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Abstract. We present a new technique for generating a function imple-
mentation from a declarative specification formulated as a ∀∃-formula in
first-order logic. We follow a classic approach of eliminating existential
quantifiers and extracting Skolem functions for the theory of linear arith-
metic. Our method eliminates quantifiers lazily and produces a synthesis
solution in the form of a decision tree. Compared to prior approaches,
our decision trees have fewer nodes due to deriving theory terms that
can be shared both within a single output as well as across multiple out-
puts. Our approach is implemented in a tool called AE-VAL, and its
evaluation on a set of reactive synthesis benchmarks shows promise.

1 Introduction

The task of generating a function implementation from a specification of an
input-output relation is commonly addressed by functional synthesis. Many prior
approaches have been proposed for functional synthesis [18,16,20,10,13], with ap-
plications in various stages of software development, from prototyping to main-
taining and repairing existing products. However, there is still a great need to
make the synthesizers more robust and scalable, and the synthesized implemen-
tations more compact. We build this work on recent advances in lazy quantifier
elimination methods [17,14,6,3,20] that enabled us to progress in both these
dimensions.

Synthesis tasks are often formulated as quantified formulas. We consider
formulas of the form ∀~x . ∃~y . ψ(~x, ~y) (or ∀∃-formulas in short3). A simple example
of a synthesis task formulated as a ∀∃-formula to generate a max-function is
shown below, where the two input variables x1 and x2 are universally quantified
and the output y is existentially quantified:

∀x1, x2 .∃y . y ≥ x1 ∧ y ≥ x2 ∧ (x1 = y ∨ x2 = y)

The validity of this formula means that there always exists a maximum be-
tween two integers. A witness to the maximum value, i.e., a Skolem function
y = ite(x1 ≥ x2, x1, x2), can then be generated (and suitably decoded as a state-
ment in a program). In this paper, we consider the general case of synthesis of
multi-output programs, i.e., with an arbitrary number of outputs. An example
task is to generate a program that invokes both max and min-functions at the

3 Here and later, we use the vector notation to denote multiple variables.



same time. An encoding of this task as a ∀∃-formula is somewhat bulky, as shown
below:

∀x1, x2 .∃y1, y2 . y1 ≥ x1 ∧ y1 ≥ x2 ∧ (x1 = y1 ∨ x2 = y1)∧
y2 ≤ x1 ∧ y2 ≤ x2 ∧ (x1 = y2 ∨ x2 = y2)

However, a solution for this synthesis task can still be formulated concisely:
ite(x1 ≥ x2, y1 = x1 ∧ y2 = x2, y1 = x2 ∧ y2 = x1). In particular, note that the
predicate x1 ≥ x2 is shared between the two outputs y1 and y2 in the program,
which respectively denote the values of the max and min functions.

Our synthesis procedure generates an implementation of a function while
eliminating existential quantifiers in the formula, similar to prior work by Piskac
et al. [16]. However, quantifier elimination is an expensive iterative procedure in
general. To lower the overall cost of functional synthesis, we propose to use a
lazy procedure [6] for quantifier elimination in ∀∃-formulas using Model-Based
Projection (MBP) for linear arithmetic [14]. Unlike the prior work, our procedure
does not require converting the formula into Disjunctive Normal Form (DNF),
and thus often produces smaller and non-redundant implementations.

Along with the use of MBPs, we formulate criteria for an effective decom-
position of a functional synthesis task. In particular, we aim at searching for a
structured synthesis solution in the form of a decision tree, where each of the
synthesis subtasks is defined in terms of a precondition and a set of Skolem
constraints in a grammar, from which a function implementation is generated.
While our notion of a precondition is similar to that in prior work [16], our
MBP-based procedure results in fewer number of synthesis subtasks, thereby
providing performance improvements and smaller implementations.

Our effective decomposition further enables optimization procedures for on-
the-fly compaction of the generated function. In particular, we derive Skolem
terms that can be re-used across multiple preconditions for a single output, and
share the preconditions in a common decision tree across multiple outputs in the
program. Our method identifies theory terms that can be shared both within and
across outputs. While the motivation for such sharing is similar to optimization
of Boolean gate-level circuits in the area of logic synthesis, our compaction is
enabled by theory-specific reasoning (validity checks), not Boolean optimization
at the propositional level. Our evaluation in a tool called AE-VAL demonstrates
the benefits of our compaction algorithm, which further reduces the size of the
resulting implementations by an average of two.

We have implemented our ideas in AE-VAL on top of our prior work [6],
which described a procedure for determining the validity of ∀∃-formulas us-
ing MBPs for linear arithmetic [14]. The focus of that effort was on deriving
Skolem witnesses for a simulation relation between two given programs. How-
ever, there was no method described for functional synthesis, which requires
deriving a Skolem function rather than a Skolem relation. Furthermore, it did
not consider minimization or compaction of the generated implementations. Note
again, that this minimization/compaction is not at the propositional level, but
requires theory-specific reasoning. The required validity checks for compaction
are built into the synthesis procedure and use the same MBP-based validity



checker recursively. We provide a detailed evaluation of our tool on a selection of
public benchmarks from SyGuS-COMP4 and benchmark examples for reactive
synthesis from Assume-Guarantee contracts [13].

We start by providing some background in Sect. 2. Next, in Sect. 3, we
describe our criteria for effective decomposition and the MBP-based procedure
for formulating the synthesis subtasks. Sect. 4 describes a method for extracting
Skolem functions from Skolem constraints. Sect. 5 describes our algorithm for
compaction and re-use of theory terms within and across subtasks. We have
implemented our procedure for functional synthesis for linear arithmetic and
present a detailed evaluation in Sect. 6. Related work is described in Sect. 7 and
conclusions in Sect. 8.

2 Background and Notation

A many-sorted first-order theory consists of disjoint sets of sorts S , function
symbols F and predicate symbols P . A set of terms is defined recursively as
follows:

term ::= f(term, . . . , term) | const | var

where f ∈ F , const is an application of some v ∈ F of zero arity, and var is a
variable uniquely associated with a sort in S . A set of quantifier-free formulas is
built recursively using the usual grammar:

formula ::= true | false | p(term, . . . , term) | Bvar |
¬formula | formula ∧ formula | formula ∨ formula

where true and false are Boolean constants, p ∈ P , and Bvar is a variable
associated with sort Bool.

In this paper, we consider theories of Linear Rational Arithmetic (LRA) and

Linear Integer Arithmetic (LIA). In LRA, S def
= {Q, Bool}, F def

= {+, ·}, where
· is a scalar multiplication (i.e., it does not allow multiplying two terms which

both contain variables), and P def
= {=, >,<,≥,≤, 6=}. In LIA, C def

= {Z, Bool},
F def

= {+, ·, div}, where div is an integer division5, and P def
= {=, >,<,≥,≤, 6=}.

