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Abstract. In this paper we introduce a new approach for proving quan-
tified theorems over inductively defined data-types. We present an auto-
mated prover that searches for a sequence of simplifications and trans-
formations to prove the validity of a given theorem, and in the absence
of required lemmas, attempts to synthesize supporting lemmas based on
terms and expressions witnessed during the search for a proof. The search
for lemma candidates is guided by a user-specified template, along with
many automated filtering mechanisms. Validity of generated lemmas is
checked recursively by our prover, supported by an off-the-shelf SMT
solver. We have implemented our prover called AdtInd and show that
it is able to solve many problems on which a state-of-the-art prover fails.

1 Introduction

Program verification tasks are often encoded as queries to solvers for Satisfiability
Modulo Theories (SMT). Modern solvers, such as Z3 [26] and CVC4 [3], are
efficient and scalable mainly on quantifier-free queries. Formulas with universally
quantified formulas, which could be obtained from programs with algebraic data
types (ADT), are still challenging. While quantifier-instantiation strategies [14,
25, 18] and superposition-based theorem proving [10, 23] are effective in some
cases, a native support for inductive reasoning is needed to handle the full range
of problems. Inductive reasoning over universally quantified formulas has been
partially implemented in CVC4, in particular, using a conjecture-generation
feature [30]. However, CVC4 often generates too many unrelated conjectures
and does not utilize a problem-specific information.

Automating induction over ADTs has also been the target for many theorem
provers. Tools such as IsaPlanner [11], ACL2 [6], Zeno [31], and HipSpec [8] can
make use of induction when proving goals, with varying capabilities of automatic
lemma discovery based on rippling [5] and generalization. However, the heuristics
for lemma discovery are baked into the prover as fixed rules that target a limited
space. These rule-based approaches are often ineffective when the form of the
required lemmas is significantly different from expressions encountered during
the proof attempt. There is no automated support for exploring a larger search
space for candidates, and the user has to manually guide the overall search.



Fig. 1. AdtInd workflow.

A major challenge with both SMT-based tools and induction provers is that
they often fail to produce crucial lemmas from which actual proofs follow. Tech-
nically this is due to the failure of cut-elimination in inductive theories [20],
making the problem of finding proofs for many instances undecidable.

Our approach to automatic lemma discovery is inspired by the framework
of syntax-guided synthesis (SyGuS) [1], applicable to program synthesis. To dis-
cover a program that meets a specification, SyGuS-based approaches take as
additional input a formal grammar that defines the search space for the pro-
gram. This framework has been successfully used in many applications and there
exist dedicated SyGuS solvers that target various domains [2]. For example,
SyGuS-based techniques have been used for program verification via generation
of invariants [16, 17, 12] and termination arguments [13]. Although SyGuS has
also inspired various SMT solver efforts [29, 28, 27] (described later in related
work), to the best of our knowledge, none of these tackle automatic generation
of lemmas for proofs by induction over ADTs.

An overview of our proposed framework is shown in Figure 1. It is built on
top of an automated theorem prover based on inductive reasoning. The prover
decomposes given theorems into the base-case and inductive-case subgoals and
uses a backtracking rewriter that sequentially simplifies each of the subgoals
toward true. When the prover is unable to succeed, our approach first generalizes
the partially-rewritten formula (as done in prior efforts) by replacing certain
concrete subterms in a formula with fresh variables and attempts to prove its
validity from scratch. If successfully proved, such a lemma can then be used to
help prove the original subgoal.

However, generalization can discover only a limited number of lemmas. There-
fore, we also perform a SyGuS-based lemma enumeration driven by templates,
i.e., formulas with unknowns potentially provided by the user. Our key contri-
bution is an algorithm that instantiates these unknowns with terms generated
from syntactic elements obtained automatically from the formulas encountered
during the proof search. Thus, the formal grammars, provided as input to SyGuS
in our case are automatically generated, goal-directed, and in many cases small.
Furthermore, we contribute a set of built-in grammar templates and techniques
to effectively filter out invalid formulas produced by the enumeration.
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We have implemented our approach in an open-source tool called AdtInd, in-
cluding the inductive reasoning module and the rewriter. We have evaluated the
tool on challenging problems with ADTs and have demonstrated that AdtInd
can successfully solve many of these problems on which CVC4 [30] failed, by
discovering supporting lemmas through SyGuS-based lemma enumeration. As
a sanity check for our tool, we have verified the validity of lemmas synthesized
by AdtInd by using CVC4. We also provided our synthesized lemmas as ax-
ioms to CVC4, which can then succeed often in proving the original goal. This
demonstrates the effectiveness of our lemma synthesis techniques in generating
lemmas that can be used in other solvers and different environments, not just in
combination with a rewriter that we have used here to implement our ideas.

