
Functional Synthesis with Examples

Grigory Fedyukovich and Aarti Gupta

Princeton University, Princeton, USA, {grigoryf,aartig}@cs.princeton.edu

Abstract. Functional synthesis (FS) aims at generating an implemen-
tation from a declarative specification over sets of designated input and
output variables. Traditionally, FS tasks are formulated as ∀∃-formulas,
where input variables are universally quantified and output variables
are existentially quantified. State-of-the-art approaches to FS proceed
by eliminating existential quantifiers and extracting Skolem functions,
which are then turned into implementations. Related applications benefit
from having concise (i.e., compact and comprehensive) Skolem functions.
In this paper, we present an approach for extracting concise Skolem func-
tions for FS tasks specified as examples, i.e., tuples of concrete values of
integer variables. Our approach builds a decision tree from relationships
between inputs and outputs and preconditions that classify all exam-
ples into subsets that share the same input-output relationship. We also
present an extension that is applied to hybrid FS tasks, which are for-
mulated in part by examples and in part by arbitrary declarative specifi-
cations. Our approach is implemented on top of a functional synthesizer
AE-VAL and evaluated on a set of reactive synthesis benchmarks en-
hanced with examples. Solutions produced by our tool are an order of
magnitude smaller than ones produced by the baseline AE-VAL.

1 Introduction

One way to ensure the absence of bugs in programs is to replace a human devel-
oper with a machine that leverages automated decision procedures and theorem
provers to develop programs that are correct-by-construction. But the task of au-
tomatically synthesizing programs from given specifications is notoriously hard
and often depends crucially on the way specifications are formulated. Further-
more, it is often tedious to formulate a specification precisely and completely,
such that it adequately represents the targeted intent. For humans, it is usually
easier to provide a set of examples, such as tuples of concrete values for input
and output variables. The task of the automated synthesizer is to generate an
implementation, which produces given outputs for given inputs. In addition, the
synthesizers should envision as much as possible which input-output tuples could
appear in the actual programs, and implementations should be general enough
to cover such cases. Finally, a specification may also include arbitrary additional
requirements, and the resulting implementation should be consistent with both
input-output examples and constraints at the same time.

Many different techniques have been studied under the general umbrella of
program synthesis, with a wide range in kinds of specifications and search tech-
niques [1–3,26–29,31]. Typically, Functional Synthesis (FS) requires a declarative

relational specification which connects input and output variables. Programming
by Examples (PBE) requires a set of input-output tuples consisting of concrete
values of variables. Although both FS and PBE have been developed successfully
in many domains, there is a relative lack of unifying efforts that take advantages
of them together to provide a general solution.

A classic formulation of an FS task is via checking the validity of a ∀∃-
formula, in which inputs are universally quantified, and outputs are existentially
quantified. The validity of this formula guarantees realizability of the synthesis
task, and a witnessing Skolem function can be turned into an implementation.
In [11], Skolem functions are generated while lazily eliminating quantifiers in
(and proving the validity of) ∀∃-formulas in linear integer arithmetic (LIA). The
generated solutions are represented in the form of decision trees, where decision
nodes denote formulas over inputs called preconditions, and leaves denote equal-
ities of outputs with terms over inputs called local Skolem terms. This method
can be applied in a straightforward manner to a PBE task too: in the corre-
sponding decision tree, the preconditions would be represented by (conjunctions
of) equalities over inputs and their values, and the local Skolem terms would
simply be the corresponding values of the output variables.

To obtain concise Skolem terms, decision trees can be compacted by poten-
tially merging decision nodes that could share the same leaves. In the context
of PBE, this idea is in general inapplicable because the terms in the leaves are
always constants. To apply any compaction, there should be a way to replace
these constants by terms over inputs. For LIA, this can be done by discovering
linear equations over input and output variables.

The challenge is that not all given examples would be classified by a single
linear equation. Thus, in our approach, we first partition the set of examples
into subsets, such that all examples within each subset share the same linear
relationship. Clearly, such a partitioning is not unique, and we target deriving
a small number of subsets. Another criterion we consider is that all examples
within each subset should be classified concisely by some precondition over in-
puts. In particular, a precondition that simply disjoins all equalities between
inputs and concrete values would be too bulky (growing linearly with the size of
the subset). Instead, we seek an opportunity to replace it by some inequality or
conjunction of inequalities. These criteria lead to compact decision trees.

One key novelty in our approach is a completely automated procedure to
discover compact preconditions and local Skolem terms for PBE tasks in LIA.
Existing synthesis approaches, e.g., those based on enumerative search [26, 27,
31], require the user to additionally supply formal grammars (or templates)
that specify a pool of candidate formulas and terms. They search for suitable
candidates from the grammars and iteratively test them on given examples.
While this general capability is very useful for rich grammars and specifications,
for LIA it is possible to completely automate these steps. In particular, our
approach does not require any extra input from the user and automatically infers
candidates for local Skolem terms directly from data using canonical equations
in linear arithmetic.

2

The candidate preconditions are also inferred automatically from data – they
specify ranges of input values. To find suitable candidates, we pose queries over
certain ranges in the ∀∃-form which intuitively say “for all inputs within the
candidate range, there exists an output value which is consistent with the can-
didate assignment and all given examples”. By counting how many examples
are covered by each candidate that passes the ∀∃-test, we create a ranking of
candidates and pick those with the highest rank.

We also extended the approach to hybrid PBE and FS tasks, formulated in
part by using input-output examples and in part by using arbitrary input-output
relational constraints. To solve such problems, the formula describing an FS-part
of the task is simply added to our ∀∃-test and is taken into account when filtering
suitable candidate ranges and the corresponding local Skolem terms.

