Implementing Switching Functions

Consider a truth table for a multiple-output function with k switching variables and m output functions:

$$
\begin{align*}
 f_1(x_1, \ldots, x_k) &= \Sigma(list\ 1) \\
 f_2(x_1, \ldots, x_k) &= \Sigma(list\ 2) \\
 \quad \text{etc.} \\
 f_m(x_1, \ldots, x_k) &= \Sigma(list\ m)
\end{align*}
$$

For each of the 2^k assignments to (x_1, \ldots, x_k) there is an m-bit vector that defines (f_1, \ldots, f_m).

- Essentially, this is memory with a capacity of 2^k word each m bits in length.

- (x_1, \ldots, x_k) is the address

- (f_1, \ldots, f_m) is the contents of the location.
• RAM is too costly and often inappropriate in function for this application.

• Programmable ROM (PROM) is ideally suited.

• high-density compared to writable RAM

• generic form can be manufactured cheaply

• field-programmable to specify switching functions needed for particular applications

• nonvolatile therefore usable for power on/off situations

• Common uses:
 – processor control – instruction in and resource control signals out
 – bootstrap data and code for power-up of systems

• FPGAs are a more sophisticated (and more expensive) version of this idea (see Chapter 3).
Programmable OR Gate

1. Decide which A_i are included in each F

2. "burn" fuses to make the connection

3. If any "connected" horizontal line asserts a 1 then $F = 1$ also.

4. Horizontal lines that are not "connected" do not affect F.

$F = A_1 + A_k$
A $2^k \times m$ PROM is a k-to-2^k decoder and m programmable OR gates. The crossings are burned to define $F_i \ i = 0, \ldots, m - 1$.

8 X 2 PROM before burning fuses
Multiple output networks are then trivial to form. Example: Full adder,

\[m = 2 \]
\[k = 3 \]
\[s_i(c_i, x_i, y_i) = \Sigma(1, 2, 4, 7) \]
\[c_{i+1}(c_i, x_i, y_i) = \Sigma(3, 5, 6, 7) \]
Programmable Logic Arrays (PLA)

- PROMs must use the address bits to create the fundamental products on which f evaluates to 1.

- This can be inefficient if the 1 to 0 ratio of f is small.

- We would like to use higher-order cubes.

- This requires a more flexibility decoder structure.

- The PLA replaces the standard decoder with an AND array.

- It also includes a programmable output array that allows each output line to be complemented when necessary. (This allows efficiency independently of the 1 to 0 ratio.)
• An $k \times n \times m$ PLA has

 – k input bits that are used to set the assignment on which f is to be evaluated.

 – n programmable AND gates that work with burning connections as the programmable OR gates.

 – m programmable OR gates that produce the f_i $i = 0, \ldots, m - 1$

• Note that n is not necessarily 2^k. It is simply the number of cubes that can be defined in the PLA.

• Since the output lines of the AND array are no longer tied to a particular fundamental product each AND gate can evaluate any of the cubes required to evaluate f
4 × 8 × 4 PLA before burning