In summary, this paper makes the following contributions:
– an algorithm for automating proofs by induction over ADTs, where lemmas

are synthesized by term enumeration guided by user-specified templates.
– an optimized enumeration process to propose lemma candidates, taking into

account the formulas encountered during the proof search. This process in-
cludes filtering to reduce overhead of considering candidates that are in-
valid, or lemmas that may be valid but are less likely to be useful in a proof.
These lemma synthesis techniques could be potentially integrated with other
solvers.

– an implementation of our lemma synthesis procedures along with an in-
ductive reasoning module and a rewriter that work together as a theorem
prover AdtInd. We demonstrate its effectiveness in handling many challeng-
ing problems that cannot be solved by a state-of-the-art automated solver.

2 Preliminaries

A many-sorted first-order theory is defined as a tuple 〈S,F ,P〉, where S is a
set of sorts, F is a set of function symbols, and P is a set of predicate symbols,
including equality. A formula ϕ is called satisfiable if there exists a model where
ϕ evaluates to true. If every model of ϕ is also a model of ψ, then we write
ϕ =⇒ ψ. A formula ϕ is called valid if true =⇒ ϕ.

An algebraic data type (ADT) is a tuple 〈s, C〉, where s ∈ S is a sort and C is
a set of uninterpreted functions (called constructors), such that each c ∈ C has
some type A→ s. If for some s, A is s-free, we say that c is a base constructor
(otherwise, an inductive constructor).

In this paper, we consider universally-quantified formulas over ADTs and
uninterpreted functions. For proving validity of a formula ∀x.ϕ(x), where variable
x has sort s, we follow the well-known principle of structural induction:

Lemma 1. Given an ADT 〈s, {bcs : s, ics : s× . . .× s︸ ︷︷ ︸
n

→ s}〉 and a formula ϕ,

if the following two formulas ( base case and inductive case) are valid:

ϕ(bcs) and ∀x1, . . . , xn.
( ∧

1≤i≤n

ϕ(xi)
)

=⇒ ϕ(ics(x1, . . . , xn))

then ∀x.ϕ(x) is valid.
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Lemma 1 is easily generalizable for ADTs with other constructor types. For
instance, an inductive constructor cons of a single-linked list has an arity two
(i.e., it takes an additional integer i as argument). Thus, to prove the inductive
step, the validity of the following formula should be determined:

∀x.ϕ(x) =⇒ ∀i.ϕ(cons(i, x))

We are interested in determining the validity of a universally-quantified for-
mula ∀x.ϕ(x), where ϕ may itself consist of universally quantified formulas:

∀x.
(
∀y.ψ(y)

)
∧ . . . ∧

(
∀z.γ(z)

)
=⇒ θ(x) (2.1)

We call the innermost universally-quantified formulas on the left side of the
implication (2.1) assumptions. An assumption is called an axiom if it is not
implied by any combination of other assumptions, and a lemma otherwise. We
also assume that neither axioms nor lemmas have appearances of the variable x.
The formula on the right side of the implication, which is the only formula over
x, is called a goal.

A proof of a valid formula of the form (2.1) is derived by structural induction.
In both the base and inductive cases, quantifier-free instances Q(x) of axioms
and lemmas are produced and used to (sequentially) rewrite the goal until it is
simplified to true. In particular, we consider the following two simple proof rules
(other rules on inequalities and user-proved predicates could also be added):

Q(x) =⇒ goal(x)

true
[apply]

Q(x) ≡ (P (x) = R(x))

goal[P 7→ R](x)
[rewrite]

If a (possibly transformed) goal cannot be further rewritten or simplified
by the given axioms or lemmas, it is called a failure formula (if clear from
the context, we drop “formula” and simply call it a failure). Clearly, when a
goal is supplied by a larger number of assumptions, there is a wider room for
possible simplifications, and thus a prover has more chances to succeed. We thus
contribute a method that discovers new assumptions and enlarges the search
space. An important condition for soundness of this method is that such newly
introduced lemmas should themselves be derivable from given assumptions.