Our implementation on top of the AE-VAL [11] tool has been evaluated on a
range of reactive synthesis benchmarks enhanced with examples. The discovered
solutions are an order of magnitude smaller than straightforward Skolem terms
and less sensitive to the number of examples.

2 Running Example

Table 1: Input-
output tuples.

x1 x2 x3 y

1 · 1 1
0 · 2 0
· 1 3 2
· 2 4 4
2 4 5 6
2 0 6 2

Table 1 gives a set of examples by means of inte-
ger values of input variables x1, x2, and x3, and
an output variable y. Each row represents a tran-
sition from concrete inputs to the concrete out-
put. Some examples are incomplete, i.e., a sub-
set of input values is not given (denoted “·”).
For instance, the first row specifies input values
for only x1 and x3; and it should be interpreted
as “if both x1 and x3 are equal to one, then y
should be equal to one as well”.

Our goal is to find 1) symbolic linear relation-
ships among given values in each input-output
tuple, and 2) preconditions that uniquely determine equivalence classes of these
relationships. For instance, for the first two rows, it is true that y = x1. Pre-
condition 1 ≤ x3 ≤ 2 uniquely determines the first two rows, in a sense that
for the remaining four rows, it does not hold. Similarly, for the next two rows,
y = 2 · x2 under precondition 3 ≤ x3 ≤ 4; and for the last two rows, y = x1 + x2
under precondition 5 ≤ x3 ≤ 6. Combining preconditions and relationships, we
can formally describe how y can be computed from x1, x2, and x3:

y = ite(1 ≤ x3 ≤ 2, x1, ite(3 ≤ x3 ≤ 4, 2 · x2, x1 + x2))

In fact, such a decision tree is not unique for values in the table. A more
compact one can be found by our algorithm:

y = ite(2 ≤ x3 ≤ 5, 2 · x3 − 4, x1)

In the rest of the paper, we show how such a solution can be discovered auto-
matically.

3

3 Background and Notation

A many-sorted first-order theory consists of disjoint sets of sorts S , function
symbols F and predicate symbols P . A set of terms is defined recursively as
follows:

term ::= f(term, . . . , term) | const | var

where f ∈ F , const is an application of some v ∈ F of zero arity, and var is a
variable uniquely associated with a sort in S . A set of quantifier-free formulas is
built recursively using the usual grammar:

formula ::= true | false | p(term, . . . , term) | Bvar |
¬formula | formula ∧ formula | formula ∨ formula

where true and false are Boolean constants, p ∈ P , and Bvar is a variable
associated with sort Bool.

In this paper, we consider the theory Linear Integer Arithmetic (LIA). In

LIA, C def
= {Z, Bool}, F def

= {+, ·, div}, and P def
= {=, >,<,≥,≤, 6=}. We define ite

as a shortcut for if-then-else, i.e., ite(x, y, z)
def
= (x ∧ y) ∨ (¬x ∧ z).

Formula ϕ is called satisfiable if there exists an interpretation m, called a
model, of each element (i.e., a variable, a function or a predicate symbol), under
which ϕ evaluates to true; otherwise ϕ is called unsatisfiable. If every model of
ϕ is also a model of ψ, then we write ϕ =⇒ ψ. A formula ϕ is called valid if
true =⇒ ϕ.

For existentially-quantified formulas of the form ∃y . ψ(~x, y), validity requires
that each interpretation for variables in ~x and each function and predicate symbol
in ψ can be extended to a model of ψ(~x, y). For a valid formula ∃y . ψ(~x, y), a
term sky(~x) is called a Skolem term, if ψ(~x, sky(~x)) is valid.

In the paper, we assume that all free variables ~x are implicitly universally
quantified. For simplicity, we omit the arguments and simply write ϕ when the
arguments are clear from the context.

Extracting Skolem terms. Our work is built on top of a lazy quantifier-
elimination method for checking validity and performing synthesis called AE-
VAL [11,12]. It generates a structured synthesis solution in the form of a decision
tree. Its main procedure is based on deriving a sequence of Model-Based Pro-
jections (MBPs) [19] to lazily decompose the overall problem, where each model
is used to derive a precondition that captures an arbitrary subspace on the ~x
variables and a Skolem term for the ~y variables. Unlike other prior work [21],
AE-VAL does not require converting the formula into Disjunctive Normal Form
(DNF), which often leads to larger and redundant solutions. AE-VAL also uses
minimization and compaction procedures for on-the-fly compaction of the gener-
ated synthesis solution. In particular, it derives Skolem terms that can be re-used
across multiple preconditions for a single output and shares the preconditions in
a common decision tree across multiple outputs in a program. This is done by
identifying theory terms that can be shared both within and across outputs.

However, AE-VAL handles relational specifications (FS tasks) only, and it
is not designed to handle input-output examples (PBE tasks) properly. When

4

given concrete input-output examples, it would generate an implementation in
the form of a decision tree with the depth equal to the number of examples (as
described in more detail in the next section).

4 Synthesis by Examples

We formalize the case when all examples are complete and defer the case of
partially defined examples till the next section.

