of Verilog statements to
obtain new predicates during abstraction refinement. The weakest-
precondition computation is in general expensive and uses some
kind of quantifier elimination too. While using MBP, we do not guar-
antee the result is the weakest, but in practice it is often adequate
and much less computationally expensive.

Some related research was done in the domain of solving BV-
formulas. In particular [26] proposed to eliminate quantifiers using
symbolic inverses of bit-vector operators, which are pre-computed
using SyGuS. We can naturally plug them to our model-based rewrit-
ing system. Effective word-level interpolation approaches were pro-
posed in [2, 15, 21, 33]. Tricks include computing interpolants by
treating BV operations uninterpreted; using a restricted form of
quantifier elimination; translating to (non)-linear integer arithmetic
and back, and finally bit-blasting. These techniques can in principle
be integrated to our approach too and accelerate convergence.

Aside of verification, MBP has applications in functional syn-
thesis [11] to discover function implementations from declarative
specifications, SyGuS-based CHC solving [12], and Validity-Guided
Synthesis of Reactive Systems [22]. We believe, in the future, our
new MBP algorithm for BV will strengthen those applications.

10 CONCLUSION

We have presented a new approach to word-level verification based
on IC3/PDR that does not require an integration with an external
abstraction-refinement loop. Instead of using bit-blasting to elimi-
nate quantifiers from BV-formulas, we proposed a less expensive
method for iterative approximate quantifier elimination in BV that
supports all bit-operators and can be optimized further by applying
rules inspired by modular arithmetic. It uses recent techniques for
learning inductive invariants based on explicit global guidance,
thus bypassing interpolation. Our implementation on top of the
SPACER tool confirms that a word-level PDR is more effective than
state-of-the-art on a range of hardware and software benchmarks.
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