3 Motivating Example

Consider an ADT Queue defined as a tuple of two lists (the first one being the
front, and the second one being the back but in reverse): queue : list × list →
Queue. And some useful functions include: concat which concatenates two lists
together, len which computes the length of a list, qlen which computes the length
of a queue, qpush which appends one element to a queue, and finally amrt that
balances the queue by concatenating the two lists together when the second list
becomes longer than the first one. The given axioms and goal are shown below.
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Axioms: definition of concat, len, qlen, qpush, amrt

∀l. concat(nil, l) = l

∀l1, l2, n. concat(cons(n, l1), l2) = cons(n, concat(l1, l2))
(3.1)

∀l. len(nil) = 0

∀l, n. len(cons(n, l)) = 1 + len(l)
(3.2)

∀l1, l2. qlen(queue(l1, l2)) = len(l1) + len(l2) (3.3)

∀l1, l2, n. qpush(queue(l1, l2), n) = amrt(l1, cons(n, l2)) (3.4)

∀l1, l2.amrt(l1, l2) =

{
queue(l1, l2) if len(l1) ≥ len(l2)

queue(concat(l1, rev(l2)), nil) Otherwise

(3.5)

Goal: prove that length of queue increases by 1 after qpush

∀l1, l2. qlen(qpush(queue(l1, l2), n)) = 1 + qlen(queue(l1, l2)) (3.6)

Our approach performs several rewriting steps of applying function defini-
tions, then the base case of induction on variable l1 leads to the following formula:

∀l2, n. 1 + len(l2) = len(concat(rev(l2), cons(n, nil))) (3.7)

The formula (3.7) cannot be further simplified with existing axioms, and this
constitutes a failure. Before moving on to the inductive case for l1, we first try
to apply generalization as follows:

– We could replace nil with new list variable l3 on the right hand side (RHS),
but there is no place to introduce l3 on the left hand side (LHS).

– We could also replace cons(n, nil) with new list variable l3, again there is no
corresponding replacement on the LHS.

– Function applications are possible candidates as well, e.g., replacing rev(l2)
with new list variable l3, yet again it cannot be applied on the LHS.

As seen above, generalization does not give us any suitable candidates. How-
ever, useful lemmas could still be generated from ingredients occurring in the
failure. In this case, we apply the last two generalization rules (shown above)
to the RHS of (3.7), and then automatically construct a formal grammar using
one of the user-provided templates (to be explained in detail in Section 4.2).
In particular, the last line in (3.8) below is regarded as a template, where the
undefined symbols (shown as 〈???〉) have to be filled automatically with suitable
terms. This is done by enumeration of integer-typed terms with the function
symbols len, concat (as well as constructors nil and cons), the variables l3, l4,
and integer constants such as 0, 1, etc.
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∀l2, n. 1 + len(l2) = len(concat(rev(l2), cons(n, nil)))

↓ replace rev and cons with new variables

∀l2, n. 1 + len(l2) = len(concat(l3, l4))

↓ create template for term enumeration

∀l3, l4. 〈???〉+ 〈???〉 = len(concat(l3, l4))

(3.8)

For instance, our approach (explained in detail in Section 4) is able to discover
the following lemma:

∀l3, l4. len(concat(l3, l4)) = len(l3) + len(l4) (3.9)

The lemma is proven valid by induction (i.e., a recursive invocation of our
method), and then it can be used to prove the original goal.

4 Lemma Synthesis

In this section, we describe our key contributions on automated lemma synthesis.
Algorithm 1 shows the top level procedure SolveWithInduction which applies
structural induction to create the base-case and inductive-step subgoals for the
rewriter to prove. If any subgoal cannot be proved with existing assumptions,
the algorithm invokes Generalize and EnumerateLemmas to produce lemma
candidates based on failures found in Rewrite. These procedures are further
described in the following sections.

– Rewrite: a backtracking engine that attempts to rewrite a given goal to-
wards true, using the provided assumptions (including discovered lemmas,
as described in Section 2). For practical reasons, our implementation uses
maximum limits on the depth of the recursive proof search and on the num-
ber of rewriting attempts using the same transformation. When a subgoal is
not proved, the main output of this engine is a set of failures, i.e., formulas
obtained during the search, to which no further rewriting rule can be ap-
plied (within the given limits). Our algorithm can utilize an external library
of proven theorems while a set of heuristics must be developed to efficiently
traverse a large search space, which is outside the scope of this work.

– Generalize: an engine, further described in Section 4.1, which takes the
failures discovered by Rewrite and applies transformations to replace con-
crete values by universally quantified variables in order to produce lemma
candidates that may support proving the original goal.