Definition 1. Let ~x = 〈x1, . . . , xn〉 be a vector of input variables and E be
a set of m examples, where each ~e ∈ E is a vector of integers and ~e has n + 1
components. For an output variable y, vectors ~x and ~e ∈ E are connected through
an example-formula ζ:

ζ(e, ~x, y)
def
=

∧
1≤i≤n

(~x[i] = ~e[i]) =⇒ y = ~e[n+ 1]

We assume consistency among all examples in E, i.e., that the following
formula is valid:

∀~x . ∃y .
∧
~e∈E

ζ(~e, ~x, y) (1)

Note that the formula could only be invalid if there are two vectors ~e1, ~e2 ∈ E,
such that:

~e1[n+ 1] 6= ~e2[n+ 1] ∧ ∀i . 0 ≤ i ≤ n =⇒ ~e1[i] = ~e2[i]

A Skolem term for y in (1) can be derived in the form of a nested ite-block
of depth m as shown below:

ite
(∧

1≤i≤n

(~x[i] = ~e1[i]), ~e1[n+ 1], ite
(∧
1≤i≤n

(~x[i] = ~e2[i]), ~e2[n+ 1], . . . , 0
))

(2)

where each ~ei ∈ E identifies the i-th level of the decision tree, and the last else-
branch represents the case when none of examples match current values of ~x,
thus an arbitrary value (e.g., 0 as in (2)) can be assigned to y.

We wish to generate a Skolem term for y as a decision tree with a smaller
depth. That is, among the space of terms of form (3), we wish to identify the
one with a (preferably) minimal number of ite-blocks.

Definition 2. A Skolem term for an example-formula (1) is called generalized
if it has the following form:

ite
(

pre[1](~x), sk [1](~x), ite
(
pre[2](~x), sk [2](~x), . . . , 0

))
(3)

where the vector pre collects formulas over ~x (called preconditions), and the
vector sk collects terms over ~x (called local Skolems). Each pair 〈preF , skF 〉
corresponds to a subset of examples F ⊆ E, such that (4) and (5) hold:

∀~e ∈ F .
∧

1≤i≤n

(~x[i] = ~e[i]) =⇒ preF (~x) (4)

∀~e ∈ F .
∧

1≤i≤n

(~x[i] = ~e[i]) ∧ y = skF (~x) =⇒ y = ~e[n+ 1] (5)

5

We present an algorithm that partitions the given set E into disjoint subsets,
which give rise to vectors pre and sk . An overview of the proposed algorithm
is shown in Alg. 1. The key insight is to identify each subset F ⊆ E by infer-
ring a precondition preF and a local Skolem term skF from pairs of examples
〈~e1, ~e2〉 ∈ E × E. The algorithm relies on helper procedures to discover a can-
didate precondition (line 4) and a candidate term for each pair (line 5). These
procedures, applied to all pairs of examples, produce a set of candidate pre-
conditions and a set of candidate terms. However, there is no guarantee that
a precondition and a term, which suit all given examples, could be discovered.
But we can often find some precondition and some term that will suit many
examples, which will constitute the desired subset F . In order to identify it, our
algorithm filters bad preconditions and terms and ranks successful ones. In the
rest of this section, we outline a particular instantiation of subroutines of Alg. 1
for LIA1.

Method getRange. To define a range of values of variables ~x between ~e1 and
~e2 we introduce a function M :

M(~e1, ~e2, i)
def
=

{
~e1[i] ≤ ~x[i] ∧ ~x[i] ≤ ~e2[i], if ~e1[i] ≤ ~e2[i]
~e2[i] ≤ ~x[i] ∧ ~x[i] ≤ ~e1[i], otherwise

Then, formula γ representing a range between ~e1 and ~e2 is simply computed as:

γ
def
=

∧
1≤i≤n

M(~e1, ~e2, i) (6)

Method connect. Relationships between variables ~x and y are determined
by a canonical equation of a line and two vectors of their values, ~e1 and ~e2:

~x[1]− ~e1[1]

~e2[1]− ~e1[1]
= . . . =

~x[n]− ~e1[n]

~e2[n]− ~e1[n]
=

y − ~e1[n+ 1]

~e2[n+ 1]− ~e1[n+ 1]
(7)

It gives rise to various possible equalities connecting components of ~x and y.
In particular, any two equalities of form (~x[i]− ~e1[i]) · (~e2[n+ 1]− ~e1[n+ 1]) =
(~e2[i]− ~e1[i]) · (y − ~e1[n+ 1]), where 1 ≤ i ≤ n, can be summed (or subtracted)
side-by-side.

Example 1. Recall our set of input-output tuples from Sect. 2. Suppose, in the
first loop of Alg. 1, we are considering the first two tuples (i.e., rows in Table 1):

ζ1
def
= (x1 = 1 ∧ x3 = 1) =⇒ (y = 1) and ζ2

def
= (x1 = 0 ∧ x3 = 2) =⇒

(y = 0). The getRange method produces γ1,2
def
= 0 ≤ x1 ≤ 1 ∧ 1 ≤ x3 ≤ 2.

The connect method produces equalities X1,2 = {y = x1, y = 2 − x3, and
2 · y = x1 − x3 + 2} (the last one is produced by summing left and right sides of
the first two equalities).

1 With the required support for quantifier elimination, it can be immediately be
adapted to rational arithmetic, nonlinear arithmetic, and bitvectors. But to achieve
more compact solutions, these algorithms could benefit from additional adjustments
in method connect which are left for future work.

6

Algorithm 1: getBestClass(~x, y, E)

Input: ~x, y, E
Output: F, preF , skF , s.t. (4) and (5) hold

1 Cands← ∅;
2 R← λξ .∅;
3 for 〈~e1, ~e2〉 ∈ E × E do
4 γ ← getRange(~e1, ~e2);
5 X ← connect(~e1, ~e2);
6 for ξ ∈ X do
7 if sanityTest(γ, ξ) then
8 ξ ← localSkolem(γ, ξ);
9 Cands← Cands ∪ {ξ};

10 R(ξ)← R(ξ) ∪ {γ};
11 for ξ ∈ Cands do
12 R(ξ)← R(ξ) ∪ generalize(R(ξ));
13 for γ ∈ R(ξ) do rank(γ, ξ, E);

14 return largest(E, γ, ξ);

Algorithm 2: PBE(~x, y, E)

