Solutions for Homework 6 Foundations of Computational Science
1 Fall 2001

Problem 1

In this problem we derive an elementary orthogonal matrix and a transformation method used to solve
systems including least squares problems. (Stewart 1973)

(a) An elementary reflector or Householder transformation is given by

\[H = I - 2uu^T \]

where \(u \in \mathbb{R}^n \) and \(u^Tu = 1 \). Show that \(H \) is a symmetric orthogonal matrix and that \(||Hx||_2 = ||x||_2 \) for any \(x \in \mathbb{R}^n \).

Solution: The fact that \(H \) is symmetric is obvious from the form. For orthogonality we have

\[
H^TH = (I - 2uu^T)(I - 2uu^T) \\
= I - 4uu^T + 4(uu^T)(uu^T) \\
= I - 4uu^T + 4u(u^Tu)u^T \\
= I - 4uu^T + 4uu^T \\
= I
\]

To see that \(||Hx||_2 = ||x||_2 \) for any \(x \in \mathbb{R}^n \) note

\[
Hx = (I - 2uu^T)x \\
= x - 2u(u^Tx) \\
= x - 2\mu u
\]

\[
||Hx||_2^2 = (x - 2\mu u)^T(x - 2\mu u) \\
= x^Tx - 4\mu u^Tx + 4\mu^2 u^Tu \\
= x^Tx - 4\mu(u^Tx) + 4\mu^2(u^Tu) \\
= x^Tx - 4\mu^2 + 4\mu^2 \\
= x^Tx
\]

(b) Let \(x \in \mathbb{R}^n \) and \(y \in \mathbb{R}^n \) with \(||x||_2 = ||y||_2 \) where \(n > 1 \). Show that there exists an elementary reflector \(H \) such that \(Hx = y \). (Hint: Assume \(u \) is known and compare \(Hx \) to \(y \) to get an idea of the form of \(u \) – then fine tune the choice.)

Solution: All norms are taken to be 2-norms in this solution. Following the hint we see that \(u = \phi(x-y) \) is a good form to try. Since \(u^Tu = 1 \) we can take \(\phi = ||x-y||_2^{-1} \).

So we assume that \(x^Tx = y^Ty \) and take \(u = \phi(x - y) \) where \(\phi = ||x - y||_2^{-1} \).

We have a space, \(\mathcal{R}(u) = \mathcal{S} \), with dimension 1, that we can use to analyze the action of the reflector. We know we can decompose \(x \) and \(y \) based on \(\mathcal{S} \) as

\[
x = v_x + w_x \\
v_x \in \mathcal{S}^⊥ \\
w_x \in \mathcal{S} \\
y = v_y + w_y \\
v_y \in \mathcal{S}^⊥ \\
w_y \in \mathcal{S}
\]

We must deduce relationships between these vector using the reflector \(H \) and our assumptions. Note, since \(x - y \) is in \(\mathcal{S} \) and \(I - uu^T \) is a projector onto \(\mathcal{S}^⊥ \) we have
\[
0 = (I - uu^T)(x - y) \\
= (I - uu^T)x - (I - uu^T)y \\
\]
\[
(I - uu^T)x = (I - uu^T)y \\
v_x = v_y \\
= v \\
\]

So the component in \(S^\perp \) is the same in both vectors. That is,
\[
x = v + w_x \\
y = v + w_y \\
\]

Now consider \(w_x \) and \(w_y \).
\[
w_y = (uu^T)y \\
= (u^Ty)u \\
= \frac{(x^Ty - y^Ty)u}{\|x - y\|} \\
w_x = (uu^T)x \\
= (u^Tx)u \\
= \frac{(x^Tx - y^Tx)u}{\|x - y\|} \\
= \frac{(y^Ty - x^Ty)u}{\|x - y\|} \\
= -\frac{(x^Ty - y^Ty)u}{\|x - y\|} \\
= -w_y \\
\]

So the components in \(S \) differ only in sign.

We can know show the assertion easily,
\[
Hx = (I - 2uu^T)x \\
= (I - uu^T - uu^T)x \\
= (I - uu^T)x - (uu^T)x \\
= v - w_x \\
= v + w_y \\
= y \\
\]

To see intuitively what is happening note in the derivation how we write \(Hx = (I - uu^T)x - (uu^T)x \). The first matrix is a projector that removes the components in \(S \) from \(x \). The second term is a projector that determines the components in \(S \) that were removed from \(x \) by the first term and puts them back into the vector with the sign flipped. So essentially, the reflector \(H \) is built from two projectors relative to \(S \) such that the components in the vector to which \(H \) is applied that are in \(S \) a reflected back along \(x - y \). This generalizes a situation that is easy to see from a picture in \(\mathbb{R}^2 \).

(c) Suppose \(x \in \mathbb{R}^n \) and \(x \neq \sigma e_1 \). Use the results from (a) and (b) to derive the formulas in the notes for an elementary reflector \(H \) such that \(Hx = \gamma e_1 \) where \(\gamma \) is a real scalar.

Solution: The solution to (c) is contained in the notes.