For both LRA and LIA, we use a shortcut ite(x, y, z)
def
= (x ∧ y) ∨ (¬x ∧ z), but

do not include ite in F .
Formula ϕ is called satisfiable if there exists an interpretation m, called a

model, of each element (i.e., a variable, a function or a predicate symbol), under
which ϕ evaluates to true (denoted m |= ϕ); otherwise ϕ is called unsatisfiable.
If every model of ϕ is also a model of ψ, then we write ϕ =⇒ ψ. A formula ϕ
is called valid if true =⇒ ϕ.

For existentially-quantified formulas of the form ∃y . ψ(~x, y), validity requires
that each interpretation for variables in ~x and each function and predicate symbol
in ψ can be extended to a model of ψ(~x, y). For a valid formula ∃y . ψ(~x, y), a

4 http://sygus.seas.upenn.edu/SyGuS-COMP2018.html.
5 We do not consider the modulo operation in this work, but our approach can be

extended to support it.
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term sky(~x) is called a Skolem term, if ψ(~x, sky(~x)) is valid. More generally, for
a valid formula ∃~y . ψ(~x, ~y) over a vector of existentially quantified variables ~y,
there exists a vector of individual Skolem terms for every variable ~y[j], where
0 < j ≤ N and N = |~y|, such that:

true =⇒ ψ(~x, sk~y[1](~x), . . . , sk~y[N ](~x)) (1)

In the paper, we assume that all free variables ~x are implicitly universally
quantified. For simplicity, we omit the arguments and simply write ϕ when the
arguments are clear from the context.

3 Decomposing Functional Synthesis

A functional synthesis task aims at generating a function from a given input-
output relation. We view this in terms of validity checking of ∀∃-formulas and
derive Skolem terms for the existentially-quantified variables. We propose to
discover Skolem terms in stages: an original task is decomposed into subtasks,
where each of the subtasks is solved in isolation, and the solution to the original
problem is obtained as one common decision tree that combines the results from
the subtasks.

3.1 Illustrative example

Consider a given formula in Disjunctive Normal Form (DNF) (we defer a dis-
cussion of a general case until later in this section). Here, it is intuitively easy to
see that the individual Skolem function for each ~y[j] can be represented in the
form of a decision tree, as illustrated in the following example.

Example 1. Given a formula ∃y1, y2 . ψ(x, y1, y2) in LIA, where

ψ(x, y1, y2)
def
= (x ≤ 2 ∧ y1 > −3 · x ∧ y2 < x) ∨ (x ≥ −1 ∧ y1 < 5 · x ∧ y2 > x)

The formula is valid, which means that for every value of x there exist values
of y1 and y2 that make either of two disjuncts true. Intuitively, the disjuncts
correspond to two cases, when x ≤ 2 or x ≥ −1. We call these formulas precon-
ditions.

To extract Skolem terms for y1 and y2, this example permits considering two
preconditions in isolation (however, it may not be true for other formulas, see
Sect. 3.3). That is, if x ≤ 2, then y1 should satisfy y1 > −3 · x and y2 should
satisfy y2 < x. In other words, the following two formulas are valid:

(x ≤ 2) =⇒ ∃y1 . (y1 > −3 · x)

(x ≤ 2) =⇒ ∃y2 . (y2 < x)

Skolem terms for y1 and y2 assuming x ≤ 2 could be −3 · x + 1 and x − 1
respectively. Similarly, for the second precondition:

(x ≥ −1) =⇒ ∃y1 . (y1 < 5 · x)

(x ≥ −1) =⇒ ∃y2 . (y2 > x)



Assuming x ≥ −1, a Skolem term for y1 could again be −3 · x+ 1, but a Skolem
term for y2 is x + 1. Combining these Skolem terms for both preconditions, we
get Skolem terms for ∃y1, y2 . ψ(x, y1, y2):

sky1(x)
def
= −3 · x+ 1

sky2(x)
def
= ite(x ≤ 2, x− 1, x+ 1)

Note that this composition is possible because (x ≤ 2) ∨ (x ≥ −1) is valid. In
the next subsection, we describe this process formally.

3.2 Effective Decomposition

Our functional synthesis technique is based on a notion we call effective decom-
position, defined below.

Definition 1. A decomposition of a valid formula ∃~y . ψ(~x, ~y) is a tuple 〈pre, φ〉,
where pre (called preconditions) is a vector of formulas of length M and φ (called
Skolem constraints) is a matrix of dimensions M × |~y|, such that the following
three conditions hold.

true =⇒
M∨
i=1

pre[i](~x) (i-totality)

pre[i](~x) ∧
|~y|∧
j=1

φ[i, j](~x, ~y) =⇒ ψ(~x, ~y) (under-approximation)

pre[i](~x) =⇒ ∃~y .
|~y|∧
j=1

φ[i, j](~x, ~y) (j-totality)

Lemma 1. For every valid formula ∃~y . ψ(~x, ~y), a decomposition exists.

Indeed, a decomposition could be constructed by the formula itself and a pre-
condition true. We are not interested in such cases because they do not simplify
a process of extracting Skolem terms from Skolem constraints φ. Instead, we
impose additional syntactic restrictions on φ. In particular, we call a decompo-
sition 〈pre, φ〉 of ∃~y . ψ(~x, ~y) G-effective if all formulas φ are expressible in some
grammar G .

The task of extracting Skolem terms boils down to developing an algorithm
that 1) produces Skolem constraints in G , and 2) exploits G to extract a matrix
of Skolem terms from a matrix of Skolem constraints, i.e., the following holds:

~y[j] = sk[i, j](~x) =⇒ φ[i, j](~x, ~y) (embedding)

Theorem 1. Let 〈pre, φ〉 be a decomposition of ∃~y . ψ(~x, ~y), and sk be a matrix
of Skolem terms, such that (embedding) holds. Then Sk j is the Skolem term for
~y[j]:

Sk j
def
= ite(pre[1], sk [1, j], . . . ite(pre[M − 1], sk [M − 1, j], sk [M, i])) (2)
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Fig. 1: A decision tree.

Fig. 1 shows a straightforward implementa-
tion of Skj in the form of a decision tree.

In this work, we restrict G to be the gram-
mars of LIA / LRA (see Sect. 2) but allow
neither disjunctions nor negations. In the next
subsection, we outline an algorithm that cre-
ates a G-effective decomposition while solv-
ing formulas for validity. Then, in Sect. 4, we
present an algorithm for extracting Skolem
terms from formulas in G .

3.3 Witnessing existential quantifiers with AE-VAL

Obtaining preconditions in general requires quantifier elimination. However, it
leads to expensive reasoning, which we would like to improve upon.

Example 2. Consider the following formula:

∃y1, y2 .
(
y1 > x1 ∨ y2 < −x2

)
∧
(
y1 < x2 ∨ y2 > −x1

)
If we were running the algorithm from [16], we would need to convert this formula
into DNF, which would give us four disjuncts. A complete quantifier-elimination
procedure would be then required to produce four preconditions and four Skolem
constraints.