– EnumerateLemmas: a SyGuS-based lemma synthesis engine, further de-
scribed in Section 4.2, which proposes a larger variety of lemma candidates
than generalization. This incorporates more aggressive mutation of failures
than generalization, to make the lemmas goal-oriented. This method is con-
figurable by the choice of grammars, which can be guided by the user. In
our implementation, we include grammars tailored to the most common ap-
plications appearing in practice in our benchmark examples.

For simplicity of the presentation, our pseudo-code in Algorithm 1 assumes
only one quantified ADT variable, which is used to generate the base-case and

6



Algorithm 1: SolveWithInduction(Goal, Assumptions)

Input: Goal: quantified formula to be proved, Assumptions: set of formulas
Output: result ∈ {QED,Unknown}

1 for subgoal ∈ {baseCase(goal), indStep(goal)} do
2 if indStep then Assumptions← Assumptions ∪ {indHypo}
3 result, failures← rewrite(subgoal, Assumptions)
4 if result then continue
5 candidates← map(Generalize, failures)∪EnumerateLemmas(failures)
6 for each ψ ∈ candidates do
7 if SolveWithInduction(ψ,Assumptions) = QED then
8 result← SolveWithInduction(subgoal, Assumptions ∪ {ψ})
9 if result = QED then break

10 if baseCase and result = Unknown then return Unknown

11 return result

inductive-step subgoals. However, our implementation also supports multiple
quantifiers and nested induction. For both the subgoals, the proving strategy
is to find a sequence of rewriting attempts using the set of assumptions. For
the inductive case, the inductive hypotheses are also included in the set of as-
sumptions. In the case of nested induction (omitted from the pseudo-code), all
assumptions from the outer-induction are inherited by the inner-induction.

If the algorithm falls short in rewriting any of the subgoals using the existing
assumptions, it attempts to synthesize new lemmas by 1) applying Generalize
to failures, and 2) identifying suitable terms from failures for applying SyGuS
(inside EnumerateLemmas). Generated this way, a lemma candidate needs to
be checked for validity which is performed by calling Algorithm 1 recursively.

4.1 Lemma Synthesis by Generalization

The approach of generalizing a failure is widely applied among induction solvers
such as IsaPlanner [11], ACL2 [6], and Zeno [31], based on the observation that
proving a formula that applies to some specific value is often more difficult than
proving a more general version. In our setting, we replace suitable subterms of
the formula with fresh quantified variables, effectively weakening the formula.

Algorithm 2 shows the pseudocode of our generalization procedure that, given
a formula ϕ, outputs a lemma candidate ψ. It starts by gathering common sub-
terms in ϕ (e.g., when ϕ is an equality, it is possible that the same terms occur
on both its sides). Then, it replaces occurrences of subterms by fresh variables
and universally quantifies them. In our implementation, we prefer to generalize
applications of inductive constructors first. If no lemma was discovered, we pro-
ceed to generalizing uninterpreted functions, and our last choice is to generalize
base constructors.
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Algorithm 2: Generalize(ϕ)

Input: ϕ: formula to be generalized
Output: ψ: generalized formula

1 while ∃t ∈ terms(ϕ), which occurs in ϕ twice do
2 let v be such that v /∈ vars(ϕ)
3 ψ ← ∀v.ϕ[t 7→ v]

4 return ψ

Algorithm 3: EnumerateLemmas(Failures)

Input: Failures in the proof search
Output: Candidates formulas

1 Φ← terms(Failures)
2 while |Candidates| < THRESHOLD do
3 ϕ← largest(Φ)
4 G← createGrammar(functions(ϕ), predicates(ϕ), vars(ϕ))
5 for each ψ ∈ G do
6 ψ ← ∀vars(ϕ) . ψ
7 if ¬refuted(ψ) then Candidates← Candidates ∪ {ψ}
8 Φ← Φ \ {ϕ}
9 return Candidates

4.2 SyGuS-based Lemma Synthesis

Applying generalization alone may not yield the desired supporting lemma at
times. Algorithm 3 shows our SyGuS-style approach for synthesis of lemma can-
didates from formal grammars. These formal grammars are themselves generated
on-the-fly by our procedure. Specifically, in each iteration of the outer loop, the
algorithm picks a term which occurs in some failure, and then uses its parse tree
to extract function and predicate symbols to construct a formal grammar. This
grammar is then used to generate the desired candidate lemmas automatically.
Our key contribution is the grammar construction algorithm (outlined in Sec-
tion 4.3) that uses these function and predicate symbols in combination with
user-provided templates. We also provide a set of built-in templates that have
worked well on our practical benchmarks.

