Solutions for Homework 5 Numerical Linear Algebra 1 Fall 2002

Problem 1

The pseudoinverse for rectangular full column-rank matrices behaves much as the inverse for non-singular matrices. To see this show the following identities are true (Stewart 73):

1. $AA^\dagger A = A$
2. $A^\dagger AA^\dagger = A^\dagger$
3. $A^\dagger A = (A^\dagger A)^T$
4. $AA^\dagger = (AA^\dagger)^T$

5. If $A \in \mathbb{R}$ has orthonormal columns then $A^\dagger = A^T$. Why is this important for consistency with simpler forms of least squares problems that we have discussed?

Solution:

\[AA^\dagger A = A(A^T A)^{-1}A^T A \]
\[= A(A^T A)^{-1}(A^T A) \]
\[= AI \]
\[= A \]

\[A^\dagger AA^\dagger = (A^T A)^{-1}A^T A(A^T A)^{-1}A^T \]
\[= (A^T A)^{-1}(A^T A)(A^T A)^{-1}A^T \]
\[= I(A^T A)^{-1}A^T \]
\[= A^\dagger \]

\[A^\dagger A = (A^T A)^{-1}A^T A \]
\[= (A^T A)^{-1}(A^T A) \]
\[= I \]
\[= A^T A(A^T A)^{-1} \]
\[= A^T A(A^T A)^{-T} \]
\[= (A^\dagger A)^T \]

\[AA^\dagger = A(A^T A)^{-1}A^T \]
\[= A(A^T A)^{-T}A^T \]
\[= (A(A^T A)^{-1}A^T)^T \]
\[= (AA^\dagger)^T \]
Since A has orthonormal columns we have $A^T A = I$ and therefore $A^\dagger = (A^T A)^{-1} A^T = I A^T = A^T$ as desired.

Recall we have the problem of minimizing $\|b - Ax\|_2$ with $A \in \mathbb{R}^{n \times k}$ with $n \leq k$ having full column rank. This splits into several cases when we consider consistency.

If $n = k$ then A is nonsingular and $x = A^{-1} b$. We have shown earlier that in this case $A^\dagger = A^{-1}$.

If $n > k$ then we want $x = A^\dagger b$ to be such that $Ax = Pb$ where P is the projector from \mathbb{R}^n onto $\mathcal{R}(A)$. We showed this in the notes based on the orthogonality of the residual.

This case was also discussed in simplified form earlier in the notes when first considering orthonormal bases for a space, i.e., a basis for a subspace such that $Q^T Q = I$ and the columns of Q are the basis. In this case we had for the case above with $n > k$ that $x = Q^T b$. The exercise shows this is consistent with the definition of A^\dagger when $A^T A = I$.

Problem 2

Recall, that any subspace S of \mathbb{R}^n of dimension $k \leq n$ must have an orthogonal matrix $Q \in \mathbb{R}^{n \times k}$ with orthonormal columns such that $\mathcal{R}(Q) = S$, i.e., the range of Q is the subspace and that the matrix $P = QQ^T$ is called a projector, i.e., Px is the unique component of x contained in S.

1. P is clearly symmetric, show that it is idempotent, i.e., $P^2 = P$.

2. Show that $\mathcal{R}(P) = S$.

3. Show that if M is an idempotent symmetric matrix then it is a projector onto $\mathcal{R}(M)$.

4. Let $Q_1 \in \mathbb{R}^{n \times k}$ and $Q_2 \in \mathbb{R}^{n \times k}$, $k \leq n$, have orthonormal columns and be such that $\mathcal{R}(Q_1) = \mathcal{R}(Q_2)$. Show that there must exist $W \in \mathbb{R}^{k \times k}$ such that $W^T W = WW^T = I_k$ and $Q_2 = Q_1 W$. (In other words, any two orthogonal bases of the same subspace are related by a small orthogonal transformation typically called a rotation in the subspace.)

Solution:

P is idempotent since

$$P^2 = PP = (QQ^T)(QQ^T) = QIQ^T = QQ^T = P$$

To prove that $\mathcal{R}(P) = S = \mathcal{R}(Q)$ note

$$y \in \mathcal{R}(P) \quad y = Px \quad = QQ^T x \quad = Qc \quad \in \mathcal{R}(Q)$$
To prove the other direction note $y \in \mathcal{R}(Q)$ implies $y = Qc$ and since $Q^TQ = I$ we have $c = Q^Ty$.

Now let $x = y + z$ where z is any vector in the null space of Q then we have

\[
\begin{align*}
y & \in \mathcal{R}(Q) \\
y &= Qc \\
&= QQ^Ty + 0 \\
&= QQ^Ty + QQ^Tz \\
&= Px \\
&\in \mathcal{R}(P)
\end{align*}
\]

If M is a symmetric idempotent matrix then we know $M^T = M$ and $MM = MM^T = M^TM = M$. If $\mathcal{S} = \mathcal{R}(M)$ then we know that any vector x is such that $x = y + z$ where $y \in \mathcal{S}$ and $z \in \mathcal{S}^\perp$.

Therefore, by definition we know that $y = Mc$ (possibly not uniquely since the columns of M are not necessarily a basis for \mathcal{S}) and $M^Tz = 0$. To see M is a projector we have

\[
\begin{align*}
Mx &= M(y + z) \\
&= My + Mz \\
&= My + MM^Tz \\
&= My \\
&= M(Mc) \\
&= MMc \\
&= Mc \\
&= y
\end{align*}
\]

as desired.

Finally, let $\mathcal{R}(Q_1) = \mathcal{R}(Q_2) = \mathcal{S}$. By definition, given $x \in \mathcal{S}$ we have unique c and d such that $x = Q_1c = Q_2d$. The columns of Q_2 are all in \mathcal{S} therefore for $1 \leq i \leq k$ we have $Q_2e_i = Q_1w_i$ uniquely. This can be written as $Q_2 = Q_1W$ with $W = \left(\begin{array}{c} w_1 \\
\vdots \\
w_k \end{array} \right)$. We also have $Q_2^TQ_2 = I = W^TQ_1^TQ_1W = W^TW$ and since W is square and nonsingular we have $W^T = W^{-1}$ and therefore $WW^T = I$ also.