Our lazy quantifier-elimination method, called AE-VAL, generates both pre-
conditions and Skolem constraints while solving the given formula for validity.
In contrast to the DNF translation, for the formula in Example 2, it generates
only two preconditions and two Skolem constraints.

The pseudocode of AE-VAL is shown in Alg. 1 (we refer the reader to [6] for
more detail). AE-VAL produces a sequence of Model-Based Projections (MBPs,
see the definition below) [14], each of which under-approximates quantifier elim-
ination. It iterates until the disjunction of MBPs is valid and thus avoids a
complete quantifier elimination.

Definition 2. An MBP~y is a function from models of ψ(~x, ~y) to ~y-free formulas
if it has a finite image and the following hold:

if m |= ψ(~x, ~y) then m |= MBP~y(m,ψ)

MBP~y(m,ψ) =⇒ ∃~y . ψ(~x, ~y)

There are different algorithms for constructing MBPs for different theories.
We follow a method from [3] for LIA and present it on the following example.
Intuitively, it is based on finding models, testing them on literals of the original
formula, and eliminating quantifiers from the conjunctions of literals that passed
the test.

Example 3. Recall the formula ∃y1, y2 . ψ(x1, x2, y1, y2) from Example 2. Its set
of literals is Lit = {y1 > x1, y2 < −x2, y1 < x2, y2 > −x1}. In the first iteration,



Algorithm 1: AE-VAL
(
∃~y . ψ(~x, ~y)

)
, cf. [6].

Input: ∃~y . ψ(~x, ~y)
Output: Return value ∈ {valid, invalid} of ∃~y . ψ(~x, ~y),

MBPs pre, Skolem constraints φ

1 M ← 1;
2 while true do

3 if true =⇒
M∨
i=1

pre[i](~x) then return 〈valid, pre, φ〉;

4 tmp← ψ(~x, ~y) ∧
M∧
i=1

¬pre[i](~x);

5 if tmp =⇒ false then return 〈invalid,∅,∅〉;
6 m← getModel(tmp);
7 〈pre[M ], φ[M, 1], . . . , φ[M, |~y|]〉 ← GetMBP(~y,m, ψ);
8 M ←M + 1;

AE-VAL generates a model m1 of ψ: m1 = {x1 7→ 0, x2 7→ −2, y1 7→ 0, y2 7→ 1}.
An MBP of ψ w.r.t. m1 is then generated iteratively: by eliminating y1 first, and
eliminating y2 then. Initially the MBP is true.

For y1 and m1, AE-VAL fills φ[1, 1] with a set of literals {l ∈ Lit | y1 ∈
vars(l) ∧m1 |= l}, i.e., ∅. Thus, AE-VAL adds nothing to the MBP.

For y2 and m1, AE-VAL fills φ[1, 2] with {l ∈ Lit | y2 ∈ vars(l) ∧m1 |= l},
i.e., {y2 < −x2, y2 > −x1}. It then eliminates quantifiers from ∃y2 . φ[1, 2] and
adds the result (i.e., x1 − x2 > 1) to the MBP.

Thus, after the first iteration of AE-VAL, we get the precondition pre[1] =
x1 − x2 > 1, and Skolem constraints φ[1, 1] and φ[1, 2]. The second iteration
proceeds similarly, and AE-VAL outputs pre[2] = true, φ[2, 1] = y1 > x1, and
φ[2, 2] = y2 > −x1, and terminates.

Lemma 2. If AE-VAL returns 〈valid, pre, φ〉 for a formula ∃~y . ψ(~x, ~y), then
the formula is effectively decomposable by pre and φ, i.e., (i-totality),
(under-approximation), and (j-totality) hold.

Intuitively, the sequence of MBPs provides a lazy disjunctive decomposition
of the overall problem, where each precondition can capture an arbitrary sub-
space on the ~x variables (under which it is possible to derive a Skolem term for
the ~y variables). It often requires far fewer decompositions than a DNF-based
quantifier elimination approach, where each precondition can at best be a cube,
i.e., a conjunction of predicates on ~x. Note that the number of decompositions,
M , corresponds directly to the depth of the decision tree in the generated im-
plementations. Thus, our MBP-based procedure for quantifier elimination can
potentially perform better and lead to smaller implementations. Our experimen-
tal results in Sect. 6 show promising support.



4 Extraction of Skolem Terms

In this section, we describe our procedure for extracting individual Skolem terms
from a matrix of Skolem constraints φ[i, j] in linear arithmetic. As pointed out
in (embedding), this procedure is performed independently of a precondition
pre[i]. We first describe the procedure where each φ[i, j] has occurrence of only
one variable y = ~y[j], and thus has form π(~x, y); and pre[i](~x) =⇒ ∃y . π(~x, y) is
valid. In Sect. 4.3, we describe how to handle occurrences of multiple ~y variables.

Although the general extraction schema is similar for all background theories,
specific algorithmic details of each theory need to be discussed. In the rest of
this section, we separately consider algorithms for LRA and LIA.

4.1 Skolem Terms in LRA

In Alg. 2, we show how to extract a Skolem term for a variable y ∈ ~y from con-
straints having form π(~x, y). Intuitively, Alg. 2 constructs a graph of a function
that is embedded in a relation specified by a conjunction of equalities, inequal-
ities, and disequalities over y and ~x. Thus, Alg. 2 takes as input six vectors of
clauses extracted from π: E, D, G, GE, L, and LE:

E
def
= {y = fi(~x)}i G

def
= {y > fi(~x)}i L

def
= {y < fi(~x)}i

D
def
= {y 6= fi(~x)}i GE

def
= {y ≥ fi(~x)}i LE

def
= {y ≤ fi(~x)}i

We do not consider constraints having the shape α · y ∼ f(~x), because it

is safe to normalize it to y ∼ f(~x)
α (assuming positive α; a negative α requires

swapping the operator ∼ between < and >, and ≤ and ≥). Finally, we assume
that at least one of the vectors of clauses is non-empty, otherwise a Skolem term
could be arbitrary, and there is no need to run Alg. 2.

Below we present several helper-operators needed to construct a term sk
based on a lightweight analysis of clauses in E, D, G, GE, L, and LE (where
∼∈ {<,≤,=, 6=,≥, >}):

ASSM(y ∼ e(~x))
def
= e ADD(`, c)

def
= `+ c MID(`, u)

def
=
`+ u

2
In the case when there is at least one conjunct (y = e(~x)) ∈ E (line 1), the

algorithm simply returns the exact term e(~x). Note that there could be two or
more equalities in E, which are consistent with each other due to (j-totality).
Thus, it does not matter which of them is used for extracting a Skolem term.