Input: ~x, y, E
Output: Skolem term sk for y in (1)

1 if E = ∅ then return pickAny(Z);

2 F, preF , skF ← getBestClass(~x, y, E);
3 if F = ∅ then
4 ~e← pickAny(E);
5 F ← {~e};
6 preF ←

∧
1≤i≤n

(~x[i] = ~e[i]);

7 skF ← (y = ~e[n+ 1]);

8 return ite(preF , skF ,PBE(~x, y, E \ F));

Methods sanityTest and localSkolem. Let γ be a range-formula over ~x,
and ξ be a formula over ~x and y. We filter a set of pairs 〈γ, ξ〉 based on the
following criterion:

∀~x . γ(~x) =⇒ ∃y . ξ(~x, y) (8)

If formula (8) is valid, a Skolem term for y exists and can be extracted, e.g.,
using the AE-VAL algorithm.

7

Example 2. Recall ζ1 and ζ2 produced from our input-output tuples (see Sect. 2)
in Example 1. For each ξ ∈ X1,2 and γ1,2, we pose a query of form (8):

∀x1, x2, x3 . 0 ≤ x1 ≤ 1 ∧ 1 ≤ x3 ≤ 2 =⇒ ∃y . y = x1 valid

∀x1, x2, x3 . 0 ≤ x1 ≤ 1 ∧ 1 ≤ x3 ≤ 2 =⇒ ∃y . y = 2− x3 valid

∀x1, x2, x3 . 0 ≤ x1 ≤ 1 ∧ 1 ≤ x3 ≤ 2 =⇒ ∃y . 2 · y = x1 − x3 + 2 invalid

The results for these queries are shown on the right. Since the last query is
invalid, we thus proceed with the other candidates y = x1 and y = 2− x3 only.

Note that if for some ξ ∈ X, the coefficient for y is 1, then any query of
form (8) is valid (and a Skolem function for y is ξ itself).

Method generalize. Given a set of factored preconditions of ξ (recall (6)),
we fix a variable x ∈ ~x and identify factors over x across all preconditions. Then,
we iteratively prune this set of formulas by applying the following rule:

α1 ≤ x ∧ x ≤ α2 α3 ≤ x ∧ x ≤ α4

min(α1, α3) ≤ x ≤ max (α2, α4)
if α3 ≤ α2 ∧ α1 ≤ α4

Repeating this operation yields a new formula over x. Repeating this for all
x ∈ ~x and conjoining the resulting formulas gives us a new range-formula for ξ.

Note that this new formula is an over-approximation of the disjunction of
the original preconditions for ξ. By using these preconditions for all candidate
Skolem terms, we face a trade-off between the depth of the resulting decision tree
and the syntactic size of preconditions. That is, some of the over-approximated
preconditions could be too coarse, and thus filtered away (see method rank of
the algorithm). But if an over-approximated precondition has not been filtered,
it is likely to be more compact and general.

Example 3. Let γ1,6
def
= 1 ≤ x1 ≤ 2∧1 ≤ x3 ≤ 6 and X1,6 = {y = x1}.2 Following

Examples 1 and 2, y = x1 is also associated with γ1,2 = 0 ≤ x1 ≤ 1∧1 ≤ x3 ≤ 2.

Thus, our generalization produces γ1,2,6
def
= 0 ≤ x1 ≤ 2 ∧ 1 ≤ x3 ≤ 6.

Methods rank and largest. These two methods identify the best formula (or
a combination of formulas) among the candidates. We evaluate a precondition γ
and a suitable candidate local Skolem term ξ on all examples ~e ∈ E. In particular,
we identify a subset of examples, for which implication (9) holds (denoted F (γ))
and a subset of examples, for which implication (10) does not hold (denoted
G(ξ)). ∧

1≤i≤n

(~x[i] = ~e[i]) =⇒ γ(~x) (9)

ξ(~x) ∧
∧

1≤i≤n

(~x[i] = ~e[i]) =⇒ y = ~e[n+ 1] (10)

2 We refer the reader to Sect. 5 that describes a process of learning from partial
examples.

8

Cardinalities of F (γ) and G(ξ) give a ranking to each 〈γ, ξ〉. If G(ξ) is non-
empty, then the ranking is zero. Otherwise, the ranking is |F (γ)|.

Example 4. To rank precondition γ1,2,6 for a candidate y = x1 generated in
Example 3, we enumerate all input-output tuples from Table 1 and test implica-
tions (9) and (10). It appears that set G(y = x1) is nonempty since for the fifth
tuple (10) is invalid:

y = x1 ∧ x1 = 2 ∧ x2 = 4 ∧ x3 = 5 6=⇒ y = 6

Another precondition γ2,3,4,5
def
= 2 ≤ x3 ≤ 5 for candidate y = 2·x3−4 (computed

similarly) gets ranking 4 since set G(y = 2 · x3 − 4) is empty, and F (γ2,3,4,5)
consists of four examples.

Since ranking explicitly checks partially generated functions w.r.t. specifica-
tions, our solutions are correct by construction. More formally, it is represented
by the following lemma.

Lemma 1. Any pair of formulas 〈γ, ξ〉 with a non-zero ranking can be used to
extract the outer ite-block of the Skolem term.

For getting a candidate formula with the best coverage, we select the formula
with a higher (and non-zero) ranking. It intuitively corresponds to the largest
subset of examples that can be described by a single precondition and a single
local Skolem term.