Finally, in Section 4.4, we describe how to enumerate lemma candidates (up
to a certain size) from the grammar, and how to filter likely successful candidates
for the original proof goal in Algorithm 1. These candidates must be proven
correct first, as shown in Section 4.5.

4.3 Automatic Construction of Grammars

Although our algorithm does not depend on any particular grammar for lemma
generation, it is practically important to consider grammars that are relevant for
the failures (one or many), so that the generated lemmas have a higher likelihood
of success in proving the original goal. Therefore, we focus on various elements
(e.g., uninterpreted functions and predicates) that can be extracted from the
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parse trees of failures, to automate the process of grammar creation. Elements
that do not appear in the failure are not considered to save efforts.

At the same time, a user might specify some higher-level templates that pro-
vide additional guidance for this process. Essentially, a higher-level template
provided by a user can be viewed as a partially defined grammar that involves
a set of undefined nonterminals (i.e., where the corresponding rules are still un-
defined). Our algorithm automatically constructs missing rules for these nonter-
minals by using the syntactic patterns obtained from failures, thus constructing
fully-defined grammars. These fully-defined grammars are then used for auto-
matically generating candidate lemmas.

To additionally optimize this process, our grammar construction algorithm
focuses on individual subterms occurring in failures. Our particular strategy is
to pick the largest subterm (referred to as ϕ in the pseudo-code and later in the
text), but other heuristics could be used here as well.

Furthermore, we identified three useful higher-level templates that have been
applied to solve our benchmarks1. These templates are in the form of an equality,
they use undefined nonterminals (shown as 〈???〉), and interestingly, two of them
have occurrences of ϕ on the left side of the equality:

ϕ = 〈???〉+ 〈???〉 (4.1)

ϕ = 〈???〉 (4.2)

〈???〉 = 〈???〉 (4.3)

The first template is chosen when ϕ has an integer type, and the second one
is chosen for all algebraic data types. Lemma candidates generated from the first
two templates inherit information from the failure, having the subterm ϕ on one
side. The third template is chosen as a last resort, when no valid lemmas are
discovered after using the first two (as explained in Sections 4.4 and 4.5).

After choosing one of these templates, our algorithm defines the rules for non-
terminals 〈???〉, based on the variables, uninterpreted functions, and predicates
occurring in ϕ.

Additionally, we identified two higher-level templates, applicable when the
same function occurs in a failure multiple times. Intuitively, they correspond to
the commutativity and the associativity of certain uninterpreted functions. After
such functions are determined by a syntactic analysis of a failure, they immedi-
ately give instantiations of nonterminals 〈???〉 in templates (4.4) and (4.5).

〈???〉(a, b) = 〈???〉(b, a) (4.4)

〈???〉(a, 〈???〉(b, c)) = 〈???〉(〈???〉(a, b), c) (4.5)

Returning back to our motivating example, for failure (3.7), both sides of the
equality have integer type. Thus, our algorithm chooses template (4.1), and we
use the right side of (3.7) as ϕ, since it is the larger (more complex) expression.

1 These templates are referred to as built-in templates, which need not be specified by
the user. Furthermore, our current implementation automatically chooses a built-in
template based on ϕ.
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This allows more information from the failure to be retained, thereby enabling
the enumerated lemma candidates to be goal-directed. The following grammar
is then automatically extracted from ϕ:

〈int-term〉 ::=n | len(〈list-term〉)
〈list-term〉 ::=nil | l2 | cons(〈int-term〉, 〈list-term〉) | (4.6)

concat(〈list-term〉, 〈list-term〉) | rev(〈list-term〉)
Note that this grammar is recursive and relatively large in scope. For per-

formance reasons, we try to reduce the grammar. We do this by heuristically
generalizing ϕ first, where we replace function applications by fresh variables
(i.e., similar to the strategy in Section 4.1), as shown in (3.8). The generalized
ϕ gives rise to the following grammar:

〈int-term〉 ::= len(〈list-term〉) (4.7)

〈list-term〉 ::= l3 | l4 | concat(〈list-term〉, 〈list-term〉)
Finally, the resulting production rules are embedded into the chosen template

to generate a complete grammar, where 〈???〉 is instantiated by 〈int-term〉.