In the case when there are lower and upper bounds (lines 2 and 3 respec-
tively), the algorithm extracts expressions that encode the maximal and minimal
values that y can take. Technically, it is done by mapping sets G and GE (for
MAX) and L and LE (for MIN) to results of applications of ASSM to elements
of these sets. In the case when D = ∅ or when ` and u are semantically equal,
the algorithm has sufficient information to extract a Skolem term. In particular,
if both lower and upper bounds are extracted, the algorithm returns a symbolic
midpoint (line 6). Otherwise, it returns a symbolic value which differs from the
upper or lower bounds (whichever is present) by one (lines 7 and 8).



Algorithm 2: ExtractSkLRA(~x, y, E,D,G,GE,L, LE)

Input: Variable y, Skolem constraint
π(~x, y) =

∧
`∈E∪D∪G∪GE∪L∪LE

`(~x, y)

Output: Term sk, such that (y = sk(~x)) =⇒ π(~x, y)
1 if E 6= ∅ then return ASSM(e), s.t. e ∈ E;
2 if G ∪GE 6= ∅ then `← max(map(ASSM, G ∪GE));
3 if L ∪ LE 6= ∅ then u← min(map(ASSM, L ∪ LE));
4 if `(~x) = u(~x) then return `;
5 if D = ∅ then
6 if ` 6= undef ∧ u 6= undef) then return MID(`, u);
7 if ` = undef then return ADD(u,−1);
8 if u = undef then return ADD(`, 1);

9 else
10 if ` = undef ∧ u = undef then `← 1;
11 if ` = undef then `← ADD(u,−1);
12 if u = undef then u← ADD(`, 1);
13 return BNSR(`, u,map(ASSM, D), |D|);

Example 4. Consider π = (y > 4 · x1) ∧ (y ≥ −3 · x2 + 1) ∧ (y < x1 + x2).
Alg. 2 aims at extracting a term sk such that

(
y = sk(x1, x2)

)
=⇒ π. First,

the algorithm extracts the lower bound from two inequalities with “>” and “≥”:
` = max(4 ·x1,−3 ·x2+1) = ite(4 ·x1 > −3 ·x2+1, 4 ·x1,−3 ·x2+1). Second, the
algorithm extracts the upper bound from the only “<”-inequality: u = x1 + x2.
Finally, the algorithm extracts and returns the symbolic midpoint between ` and

u. That is, sk = ite(4·x1>−3·x2+1,4·x1,−3·x2+1)+(x1+x2)
2 .

The rest of the algorithm handles disequalities, i.e., the case when D 6= ∅
(line 9). It assumes that ` and u are extracted, otherwise any suitable ` and u
could be selected (in lines 10-12, we use some particular but not the only possible
choice).

Intuitively, if y is required to differ from some h(~x) and to be in a range
(`, u), it is sufficient to pick two distinct terms v1 and v2 such that:

(y = v1(~x)) =⇒ (`(~x) < y < u(~x))

(y = v2(~x)) =⇒ (`(~x) < y < u(~x))

(v1(~x) = v2(~x)) =⇒ false

Since each variable assignment m to ~x makes at most one formula from set
{h(m) = v1(m), h(m) = v2(m)} true, we can always extract a Skolem term
sk = ite(h = v1, v2, v1) that satisfies (y = sk(~x)) =⇒ (y 6= h(~x)).

A similar reasoning is applied to any set D of disequalities: it is enough to
consider |D| + 1 terms, which are semantically distinct. Our algorithm can be
parametrized by any routine that extracts semantically distinct terms belonging
to a range between ` and u. Two of possible routines are inspired respectively
by a binary search (which is used in line 13) and a linear scan.



Definition 3. Let n be the number of disequalities in D and H be the set of
right sides of expressions of D, then the binary-search helper-operator is defined
as follows:

BNSR(`, u,H, n)
def
=


MID(`, u) if n = 0

ite
( ∨
h∈H

MID(`, u) = h,

BNSR
(
l,MID(`, u), H, n− 1

)
,MID(`, u)

)
else

Example 5. Consider π = (y 6= x1 ∧ y 6= x2). Since there are no inequalities in
π, the lower and upper bounds are obtained from an arbitrary range, say (0, 1).
Otherwise, they are computed similarly to as in Example 4. Alg. 2 uses BNSR
and returns the following Skolem term:

sk = ite
(1

2
= x1 ∨

1

2
= x2, ite

(1

4
= x1 ∨

1

4
= x2,

1

8
,

1

4

)
,

1

2

)
Definition 4. Let s be some number, then

SCAN(`, s,H, n)
def
=

` if n = 1

ite
( ∨
h∈H

` = h,SCAN
(
`+ s, s,H, n− 1

)
, `
)

else

Example 6. Consider formula π from Example 5, for which H = {x1, x2}, ` = 0,
and u = 1. A Skolem term can be compiled using the call to
SCAN(`+ u−`

|H|+2 ,
u−`
|H|+2 , H, |H|+ 1):

sk = ite
(1

4
= x1 ∨

1

4
= x2, ite

(1

2
= x1 ∨

1

2
= x2,

3

4
,

1

2

)
,

1

4

)
4.2 Skolem Terms in LIA

In this subsection, we present an algorithm for extracting Skolem terms in LIA.
Although the flow of the algorithm is similar to the flow of the algorithm for
LRA, presented in Sect. 4.1, there are two differences. First, there is no need to
calculate a midpoint in the case when both a lower bound ` and an upper bound
u are given. Instead, because (j-totality) guarantees the existence of at least one
integer value for all y, it is enough to choose either the least or the greatest
integer value within the range (`, u). Second, there are divisibility constraints,
which have to be treated more carefully. Unlike the case of LRA, we consider
four vectors of clauses in the Skolem constraints π over LIA:

E
def
= {α · y = fi(~x)}i G

def
= {α · y > fi(~x)}i

D
def
= {α · y 6= fi(~x)}i LE

def
= {α · y ≤ fi(~x)}i

We can safely avoid clauses containing < and ≥ because of the following
transformations:

A < B
A ≤ B − 1

A ≥ B
A > B − 1 (3)

We need these rules to simplify the normalization of inequalities by dividing
their right sides by α (assuming positive α; a negative α requires changing the



Algorithm 3: ExtractSkLIA(~x, y, E,G,LE,D)

Input: Variable y, Skolem constraint
π(~x, y) =

∧
`∈E∪G∪LE∪D

`(~x, y)

Output: Term sk, such that (y = sk(~x)) =⇒ π(~x, y)
1 if (E 6= ∅) then return ASSMZ(e), s.t. e ∈ E;
2 if (G 6= ∅) then `← max(map(ASSMZ, G));
3 if (LE 6= ∅) then u← min(map(ASSMZ, LE));
4 if (D = ∅) then
5 if (` 6= undef) then return ADD(`, 1);
6 if (u 6= undef) then return u;

7 else
8 if (` = undef ∧ u = undef) then `← 0;
9 if (` = undef) then `← ADD(u,−1 · |D|);

10 return SCANZ(`,D, |D|);

operator ∼ accordingly). For example, it would not be correct to normalize an
inequality 5·y ≥ 9 to y ≥ div(9, 5). Instead, when 5·y ≥ 9 is rewritten to 5·y > 8,
the normalization works correctly: y > div(8, 5). Similarly, an inequality 5 ·y < 9
should be rewritten to 5 · y ≤ 8 and normalized to y ≤ div(8, 5).