Alg. 2 describes an algorithm to construct a decision tree recursively. It starts
with the full set of given examples E, and uses Alg. 1 to identify the largest subset
F ⊆ E, elements of which share the same precondition and local Skolem term
(to be used at one level of the decision tree). In the case when F is empty, it is
enough to pick any element of E and create a precondition and a local Skolem
term in a straightforward way. Then, all elements of F are excluded from E, and
the algorithm recurses. It converges when E is empty, and for this (the deepest)
level of the decision tree, we can pick any local Skolem term (e.g., an integer
constant) with no precondition.

5 Synthesis by Partial Examples

In this section, we present a generalization of the synthesis by examples algorithm
(described in Sect. 4) that relies on subvectors of examples.

Definition 3. Let ~x be a vector containing n components and s be an injective
function to {1, . . . , n}. A subvector of ~x (denoted ~x|s) is a vector, such that for
all i, ~x|s[i] = ~x[s(i)].

Intuitively, ~x|s is produced by removing components from ~x and preserving
the order of the remaining components. We naturally extend this definition to

sets of vectors, i.e., E|s
def
= {~e|s | ~e ∈ E}.

9

The algorithms from Sect. 4 can be used for subvectors of input variables
and sets of subvectors of examples. In particular, let s be an injective function
to {1, . . . , n}, we can apply Alg. 1 to ~x|s and E|s, if the following formula is valid:

∀~x|s .∃y .
∧
~e∈E

ζ(~e|s, ~x|s, y) (11)

There are two main advantages for doing this. First, it may give us more con-
cise and general solutions (which are expressible using fewer variables). Second,
while extracting subvectors, we shrink the set of examples, which lowers the cost
of the synthesis procedure.

Thus, the whole procedure can be supplied with a preprocessing, during
which various mappings s are considered and formulas of the form (11) are
checked for validity. The mapping s with the smallest domain size can be then
used for synthesis by examples. The speed of the entire procedure could then be
improved, but the effectiveness of the resulting solution could worsen.

Example 5. Recall Example 1, let s be a function with dom(s) = {1} and
img(s) = {3}. Then E|s is constructed from E by keeping the values of x3.
The formula (11) is compiled as follows:

∀x3,∃y . (x3 = 1 =⇒ y = 1) ∧ (x3 = 2 =⇒ y = 0) ∧ (x3 = 3 =⇒ y = 2)

(x3 = 4 =⇒ y = 4) ∧ (x3 = 5 =⇒ y = 6) ∧ (x3 = 6 =⇒ y = 2)

The formula above is valid, and Alg. 2 can be applied to extract the following
Skolem term:

y = ite(2 ≤ x3 ≤ 5, 2 · x3 − 4, ite(x3 = 1, 1, 2))

Note that this Skolem term is not optimal (the one provided in Sect. 2 has a
fewer nested ite-blocks). A heuristic in the rest of the section aims at discovering
a more effective solution.

Some of examples could be defined only partially, i.e., using a sequence of in-
jective functions s1, . . . , sm to {1, . . . , n} that gives rise to sequences ~x|s1 , . . . , ~x|sm
and E1, . . . , Em. For each si, examples from Ei use values of ~x|si and y.

The task is to extract a Skolem term for the given valid formula:

∀~x .∃y .
∧

1≤i≤m

∧
~e∈Ei

ζ(~e, ~x|si , y) (12)

Alg. 3 shows an adaptation of Alg. 2 applicable to the union of sets of all

examples E
def
= E1 ∪ . . . ∪ Em. It iteratively produces subvectors of all examples

and finds such a subset of them, which gives the valid example-formula (line 3).
Then, it applies Alg. 1 to detect a level of the decision tree (line 4) and shrinks
the set of examples accordingly (lines 10-13). Similarly to Alg. 2, the algorithm
recurses until the entire decision tree is constructed (line 3).

Theorem 1. If
⋂

1≤i≤m
img(si) 6= ∅, then Alg. 3 returns a Skolem term for (12).

Example 6. In the first iteration, Alg. 3 considers function s from Example 5. As
a result, it extracts four input-output tuples (recall Example 4). In the second

10

Algorithm 3: partialExsPBE(~x, y, {〈si, Ei〉}1≤i≤n)

Input: ~x, y: variables, {〈si, Ei〉}1≤i≤n: set of pairs of
functions and sets of partial examples, E =

⋃
1≤i≤n

Ei

Output: Skolem term sk for y in (12)

1 if E = ∅ then return pickAny(Z);

2 let s be such that ∀sj , img(s) ⊆ img(sj);
3 E′ ← getValidSubset(E|s);
4 F, preF , skF ← getBestClass(~x|s, y, E

′);
5 if F = ∅ then
6 ~e← pickAny(E′);
7 F ← {~e};
8 preF ←

∧
i∈img(s)

(~x[i] = ~e[i]);

9 skF ← (y = ~e[n+ 1]);

10 Rem ← ∅;
11 for 1 ≤ i ≤ n do
12 Ei ← {e ∈ Ei | ~e|s /∈ E′};
13 if Ei 6= ∅ then Rem ← Rem ∪ 〈si, Ei〉;
14 return ite(preF , skF , partialExsPBE(~x, y,Rem));

iteration, Alg. 3 takes as input just two remaining tuples and considers function
s′, such that dom(s′) = {1} and img(s′) = {1}. It appears that γ1,6 and the
y = x1 are considered again (recall Example 1). But in this case (as opposed to
Example 4), their ranking is computed with respect to only two input-output
tuples, thus resulting in F (γ1,6) = ∅ and |G(y = x1)| = 2. This concludes the
search, and the final Skolem term gets composed from two nested ite-blocks (i.e.,
exactly as provided in Sect. 2).