4.4 Producing Terms from Grammar

Given a grammar, constructed as shown in the previous subsection, our al-
gorithm enumerates various candidate lemmas and checks their validity. Since
larger candidate lemmas are typically more expensive to deal with, our algorithm
starts by enumerating small formulas with terms upto some size. We define the
size of an expression as the height of its parse tree. For example, variables and
base constructors of data types, such as x, y, nil have size 1, while cons(1, nil)
and rev(x) have size 2. By Ψk, we denote the set of expressions of size k, and by
Ψk[ty], we denote the set of expressions of size k that has type ty.

Given Ψk, it is straight-forward to enumerate expressions of size k + 1: for
each function (including inductive constructors) f with m parameters typed
ty1, . . . , tym, we first enumerate expressions τ1, . . . , τm from sets Ψk[ty1], . . . Ψk[tym],
respectively, and second, we create a new expression f(τ1, . . . , τm) which is in-
serted into Ψk+1. This process is repeated iteratively until we reach the desired
size limit.

Our algorithm enforces the following two constraints on the generated can-
didate formulas. First, it checks the generated formula for non-triviality : there
should be no application of a function on only base constructors of an ADT, e.g.,
concat(nil, nil). Such candidates are usually invalid for any non-trivial instanti-
ation of a universally quantified variable. Second, a generated lemma candidate
should cover as many variables occurring in the subterm ϕ from which we derived
the templates (4.1) – (4.3) as possible. In our experience, prioritizing candidates
with full coverage leads to significant performance gains.

To further reduce the number of candidates, we leverage symmetry of oper-
ators in a template (e.g., commutativity of integer addition) whenever possible.
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4.5 Filtering by Refutation

We apply an additional filtering step on lemma candidates where we search for
inexpensive counterexamples to validity. Given a candidate lemma, our algorithm
instantiates quantified variables with concrete values, creates quantifier-free ex-
pressions, and repeatedly simplifies them by applying assumptions. In addition
to the rules mentioned in Section 2, we also apply the following refutation rule:

goal(x) =⇒ false

false
[applyr]

In our implementation, we limit the number of refutation attempts for each
candidate and the complexity of the concrete instantiations. The concrete values
of variables are produced by applying constructors of ADTs repeatedly.

For example, formula (4.8) is one of the possible candidates based on the
template in (3.8). This lemma is shown invalid by instantiating l3 and l4 with
concrete lists cons(1, cons(2, nil)) and cons(3, nil), and then applying the given
axioms to the resulting quantifier-free expression, as shown below.

∀l3, l4. len(cons(len(l3), nil)) + len(l4) = len(concat(l3, l4))

↓ instantiate quantified variables

len(cons(len(cons(1, cons(2, nil))), nil)) + len(cons(3, nil))

= len(concat(cons(1, cons(2, nil)), cons(3, nil)))

↓ apply axiom (3.2)

1 + 1 = len(concat(cons(1, cons(2, nil)), cons(3, nil)))

↓ apply axiom (3.1)

1 + 1 = len(cons(1, cons(2, cons(3, nil))))

↓ apply axiom (3.2)

1 + 1 = 1 + 1 + 1 (False)

(4.8)

If a lemma candidate passes (some number of) refutation tests, then a new
instance of SolveWithInduction is created in an attempt to prove its validity.
This recursive nature of our procedure allows proving lemma candidates that
may further require discovering new supporting lemmas. However, creating a
subgoal to prove a lemma candidate is a fairly expensive procedure. Therefore,
we would like the filtering to be aggressive, to minimize the number of lemmas
to be proved. Although the refutation tests are relatively cheap to perform, too
many tests may result in wasted effort and delay lemma application in proving
the original goal. Thus, we must strike a balance between testing for refutations
and proof attempts. In our implementation, we perform three refutation tests
by default (and the user can optionally set the number of such tests).

5 Implementation and Evaluation

We have implemented our algorithm in a prototype tool named AdtInd on top of
Z3 [26]. Our backtracking rewrite procedure uses the “apply” and “rewrite”
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proof rules repeatedly to simplify the goals and invokes Z3 to determine the
validity of quantifier-free expressions encountered during such rewriting. Our
implementation allows the user to specify the maximal depth of the backtracking
search (15 steps by default); it also avoids divergence by limiting the consecutive
applications of the same rewrite rules.

Our lemma synthesis procedures are also configurable. In generalize, the
user can adjust the aggressiveness of generalization, opting to replace smaller or
larger terms in failures (recall Section 4.1). In EnumerateLemmas, the user
sets a larger limit on sizes of enumerated terms to explore a larger space of
lemma candidates. The number of refutation attempts is also configurable (3
times by default).