We also rewrite the divisibility constraints (i.e., div(y, α) ∼ f(~x)) using the
following transformations (in addition to applying (3)):

div(y, α) = f(~x)

α · f(~x) ≤ y < α · f(~x) + α

div(y, α) > f(~x)

y > α · f(~x) + α− 1

div(y, α) 6= f(~x)
α−1∧
i=0

y 6= α · f(~x) + i

div(y, α) ≤ f(~x)

y ≤ α · f(~x) + α− 1

An example for applying the first rule is div(y, 3) = 0: y could be either 0, 1, or 2;
or in other words 0 ≤ y∧y < 3. For the second rule, an example is div(y, 3) > 0:
y could be anything greater or equal than 3, or alternatively greater than 2.
Similarly, div(y, 3) ≤ 0 is equivalent to y ≤ 2. Finally, the rule for disequalities
enumerates a finite number (equal to α) of disequalities of form y 6= f(x). For
instance, div(y, 3) 6= 1 is equivalent to y 6= 3 ∧ y 6= 4 ∧ y 6= 5.

The pseudocode of the algorithm that extracts a Skolem term for π in LIA
is shown in Alg. 3. It handles constraints using the following helper-operators.

ASSMZ(α · y ∼ f(~x))
def
= div(f, α)

Definition 5. Let h[y/`] denote the term h with term ` substituted for variable
y. Then a helper-operator for the linear scan in LIA is implemented as follows.

SCANZ(`,H, n)
def
=

` if n = 0

ite
( ∧
h∈H

h[y/`], `, SCANZ
(
`+ 1, H, n− 1

))
else



For the case when there exists an equality α · y = e(~x) in π, it is sufficient
to extract div(e, α) for sk, because requirement (j-totality) guarantees that e is
divisible by α. This is implemented in function ASSMZ. To handle disequalities,
the algorithm can only perform a linear scan, i.e., starting from the lower bound
to make the least possible increments (i.e., by one). As opposed to the binary
search, the linear scan guarantees that enough semantically distinct terms are
considered. We illustrate this in the following example.

Example 7. Consider π = (5 · y 6= 4 · x). Since there is no lower bound and no
upper bound, we allow ` = 0 (alternatively, any other term can be chosen). Then,
since π has only one disequality, we get the final Skolem as a single if-then-else:

ite
((

5 · 0 6= 4 · x), 0, 1
)

.

4.3 Putting it all together

Theorem 2. For some i, let φ[i, j](~x, ~y) be in LRA (resp. LIA), and |~y| = N .
Then for each j ∈ [1, N ], Alg. 2 (resp. Alg. 3) extracts a term sk[i, j], such that
(embedding) holds.

For proving this theorem, it remains to show how we obtain π(~x, ~y[j]) that
Alg. 2 (resp. Alg. 3) should take as input with each ~y[j]. Indeed, the MBPs
constructed in Sect. 3.3 allow occurrences of multiple variables from ~y in a clause
in φ[i, j]. However, by construction, a variable ~y[j] can appear in all φ[i, k], 1 ≤
k ≤ j, but a variable ~y[j] cannot appear in any φ[i, k], j < k ≤ N . In particular,
term φ[i,N ] is only over the variables ~x and ~y[N ]. Therefore, we first apply Alg. 2
(resp. Alg. 3) to φ[i,N ], to derive the Skolem term sk[i,N ]. It is then substituted
in all appearances of ~y[N ] in other constraints φ[i,N −1], . . . , φ[i, 1]. Continuing
such reasoning over the remaining variables leads to obtaining suitable inputs
for Alg. 2 (resp. Alg. 3) and each ~y[j].

5 Synthesis of Compact Skolem Terms

Recall that Th. 1 gives a way to construct a global Skolem term from precon-
ditions and relations, and Sect. 4 describes algorithms to extract a local term
sk[i, j] from a relation φ[i, j]. So far, this provides a procedure that invokes Alg. 2
or Alg. 3 as soon as possible, i.e., when φ[i, j] has just been produced by the
MBP-based procedure AE-VAL together with some pre[i]. However, for large
formulas it is often the case that the number M of generated MBPs is large, and
so is a vector of tuples 〈pre[i], ∧

0<j≤N
φ[i, j]〉 where 0 < i ≤M .

In this section, we propose to leverage the output of AE-VAL for producing
compact Skolem terms. We first describe how to reduce the number of distinct
Skolem terms among the tuples generated by AE-VAL for each y ∈ ~y. Next, we
aim to reduce the depth of the overall decision tree in case of multiple outputs
~y, i.e., extracting a common if-then-else (ite) block which is shared among all
outputs.



5.1 Optimizing decision trees by combining preconditions

i
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…
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else
if

if

else

then

then

then

pre[1] _ pre[2]

sk0

Fig. 2: Optimized decision tree.

Our goal is to decrease the depth of a decision
tree that combines Skolem terms for M differ-
ent preconditions. Recall that at each node i,
where 0 < i ≤ M and for variable y = ~y[j],
the Skolem term sk[i, j] and the precondi-
tion pre[i] should be connected via (j-totality)
and (embedding), i.e.:

pre[i](~x) =⇒ ∃y . φ[i, j](~x, ~y)

y = sk[i, j](~x) =⇒ φ[i, j](~x, ~y)

Note that preconditions in the decision tree could potentially guard the same
Skolem terms, in which case we could compact the size. This is illustrated pic-
torially in Fig. 2 for the example shown earlier in Fig. 1. In particular, if sk[1, j]
and sk[2, j] in Fig. 1 could be replaced by a common sk′, then the precondi-
tions pre[1] and pre[2] can be merged using a disjunction, thereby decreasing
the depth of the decision tree. The challenge is that sk′ might not necessarily
be obtained by Alg. 2 or Alg. 3, because Skolem constraints φ[1, j] or φ[2, j],
taken in isolation, are in general not restrictive enough. However, sk′ could be
produced by Alg. 2 or Alg. 3 if φ[1, j] ∧ φ[2, j] is given as input.