6 Hybrid Synthesis: PBE + FS

Suppose we are given an additional requirement ψ(~x, y) for the input and output
variables. Note that ψ may be a partial specification, i.e., it may impose necessary
but not sufficient conditions for correctness. The goal is to discover a Skolem term
for (13):

∀~x .∃y .
∧
~e∈E

ζ(~e, ~x, y) ∧ ψ(~x, y) (13)

If ψ is consistent with the set of examples, then a Skolem term for (13) can
be discovered by the procedure from Sect. 4 with the following differences:

– Default local Skolem term in Alg. 2 (line 1).
The random choice is replaced with a Skolem term for y in formula ∀~x . ∃y . ψ(~x, y)
(i.e., solve a standard functional synthesis task without examples). In our
implementation, we use AE-VAL.

11

– Criteria (8) and (10) for methods sanityTest and rank, respectively. We
check the validity of formulas, respectively (14) and (15), enhanced with ψ.

∀~x . γ(~x) =⇒ ∃y . ξ(~x, y) ∧ ψ(~x, y) (14)

ξ(~x) ∧
∧

1≤i≤n

(~x[i] = ~e[i]) =⇒ y = ~e[n+ 1] ∧ ψ(~x, y) (15)

– Extra criterion for method generalize. We perform an extra sanity check (14)
for each over-approximated precondition.

Theorem 2. With these adjustments, the output of Alg. 2 is a Skolem term
for (13).

Example 7. Consider a synthesis task consisting of 1) values specified in Table 1,
and 2) an additional requirement y ≥ x1 ∨ y ≥ x2. Thus, the entire formula is
as follows:

∀x1, x2, x3 .∃y . y ≥ x1 ∨ y ≥ x2 ∧
(x1 = 1 ∧ x3 = 1 =⇒ y = 1) ∧ (x1 = 0 ∧ x3 = 2 =⇒ y = 0)∧
(x2 = 1 ∧ x3 = 3 =⇒ y = 2) ∧ (x2 = 2 ∧ x3 = 4 =⇒ y = 4)∧

(x1 = 2 ∧ x2 = 4 ∧ x3 = 5 =⇒ y = 6) ∧ (x1 = 2 ∧ x2 = 0 ∧ x3 = 6 =⇒ y = 2)

This is a suitable task for AE-VAL, but it would return a Skolem term as a
decision tree with six levels. In contrast, our algorithm produces a Skolem term
for y with just three levels:

ite
(

4 ≤ x3 ≤ 6 ∧ 0 ≤ x2 ≤ 4, x2 + 2,

ite
(
1 ≤ x3 ≤ 2 ∧ 0 ≤ x1 ≤ 1, x1, ite(x2 = 1 ∧ x3 = 3, 2, x1)

))
The deepest decision, x1, is a Skolem term for y in formula ∀x1, x2, x3 .∃y . y ≥

x1∨y ≥ x2. The preconditions and relationships identified in Example 6 are not
suitable.

7 Evaluation

We implemented our synthesis algorithm on top of the AE-VAL [11] tool3 which
uses the Z3 SMT solver [7]. To compare our implementation with state-of-the-
art tools, we considered the “plain” AE-VAL, CVC4 [23], EUsolver [3] and
DryadSynth [15]. None of them supports discovery of relationships among data
tuples: AE-VAL, CVC4, and DryadSynth return a straightforward Skolem,
i.e., a formula of form (2) with nested ite-blocks of the highest depth m; and
EUsolver has frontend issues. The timings for discovery of a straightforward
Skolem are usually small even for a large number of examples. Since we do not
consider a straightforward Skolem an acceptable solution for our class of tasks,

3 The source code and benchmarks are available at https://github.com/

grigoryfedyukovich/aeval.

12

https://github.com/grigoryfedyukovich/aeval
https://github.com/grigoryfedyukovich/aeval

we do not present a detailed evaluation report for the competing tools. Instead,
we focus on details of our AE-VAL-PBE and AE-VAL.

We considered 59 benchmarks from various Assume-Guarantee contracts
written in the Lustre programming language [17]. These are the relational spec-
ifications derived mainly from industrial projects, such as a Quad-Redundant
Flight Control System, a Microwave model, a Generic Patient Controlled Anal-
gesia infusion pump, a Cinderella-Stepmother game, and several tricky hand-
written examples. The depths of solutions for these original benchmarks, gener-
ated by AE-VAL, range from 1 to 8 (median is 3, geometric mean is 2.3).

0 10 20 30 40 50 60

1

2

3

4

R
at
io

Ratio of size(8) to size(4)
Ratio of time(8) to time(4)

0 10 20 30 40 50 60

2

4

6

8

10

R
at
io

Ratio of size(16) to size(4)
Ratio of time(16) to time(4)

0 10 20 30 40 50 60

0

100

200

300

Benchmark #

R
at
io

Ratio of size(32) to size(4)
Ratio of time(32) to time(4)

Fig. 1: Stability of our solutions.

The specifications of the system were
enhanced by the designer with sets of
examples that describe some additional
features of the desired implementations
(thus, the Skolem terms generated for the
original specification might no longer be
valid for the corresponding enhanced spec-
ifications). We considered 32 unique ex-
amples to enhance each benchmark. The
depths of straightforward solutions, gener-
ated by AE-VAL for these benchmarks,
range from 1 to 106 (median is 37, geo-
metric mean is 32). In contrast, the depths
of the solutions by our AE-VAL-PBE for
these benchmarks are an order of magni-
tude smaller, i.e., they range from 1 to
17 (median is 5, geometric mean is 5.5).
Thus, the AE-VAL-PBE was shown to
be more effective when computing compact
solutions: the ratio between depths ranges
from 1 to 24, median is 6.8, geometric
mean is 5.8. The synthesis time for pro-
ducing the default local Skolem terms, as
well as the straightforward decision trees
was negligible.