10−1 100 101 102

10−1

100

101

102

AdtInd

C
V
C
4

Fig. 2. Evaluation comparison (sec×sec): points above the diagonal represent run-
times for benchmarks on which AdtInd outperformed CVC4; points on the boundaries
represent timeouts. The diameter of a circle represents the number of overlapping
circles.

AdtInd has been evaluated on benchmarks from the CLAM [20] suite2 con-
sisting of 86 quantified theorems over common operations of natural numbers,
lists and other data types. We have compared AdtInd against the CVC4 SMT
solver (v1.7, which supports induction and subgoal generation). We used a time-
out of 300 seconds. The scatter plot in Figure 2 summarizes the results. In total,
AdtInd proved 62, and CVC4 proved 47 benchmarks. These numbers include
respectively 22 and 7 theorems proven only by the corresponding tool and not by
the other (shown in Figure 2 as crosses on the top horizontal line and as crosses
clustered around the bottom right corner, respectively). Interestingly, there are
not many cases when CVC4 takes a significant amount of time before deliver-
ing a successful result, i.e., it either terminates in less than a second or diverges.
This is possibly due to an inability to discover a meaningful lemma candidate for
these benchmarks. In contrast, AdtInd is often able to enumerate useful lem-

2 The source code of AdtInd and benchmarks are available at: github.com/wky/

aeval/tree/adt-ind.
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mas, but sometimes it requires a number of iterations (see, e.g., crosses on the
bottom horizontal line). We hope to improve runtime performance of AdtInd
in the future by adopting certain successful optimizations and heuristics from
CVC4.

Of the 62 theorems proven by AdtInd, 29 did not require extra lemmas, 12
were proven with lemmas discovered through generalization, and 21 were proven
with lemmas discovered through SyGuS. For the SyGuS-generated 21 theorems,
AdtInd created on average 171 lemma candidates. In our experiments, 93%
of processed candidates were refuted by tests, leaving only a small number of
lemmas to be validated by the more expensive SolveWithInduction.

Experiment over ADTs and LIA. To fully demonstrate the power of SMT solvers,
we considered several additional benchmarks involving linear integer arithmetic
(LIA). With this capability, the benchmarks do not require specifying assump-
tions over natural numbers (like in CLAM). These benchmarks also motivate
the usefulness of having a specialized lemma template for integers shown in Sec-
tion 4.3. The results are listed in Table 1. The list rev2 benchmark took more
solving time than others due to the large search space (about 500 lemma candi-
dates were rejected before a sufficient lemma was found). For comparison, CVC4
failed to prove list rev and exceeded a timeout of 300 seconds on the other 8
problems. The interactive prover ACL2 was only able to prove only 2 out of 9
problems in Table 1, namely list rev concat and list rev len.

Table 1. AdtInd on ADT+LIA problems.

Goal AdtInd result Goal AdtInd result

list rev Proved, 10.6s list rev2 len Proved, 0.95s

list rev concat Proved, 2.52s queue push Proved, 33.9s

list rev2 concat Proved, 1.95s queue len Proved, 7.6s

list rev2 Proved, 1m59s tree insert all Proved, 1.9s

list rev len Proved, 2.30s

Future Work. There are other categories of theorems, mainly in the Leon [4] and
TIP [7] suites, that require more advanced techniques for automated proving.
Many theorems require non-trivial case-splitting transformations (some imple-
mented in Why3 [15]) for if-then-else blocks in given axioms, which is not fully
supported in our prototype yet. However, our lemma synthesis algorithms can
be used in combination with a different solver or environment that handles case-
splitting and other forms of goal decomposition. Thus, our tool can focus on
producing lemma candidates without being dependent on current capabilities of
our prototype rewriting engine.

Of the theorems that we cannot prove in the TIP set, many are mathemat-
ically challenging (e.g., Fermat’s Last Theorem), involve high-order functions,
contain sortedness properties, or require some form of pumping lemma to solve
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(e.g., proving equivalence of regular languages). These instances are currently
outside the scope of our work.

6 Related Work

There is a wide range of approaches for proving quantified theorems defined on
algebraic data types. These include SMT-based inductive reasoning in tools such
as Dafny [24] and CVC4 [30]; Horn Clause solvers [33]; generic theorem provers
such as ACL2 [6], and induction provers such as CLAM [20], IsaPlanner [22] and
HipSpec [8]. The main issue with these tools is that even with the help of built-
in heuristics such as rippling [5] and generalization of failures, they still require
human interaction to discover necessary lemmas to complete a proof end-to-
end. Our proposal to use term enumeration for lemma discovery (after failure of
generalization) as a SyGuS-style synthesis task leverages information available
at proof failures and explores a much larger space of possible lemma candidates.
As shown in our evaluation in Section 5, this was enough to eliminate the need
for human input in many practical cases.