Generalizing this idea further, we consider an expensive minimization algo-

rithm to search over all partitions of the set M def
= {1, . . . ,M} and find the best

partition such that each index in a class of the partition can share the same

Skolem term. More formally, for each partition P def
= {p1, . . . pr} of M, for each

class pk in the partition, we check that:∨
i∈pk

pre[i](~x) =⇒ ∃y .
∧
i∈pk

φ[i, j](~x, y) (4)

If all r implications hold, then P is a valid candidate partition, associated with
r Skolem terms sk′, . . . , sk(r) derived from

∧
i∈p1

φ[i, j](~x, y), . . . ,
∧
i∈pr

φ[i, j](~x, y),

respectively. We then select the best partition among the valid candidate par-
titions, based on size of resulting Skolem terms (or other cost criteria). Clearly,
examining all possible partitions would have exponential cost, with the check for
each partition class also being an expensive validity check.

Instead of the expensive exact minimization, we adopt a greedy strategy for
finding a good (but not necessarily the best) valid candidate partition, possibly
within a predetermined number of iterations. The routine for identifying each
partition class pk is shown in Alg. 4. First, p1 is selected from M, then p2 is
selected from M \ p1, and so on.

Alg. 4 is based on iteratively guessing a set of indices pk and checking an
implication of the form (4). The guessing proceeds in two phases: first it checks
if all eligible indices from a set I ⊆M are in pk. If so, the algorithm terminates.
Otherwise, it iteratively tries to strengthen the left side of (4) by removing some
of the disjuncts (line 3). After removing a disjunct pre[i′] from the left side, the
Skolem constraint φ[i′, j] should also be removed from the right side, and the



Algorithm 4: getPartitionClass(I, pre, φ, y = ~y[j])

Input: Initial set of indices I, preconditions pre, constraints φ
Output: Output set of indices pk

1 pk ← I;
2 while

∨
i∈pk

pre[i](~x) 6=⇒ ∃y .
∧

i∈pk

φ[i, j](~x, y) do

3 pk ← {i ∈ pk | pre[i](~x) =⇒ ∃y .
∧

i∈pk

φ[i, j](~x, y)};

4 for i′ ∈ I \ pk do
5 if

∨
i∈pk∪{i′}

pre[i](~x) =⇒ ∃y .
∧

i∈pk∪{i′}
φ[i, j](~x, y) then

6 pk ← pk ∪ {i′};
7 return pk;

validity check repeats. This way, the algorithm is guaranteed to find the set of
indices pk (possibly, empty) in a finite number of iterations.

The second phase of the guessing aims at strengthening pk. It simply traverses
the set of indices I\pk (line 5), adds pre[i′] and φ[i′, j] to the left and right sides
of (4) respectively and checks validity. The motivation behind the second phase
is that the first phase could be too aggressive in practice, thus removing more
indices from pk than needed.

Example 8. Recall our formula from Example 1. For generating a Skolem term
for y1, we create the following ∀∃-formula and check its validity:

(x ≥ −1 ∨ x ≤ 2) =⇒ ∃y1 . (y1 < 5 · x ∧ y1 > −3 · x)

Since this formula is valid, our algorithm creates a single Skolem term sk[1, 1] =
sk[1, 2] = −3 · x+ 1.

For generating a Skolem term for y2, the corresponding ∀∃-formula is invalid,
and our algorithm generates two different Skolem terms sk[2, 1] and sk[2, 2]:

(x ≥ −1 ∨ x ≤ 2) =⇒ ∃y2 . (y2 < x ∧ y2 > x)

5.2 Minimizing the depth of the common decision tree

To allow re-use of theory terms among multiple outputs ~y, a common ite-block
could be pulled outside of the individual decision trees for each output, denoted
Sk~y(~x, ~y):

Sk~y(~x, ~y)
def
= ite

(
pre[1](~x),

N∧
j=1

~y[j] = sk [1, j](~x), . . .

ite
(
pre[M − 1](~x),

N∧
j=1

~y[j] = sk [M − 1, j](~x),

N∧
j=1

~y[j] = sk [M, i](~x)
))

In general, depending on the cost criteria, it may be advantageous to not
have a common ite-block at all or to have it be common to a subset of the
outputs rather than all outputs. In this section, we consider a simple case where



a common ite-block is shared among all outputs. Then, the remaining goal is to
reduce the depth of this block by finding redundant branches.

Recall that Alg. 4 can be used per output to find a good partition among the
tuples, i.e., to decide which branches of the ite-block can share the same Skolem
term. We view the results from this algorithm in the form of a matrix of Skolem
terms, with a row for each ite-branch and a column for each output. Then, it
is straightforward to identify redundant branches, which correspond to identical
rows in the matrix. We illustrate this process in an example.

Example 9. Consider a formula with four existentially quantified variables ~y and
four preconditions. Suppose the algorithm from Sect. 5 returns the partitions of
the set {1, 2, 3, 4} for each variable in ~y, as shown in the following matrix.

For instance, ~y[1] requires a partition {p1} where p1 = {1, 2, 3, 4}. Variable
~y[2] requires partition {q1, q2} where q1 = {1} and q2 = {2, 3, 4}. Variable ~y[3] re-
quires partition {r1, r2} where r1 = {1, 2, 4} and q2 = {3}. Variable ~y[4] requires
partition {s1, s2, s3} where s1 = {1}, s2 = {2, 4} and s3 = {3}.

We can easily identify identical rows A1, . . . Ak in the matrix, such that for
all 0 < j < M , elements A1[j] = A2[j] = . . . = Ak[j] are equal.

~y[1] ~y[2] ~y[3] ~y[4]
pre[1] p1 q1 r1 s1
pre[2] p1 q2 r1 s2
pre[3] p1 q2 r2 s3
pre[4] p1 q2 r1 s2

In this example, row A1 corresponds to pre[2], and row A2 corresponds to
pre[4]. Thus, individual Skolem terms for all variables for pre[2] and pre[4] can
be combined, and the depth of the common ite-block is reduced by one.

6 Evaluation

We implemented our synthesis algorithms on top of the AE-VAL tool [6] which
is in turn built on top of the Z3 SMT solver [5]. Note that the previous imple-
mentation of AE-VAL was already able to solve quantified formulas for validity
via an iterative MBP construction and to extract Skolem constraints. However,
it did not provide procedures to extract Skolem functions (described in Sect. 4)
or to compact them (described in Sect. 5). In particular, note that during our
compaction procedure, we use AE-VAL recursively to solve subsidiary quanti-
fied formulas of the form (4).

6.1 Results on benchmark examples

We considered 134 ∀∃-formulas originated from various Assume-Guarantee con-
tracts written in the Lustre programming language [13]6. The majority of bench-
marks are derived from industrial projects, such as a Quad-Redundant Flight

6 Not to be confused with the evaluation of [13] which applied AE-VAL iteratively,
and most of the formulas were invalid. Here, we considered only valid formulas and
focused only on the Skolem extraction.



Table 1: Concrete evaluation data.

∀∃ . ψ: Synthesis task; Skolem1: without compaction, Skolem2: with compaction;
size: total number of Boolean and arithmetic operators, #∀: number of universally-
quantified variables, #∃: number of existentially-quantified variables, #⇓: depth of the
ite-block, time: synthesis time (in seconds, for Skolem2, including the compaction).