Effect of number of examples. A common
characteristic exhibited by the “plain”
AE-VAL when enhancing relational spec-
ifications with examples is the growth of
the resulting decision trees. Intuitively, the
more examples are given, the larger solu-
tions are generated. In this subsection we
show that such a scenario is uncommon for
our approach.

We performed three additional exper-
iments, in which we kept respectively 16,

13

8, and 4 given examples out of the original 32 and repeated our synthesis pro-
cedure. Although the computation of a decision tree for fewer examples is less
resource-demanding, the precision of solutions remained roughly the same. For
16 examples, the median depth of the decision tree is 4.9 (geometric mean is
5). For 8 examples, the median depth is 4.4 (geometric mean is 4), and for 4
examples, the median depth is 3.9 (geometric mean is 4).

We refer to this feature of our algorithm as stability. Fig. 1 shows more
statistics on these three experiments. For every i ∈ {8, 16, 32} and for each
benchmark, we computed a ratio of the decision-tree depth for i examples to
the depth of the decision tree for 4 examples (shown blue). Then, we compared
the two for the runtime (shown red). Intuitively, the two graphs in each plot
show the growths of the solution size and the synthesis time, respectively, when
increasing the number of examples.

Clearly, for most of our benchmarks, the resulting solutions have the same
depths, and thus do not significantly differ from each other. For a few bench-
marks, however, we witnessed certain anomalies with the solving time, which we
believe can be explained by the greediness of the algorithm and a large number
of computed candidate relationships. In the future, we would like our procedure
to invest effort in optimizing this better.

8 Related Work

Our work is broadly related to automated synthesis as well as verification tech-
niques that utilize decision procedures.

Synthesis Techniques. Many successful instances of the general synthesis frame-
work are based on enumerative search, where a user-provided grammar is used to
constrain the space of candidate programs, along with checking correctness with
respect to a specification. These include techniques that collect input-output
examples lazily, by querying the specification [2, 3]. In contrast, our approach
deals with input-output examples only if they are explicitly given. More impor-
tantly, our technique does not require any additional templates or grammar. In
this respect, our technique is closer to functional synthesis approaches [11,21,23]
that directly formulate the synthesis tasks as quantified formulas to be solved
by decision procedures. However, deriving compact implementations continues
to be a challenge and provides the motivation for the new ideas developed in this
paper. A compaction algorithm, employed by [3], proceeds by repairing the de-
cision trees guided by new examples. In contrast, our approach performs a global
search: a compact decision tree is constructed at once, by taking into account all
available examples. In other words, our algorithm never revisits the upper levels
of already constructed decision trees and never asks for more examples.

Another class of techniques has been successfully used for synthesis of pro-
grams only by examples, e.g., string and other transformations in spreadsheets [14,
26,27,31]. These often require a domain-specific grammar or some type specifica-
tions to constrain the search for programs. Since a set of examples is often incom-
plete in practice, some generalization in dealing with examples is useful, e.g., via

14

interaction with the user [9] or by using machine learning techniques [5, 8, 25].
We are inspired by the success of these techniques and the relative ease with
which users can provide examples. However, our focus is strictly on numeri-
cal domains only, and we have experimented with applications in the area of
reactive synthesis [17]. As mentioned earlier, a straightforward application of
existing functional synthesis techniques on such input-output examples results
in large implementations. Our motivation is to find smaller implementations. We
expect that our completely automated technique could be potentially used as a
submodule within a broader synthesis framework targeting a richer domain.

Table constraints, which express the combinations of values of variables that
are allowed or forbidden, are widely used in Constraint Programming. Several
heuristics to compress tables have been proposed [6, 16, 18, 30, 32]. While the
table compression task can be seen as a generalization of our PBE task, none
of these approaches proceeds further and generates an implementation from the
compressed tables.

Verification Techniques. Our technique for finding symbolic linear relation-
ships among examples is similar to techniques [10, 13, 20, 22, 24] for synthesis of
invariants in program verification. In particular, these techniques can generate
formulas from concrete values of program variables while discovering inductive
invariants of loops. In this line of work, various feasible paths are obtained using
execution or symbolic execution to generate data with values of all variables. An
invariant requires generating a relation over all program variables that transit
through the loop. Functional synthesis tasks, such as the one we are solving, aim
at embedding a function into this relation, thus requiring more work.

9 Conclusions

We have presented a novel approach to synthesis that leverages PBE specifica-
tions and uses an FS framework for LIA. Our approach discovers preconditions
and local Skolem terms by iterative partitioning of the set of examples into
subsets. Each subset is described using detected relationships over inputs and
outputs, which are directly used in the resulting implementations. The approach
is easily extendable to deal with hybrid tasks, which are formulated in part
by examples and in part by FS specifications. Our implementation on top of
AE-VAL exhibits a promising performance on a set of reactive synthesis bench-
marks enhanced with examples. Decision trees produced by our tool are an order
of magnitude smaller than ones produced by the “plain” AE-VAL. In the future,
we would like to extend this approach to other theories, such as arrays, strings,
and algebraic data types, as well as to adopt more advanced ordering criteria
and strategies for solution counting [4].

Acknowledgments. This work was supported in part by NSF Grant 1525936.
Any opinions, findings, and conclusions expressed herein are those of the authors
and do not necessarily reflect those of the NSF.

15

References

1. R. Alur, R. Bod́ık, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A. Seshia,
R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-guided synthesis. In
FMCAD, pages 1–17. IEEE, 2013.

2. R. Alur, P. Cerný, and A. Radhakrishna. Synthesis through unification. In CAV
Part II, volume 9207 of LNCS, pages 163–179. Springer, 2015.