On lemma discovery within induction provers, machine learning techniques
have also been attempted in works such as ACL2(ml) [19] and Multi-Waterfall [21].
ACL2(ml) uses statistical machine learning algorithms to extract features present
in the proof goal, and uses that to find similar patterns in a library of proven theo-
rems to in order to suggest new lemmas. Multi-Waterfall runs multiple strategies
in parallel, while a machine learning module trained by previous proofs in a li-
brary is used to select lemmas candidates based on their likelihood of advancing
the current proof. The machine learning components in these tools typically re-
quire a sufficiently large set of proven theroems to learn from, whereas our tool
uses term enumeration that does not depend on an external library.

Specifically, CVC4 [30] supports induction natively to solve quantified SMT
queries with custom data types. The tool implements Skolemization with induc-
tive strengthening to prove conjectures, and uses enumeration to find adequate
subgoals (inspired by QuickSpec [9]). CVC4 employs filtering of candidates
based on activation of function symbols, canonicity of terms and counterex-
amples, which is roughly analogous to our filtering techniques. However, our
lemma candidates arise from grammars that combine user-provided (or built-in)
templates with elements from failures in rewriting proof attempts and seem to
have a better chance of proving the original goal.

ACL2 (a Boyer-Moore prover) is based on rewriting of terms and a number of
induction heuristics. The tool identifies “key checkpoints” as subgoals to prove
on its way to prove the outer theorem, and has rules to perform generalization
similar to our approach described in Section 4.1. However, ACL2 does not have
the ability to enumerate lemma candidates, although users can provide their own
proof tactics or plug-ins to this theorem prover.

On the lemma synthesis front, the SLS framework [32] employs different tech-
niques to automatically generate and validate lemmas, but within an interactive
theorem prover environment. For symbolic heap verification using separation
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logic, the tool generates lemma templates with the heap structures from the goal
entailment, and proposes unknown relations as constraints over the templates’
variables, which are later solved to discover the desired lemmas. We were unable
to experimentally compare with SLS because it works in an interactive theorem
prover environment, targets a distinct type of problems (proof entailments in
separation logic) and requires a different input format which is prohibitive for
us to translate to.

Among SyGuS applications for solving quantified formulas, in another re-
cent effort with CVC4 [28], a user can provide a grammar and a correctness
specification to a synthesis task, whose goal is to find rewrite rules that trans-
form and simplify SMT queries. The similarity here is that our tool also uses
a SyGuS-style user-provided template to search for supporting lemmas, which
will be used just like rewrite rules. However, the purpose of their technique is
primarily goal-agnostic simplification, and it does not track information such as
failures in proof search. More importantly, their grammars are not generated
automatically from problem instances, but are fixed by the user. Another re-
cent effort [27] uses SyGuS to synthesize invertibility conditions under which
quantified bit-vector problems can be converted to quantifier-free problems, to
be solved by an SMT solver. However, the purpose and specific techniques are
different from our approach.

Finally, SyGuS was recently applied to verification of program safety and ter-
mination in the FreqHorn framework [12, 13]. These works exploit the syntax
of given programs to automatically generate grammar, from which the candi-
dates for inductive invariants and ranking functions are produced. While their
main insight is similar to ours, their approach does not support ADTs and hardly
exploits any failures. In the future, we believe that our tool could be integrated
to FreqHorn and help verify programs which are currently out of its scope.

7 Conclusions and Future Work

We have presented a new approach for automating induction over algebraic data-
types that uses lemma synthesis based on automatic grammar generation and
term enumeration guided by user-specified templates. Our prover AdtInd in-
corporates these ideas in a rewriting engine built on top of Z3. We demonstrated
that it successfully solves many challenging problem instances that a state-of-
the-art prover failed to solve.

So far, the proof goals in the examples that we considered (i.e., List, Queue,
Tree) are mostly in the form of equalities. We intend to apply our ideas to sup-
port inequalities and other relations that demand non-trivial inductive reasoning
and lemma discovery. Incorporating our lemma synthesis procedures into other
theorem proving frameworks (such as CVC4) would allow us to leverage existing
heuristics and proof tactics to deliver results on more complex problems. Also
we will consider additional criteria for usefulness of lemma candidates to better
filter the large number of candidates in certain benchmarks.
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