∀∃ . ψ Skolem1 Skolem2

№ size #∀ #∃ size #⇓ time size #⇓ time

1 371 71 25 192 5 0.46 80 4 3.37
2 337 71 49 116 2 0.31 61 2 0.38
3 337 70 49 106 2 0.3 64 2 0.27
4 302 100 30 175 4 0.29 95 4 1.28
5 296 39 14 180 5 0.29 61 3 2.03
6 296 98 30 175 4 0.29 95 4 1.34
7 267 90 49 168 3 0.42 77 3 0.71
8 247 36 25 126 4 0.33 39 3 0.49
9 222 39 8 128 4 0.34 54 3 0.79
10 210 52 7 27 2 0.07 20 2 0.12
11 201 51 30 231 5 0.39 124 5 4.87
12 201 50 30 130 3 0.23 77 3 0.45
13 197 21 14 58 3 0.09 15 1 0.08
14 195 33 9 199 3 0.24 77 2 0.35
15 178 30 8 101 3 0.21 44 2 0.34
16 174 10 7 321 7 0.95 195 6 91.3
17 166 39 23 552 2 0.3 232 2 0.23
18 155 52 15 151 2 0.17 67 2 0.16
19 151 23 20 115 2 0.22 64 2 0.21
20 149 11 8 240 5 0.73 128 4 3.01
21 147 24 9 260 4 0.35 87 3 0.75
22 147 23 9 120 2 0.18 69 2 0.31
23 140 31 7 34 2 0.07 27 2 0.15
24 139 30 8 139 3 0.22 37 1 0.24
25 137 47 20 89 2 0.19 49 2 0.23
26 134 22 8 210 6 0.44 74 4 12.6
27 134 21 8 54 2 0.18 36 2 0.25
28 117 36 15 151 2 0.15 53 1 0.09
29 105 22 8 290 6 0.44 61 3 9.38
30 105 21 8 138 3 0.25 66 3 0.42
31 102 71 30 176 4 0.27 99 4 1.18
32 102 32 5 21 2 0.11 14 2 0.11
33 95 20 7 94 4 0.29 39 3 0.76
34 95 19 7 72 3 0.25 44 3 0.41
35 84 33 23 552 2 0.3 232 2 0.22
36 82 26 5 21 2 0.09 14 2 0.11
37 82 25 5 21 2 0.09 14 2 0.1
38 78 21 15 431 4 0.35 62 1 0.18
39 78 20 15 107 2 0.14 41 1 0.09
40 75 25 4 165 4 0.38 147 4 0.81

∀∃ . ψ Skolem1 Skolem2

№ size #∀ #∃ size #⇓ time size #⇓ time

41 71 37 7 26 2 0.07 19 2 0.14
42 71 37 7 34 2 0.08 27 2 0.11
43 66 13 7 181 2 0.12 75 2 0.17
44 62 18 5 21 2 0.1 14 2 0.1
45 57 17 4 121 3 0.32 109 3 0.62
46 57 15 5 34 2 0.09 11 1 0.08
47 51 10 5 36 2 0.09 25 2 0.11
48 44 13 3 14 2 0.08 11 2 0.1
49 44 12 3 14 2 0.08 11 2 0.1
50 40 18 15 429 4 0.34 99 3 0.53
51 39 12 9 24 2 0.07 18 2 0.1
52 38 10 4 218 4 0.43 197 4 1.32
53 38 9 4 88 3 0.31 76 3 0.51
54 38 13 6 175 5 0.11 28 1 0.14
55 38 8 5 30 2 0.09 10 1 0.07
56 38 9 5 44 2 0.08 12 1 0.07
57 38 12 6 36 2 0.06 17 1 0.06
58 38 11 5 69 2 0.06 32 1 0.05
59 38 10 5 51 2 0.06 22 1 0.05
60 34 12 7 260 3 0.14 75 2 0.24
61 33 13 4 24 2 0.05 10 1 0.05
62 28 9 4 47 2 0.09 38 2 0.17
63 28 8 3 12 2 0.08 9 2 0.09
64 26 8 3 11 2 0.08 8 2 0.11
65 26 8 4 42 2 0.07 11 1 0.06
66 25 5 3 14 2 0.08 11 2 0.12
67 24 14 11 26 2 0.08 15 2 0.11
68 22 8 4 28 2 0.05 13 1 0.05
69 22 7 4 20 2 0.05 9 1 0.05
70 21 6 5 13 2 0.05 8 2 0.11
71 21 16 9 24 2 0.06 18 2 0.1
72 20 13 4 198 4 0.4 177 4 1.47
73 20 15 6 181 5 0.11 28 1 0.12
74 20 10 5 44 2 0.09 12 1 0.07
75 20 14 5 71 2 0.05 32 1 0.06
76 16 5 2 13 2 0.06 11 2 0.12
77 15 7 4 47 2 0.1 34 2 0.23
78 14 9 4 42 2 0.06 11 1 0.06
79 12 8 5 14 2 0.05 9 2 0.1
80 12 9 4 30 2 0.05 13 1 0.05
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Fig. 3: Size of Skolems terms (i.e., total numbers of Boolean and arithmetic operators).

Control System, a Generic Patient Controlled Analgesia infusion pump, as well
as a Microwave model, a Cinderella-Stepmother game, and several hand-written
examples. Since the original set of benchmarks include minor variations of the
same tasks, we identified 80 distinct benchmarks7 for presentation in Table 1.

All the ∀∃-formulas had more than one existentially-quantified variable. Ta-
ble 1 presents the statistics and results on the benchmarks. The formulas are over
5-100 universally-quantified variables and 2-49 existentially-quantified variables.
The highest depth of the common ite-block in the produced Skolem8 is 7. AE-
VAL was able to terminate on all of them within a timeout of 60 seconds. The
solving stage (including construction of MBPs and collecting Skolem constraints)
took less than a second for all benchmarks. Compiling Skolem1 (i.e., without
compaction) took insignificant time, but compacting Skolem2 took much longer
for 11 outliers (the most crucial one is №16). This can be explained by many
iterations for greedily finding a good partition, as explained in Sect. 5.

Fig. 3 visualizes the effect of the Skolem compaction. Each point in the plot
corresponds to a pair of runs of AE-VAL: the x-axis shows the size of the
compacted Skolem (i.e., extracted with the use of both techniques from Sect. 5),
and the y-axis shows the size of the naively created Skolem. The geometric
mean for the ratio is 2.06, and the largest improvement is 6.95 – seen for the
benchmark №38. In nearly half of the cases (35 out of 80), the depth of the
ite-structure in the Skolem decreased at least by one. However, what proved to
be the most effective for compaction is the factoring out of individual Skolem
terms for particular variables, i.e., AE-VAL found a function which is good for
all preconditions by greedy partitioning.