3. R. Alur, A. Radhakrishna, and A. Udupa. Scaling Enumerative Program Synthesis
via Divide and Conquer. In TACAS, Part I, volume 10205 of LNCS, pages 319–336,
2017.

4. N. Beldiceanu and H. Simonis. A Constraint Seeker: Finding and Ranking Global
Constraints from Examples. In CP, volume 6876 of LNCS, pages 12–26. Springer,
2011.

5. S. Bhatia, P. Kohli, and R. Singh. Neuro-symbolic program corrector for introduc-
tory programming assignments. In ICSE, pages 60–70. ACM, 2018.

6. B. L. Charlier, M. T. Khong, C. Lecoutre, and Y. Deville. Automatic Synthesis
of Smart Table Constraints by Abstraction of Table Constraints. In IJCAI, pages
681–687. ijcai.org, 2017.

7. L. M. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In TACAS, volume
4963 of LNCS, pages 337–340. Springer, 2008.

8. J. Devlin, J. Uesato, S. Bhupatiraju, R. Singh, A. Mohamed, and P. Kohli. Ro-
bustFill: Neural program learning under noisy I/O. In ICML, volume 70, pages
990–998. PMLR, 2017.

9. D. Drachsler-Cohen, S. Shoham, and E. Yahav. Synthesis with abstract examples.
In CAV, Part I, volume 10426 of LNCS, pages 254–278. Springer, 2017.

10. M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin. Quickly detecting
relevant program invariants. In ICSE, pages 449–458. ACM, 2000.

11. G. Fedyukovich, A. Gurfinkel, and A. Gupta. Lazy but Effective Functional Syn-
thesis. In VMCAI, volume 11388 of LNCS, pages 92–113. Springer, 2019.

12. G. Fedyukovich, A. Gurfinkel, and N. Sharygina. Automated discovery of simula-
tion between programs. In LPAR, volume 9450 of LNCS, pages 606–621. Springer,
2015.

13. G. Fedyukovich, S. Prabhu, K. Madhukar, and A. Gupta. Solving Constrained
Horn Clauses Using Syntax and Data. In FMCAD, pages 170–178. ACM, 2018.

14. S. Gulwani. Automating string processing in spreadsheets using input-output ex-
amples. In POPL, pages 317–330. ACM, 2011.

15. K. Huang, X. Qiu, and Y. Wang. DryadSynth: A concolic SyGuS solver, 2019.
https://github.rcac.purdue.edu/cap/DryadSynth.

16. C. Jefferson and P. Nightingale. Extending Simple Tabular Reduction with Short
Supports. In IJCAI, pages 573–579. IJCAI/AAAI, 2013.

17. A. Katis, G. Fedyukovich, H. Guo, A. Gacek, J. Backes, A. Gurfinkel, and M. W.
Whalen. Validity-Guided Synthesis of Reactive Systems from Assume-Guarantee
Contracts. In TACAS, Part II, volume 10806 of LNCS, pages 176–193. Springer,
2018.

18. G. Katsirelos and T. Walsh. A compression algorithm for large arity extensional
constraints. In CP, volume 4741 of LNCS, pages 379–393. Springer, 2007.

19. A. Komuravelli, A. Gurfinkel, and S. Chaki. SMT-Based Model Checking for
Recursive Programs. In CAV, volume 8559 of LNCS, pages 17–34, 2014.

20. S. Krishna, C. Puhrsch, and T. Wies. Learning invariants using decision trees.
CoRR, abs/1501.04725, 2015.

16

https://github.rcac.purdue.edu/cap/DryadSynth

21. V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Functional synthesis for linear
arithmetic and sets. STTT, 15(5-6):455–474, 2013.

22. S. Padhi, R. Sharma, and T. D. Millstein. Data-driven precondition inference with
learned features. In PLDI, pages 42–56. ACM, 2016.

23. A. Reynolds, M. Deters, V. Kuncak, C. Tinelli, and C. W. Barrett.
Counterexample-guided quantifier instantiation for synthesis in SMT. In CAV,
volume 9206 of LNCS, pages 198–216. Springer, 2015.

24. R. Sharma, S. Gupta, B. Hariharan, A. Aiken, P. Liang, and A. V. Nori. A data
driven approach for algebraic loop invariants. In ESOP, volume 7792 of LNCS,
pages 574–592. Springer, 2013.

25. R. Singh. BlinkFill: Semi-supervised programming by example for syntactic string
transformations. PVLDB, 9(10):816–827, 2016.

26. R. Singh and S. Gulwani. Synthesizing number transformations from input-output
examples. In CAV, volume 7358 of LNCS, pages 634–651. Springer, 2012.

27. R. Singh and S. Gulwani. Predicting a correct program in programming by exam-
ple. In CAV, Part I, volume 9206 of LNCS, pages 398–414. Springer, 2015.

28. A. Solar-Lezama, L. Tancau, R. Bod́ık, S. A. Seshia, and V. A. Saraswat. Combi-
natorial sketching for finite programs. In ASPLOS, pages 404–415. ACM, 2006.

29. E. Torlak and R. Bod́ık. A lightweight symbolic virtual machine for solver-aided
host languages. In PLDI, pages 530–541. ACM, 2014.

30. H. Verhaeghe, C. Lecoutre, Y. Deville, and P. Schaus. Extending Compact-Table
to Basic Smart Tables. In CP, volume 10416 of LNCS, pages 297–307. Springer,
2017.

31. X. Wang, I. Dillig, and R. Singh. Program synthesis using abstraction refinement.
PACMPL, 2(POPL):63:1–63:30, 2018.

32. W. Xia and R. H. C. Yap. Optimizing STR algorithms with tuple compression. In
CP, volume 8124 of LNCS, pages 724–732. Springer, 2013.

17

	Functional Synthesis with Examples