7 These benchmarks are available at: http://www.cs.princeton.edu/~grigoryf/

aeval-benchs.zip
8 Without taking into account the individual ite-s due to computing greatest and

lowest bounds and handling disequalities, as described in Sect. 4.

http://www.cs.princeton.edu/~grigoryf/aeval-benchs.zip
http://www.cs.princeton.edu/~grigoryf/aeval-benchs.zip
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Fig. 4: Benefits of AE-VAL over CVC4.

6.2 Comparison with CVC4

We also compared AE-VAL with state-of-the-art tool CVC4 [20], version 1.7-
prerelease [git master 464470c3], the winner of the general track of the fifth
SyGuS-COMP. Like AE-VAL and unlike most of the synthesizers based on an
enumerative search (e.g. [2]), the refutation-based synthesizer in CVC4 does not
enforce any syntactic restrictions on its solutions, e.g., formal grammars or tem-
plates, and it is more efficient than an enumerative synthesizer also implemented
in CVC4.

Among 80 benchmarks from Table 1, CVC4 was able to solve 55, and it
exceeded a timeout of 60 seconds for the remaining 25 benchmarks. In Fig. 4 (a),
we report the ratio of depths of the ite-blocks generated in the implementations.
In most of the cases, our implementations have shorter depths.

Note that due to reasonings of encoding [19], CVC4 solved slightly different
problems, in which it extracted only individual Skolems for each output vari-
able. It is unable to combine them in one relation or share them, as opposed
to what our tool does. Thus, we are unable to compare the overall size of the
implementations produced by CVC4 and our method.

In addition, we performed comparison experiments on isolated groups of
benchmarks from SyGuS-COMP, in which the formal grammars were ignored
by both tools. In particular, we considered nearly fifty single-invocation bench-
marks from groups array sum, array search, and max. The performance of both
AE-VAL and CVC4 on array sum and array search is similar – both tools
converge in less than a second. Fig. 4 (b) shows a comparison of AE-VAL with
CVC4 on a sequence of max-benchmarks, in which the number of arguments n
for the function max being synthesized varies from 2 to 16. AE-VAL and CVC4
both converge with similar results, but the synthesis time varies significantly.
Note that for n < 10, both tools require less than 1 second (and CVC4 is
slightly faster), but for larger n, the performance of CVC4 gets worse almost



exponentially, while the performance of AE-VAL remains reasonable. In par-
ticular, CVC4 is unable to synthesize a max function with 17 inputs after two
hours, but AE-VAL synthesizes a solution in just forty seconds.

7 Related Work

Our approach follows the classical flow of functional synthesis for unbounded
domains proposed in [16]. Their main idea is to enhance quantifier-elimination
procedures with a routine to generate witnesses. However, in practice, it requires
an expensive conversion of the specification to DNF and applying quantifier
elimination for each disjunct. With our MBP-based lazy quantifier-elimination
procedure AE-VAL, we have made the approach more scalable and robust,
while keeping the elegance and improving generality of the witness generation
procedures. Furthermore, our approach benefits from additional optimization
stages to make the final implementations compact.

As mentioned earlier, an older version of AE-VAL was built and successfully
used for solving the validity of ∀∃-formulas [6]. It has been successfully used in
many applications:

– Realizability checking and synthesis from Assume-Guarantee contracts [13],
– Non-termination checking, and (potentially) synthesis of never-terminating

lasso-shaped programs [9],
– Synthesis of simulation relations between pairs of programs [6,7],
– Synthesis of (candidates of) inductive invariants [8].

However, it did not include any procedures to generate terms for a pure func-
tional synthesis setting, or to compact the Skolems and share terms. We believe
our new procedures can further improve the above-listed and other applications
of AE-VAL.

An alternative way to quantifier elimination for solving functional synthesis
tasks is implemented in CVC4 [20]. Their refutation-based approach aims at
determining the unsatisfiability of the negated form of ∀∃-formula. A solution
is then directly obtained from an unsatisfiable set of ground instances of the
negated synthesis conjecture. Similarly to AE-VAL, CVC4 proceeds lazily and
creates a decision tree. However, as confirmed by our evaluation, their decision
trees are often larger than the decision trees produced by AE-VAL for the same
tasks.

Laziness in the search-space exploration allows viewing both AE-VAL and
CVC4 as instances of Counterexample-Guided Inductive Synthesis (CEGIS [21]).
Typically, the CEGIS-based algorithms, e.g., [21,22,1,2], perform a guided search
over the syntax tree of the program being synthesized. Our approach to synthe-
sis, as well as [16] and [20], is driven by the logical structure of a background
theory and does not put any restriction on the syntax tree size. This allows gen-
erating large and expressive implementations (such as max-functions over dozens
of inputs) quickly.



There is a rich body of work on logic synthesis, i.e., synthesis of Boolean
gate-level functions from specifications in propositional logic [12]. This consid-
ers synthesis of two-level (e.g., sum of products) or multi-level circuits, with
minimization of various cost criteria (size, delay, power, etc.), and with sharing
Boolean gates across multiple outputs. While our motivation for sharing “logic”
is similar, note that we identify theory terms that can be shared within the imple-
mentation of an output, and across implementations of multiple outputs. Thus,
our minimization/compaction is not at the Boolean-level, but requires theory-
specific reasoning (validity checks). Furthermore, most logic synthesis efforts
start with functional specifications. There have been some efforts in considering
relational specifications [4,15], but these are fairly straightforward extensions of
well-known functional techniques.

Finally, a procedure similar to Model-Based Projection has also been used for
existential quantification in Boolean formulas [11], where it was called circuit-
cofactoring. The application considered there was SAT-based model checking,
where a pre-image of a given set of states is computed by existential quantifica-
tion of a set of variables. The main idea was to use a model on the quantified
variables to derive a circuit-cofactor (including disjunctions), which can cap-
ture many more states than a generalized cube on the remaining variables. This
resulted in far fewer enumerations than cube-based enumeration techniques.

8 Conclusions

We have presented a novel approach to functional synthesis based on lazy quan-
tifier elimination. While checking realizability of the given specification, our al-
gorithm produces a system of synthesis subtasks through effective decompo-
sition. Individual solutions for these subtasks generate a decision tree based
implementation, which is further eligible for optimizations. Compared to the ex-
isting approaches, our generated solutions are more compact, and the average
running time for their synthesis is reasonably small. We have implemented the
approach in a tool called AE-VAL and evaluated it on a set of reactive synthesis
benchmarks and benchmarks from SyGuS-COMP. We have identified classes of
programs when AE-VAL outperformed its closest competitor CVC4 both on
running time and on ite-depth of implementations. In the future, we wish to
extend AE-VAL to other first-order theories, to support (whenever applicable)
enumeration-based reasoning, which utilizes grammars and results in even more
compact solutions, and to leverage specifications enhanced with input-output
examples.
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