

FLORIDA STATE UNIVERSITY

COP 3331

Object-Oriented Analysis
and Design

STUDY GUIDE

Spring 2003

http://campus.fsu.edu

 COP 3331 ii

Florida State University

Tallahassee, Florida 32306

Copyright 2001 Florida State University

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means without written permission from the Florida State University.

Table of Contents

COP 3331 iii

Introduction...1

Help with FSU Procedures and Technology ...3
For Help with University or Course-Related Problems ..3
For Help with Technical Problems ...3

Syllabus for COP 3331 ...5
Course Number, Name, and Prerequisite ..5
Course Description ...5
Overall Course Objectives ...6
Required Course Materials ..6
Course Requirements ..10
Assessment...10
Course Schedule ...11
Course Policies ...13
Grading ..14

About This Study Guide ..17

Week 1...19

Week 2...31

Week 3...39

Week 4...45

Week 5...53

Week 6...61

Week 7...65

Week 8...67

Week 9...71

Week 10...73

Week 11...75

Week 12...77

Week 13...81

Week 14...85

Week 15...87

Week 16...89

Appendix...91

Table of Contents

 COP 3331 iv

Introduction

COP 3331 Page 1

Introduction
COP3331: OBJECT-ORIENTED ANALYSIS AND DESIGN

Course Director: Ian Douglas

Instructor: David A. Gaitros, GAITROSD@CS.FSU.EDU , (850) 644-4055

 Welcome to Florida State University’s COP 3331: Object-Oriented
Analysis and Design. This course assumes that you have taken COP
3330: Object-Oriented Programming and an introductory course in
Computer Science. In particular, we assume that you have already been
introduced to an object-oriented programming language and understand
the concepts of encapsulation, inheritance, and polymorphism.

Developing a proficiency in programming is a basic skill requirement for
both computer scientists and software engineers; however, programming
skills alone are insufficient to make you a successful software engineer.
For large-scale problems, an understanding of and experience in systems
analysis and design are also required. In this course you will begin to
develop such knowledge and skill, and increase your familiarity with the
principles of software engineering. You will also gain practical skills in
using Unified Modeling Language (UML).

Introduction

COP 3331 Page 2

Help with FSU Procedures and Technology

COP 3331 Page 3

Help with FSU Procedures and T echnology
 A complete learning community and support group will help answer your

questions and remedy any problems, from enrolling in courses and
developing an academic plan to accessing your course website and
submitting assignments via the Web.

For Help with
University or

Course-
Related

Problems

 Your Learning Community includes the following help:

§ See your academic coordinator for questions and concerns about:

ú academic requirements of the University and your department
or school

ú procedural matters such as course equivalency substitutions,
course prerequisites, or graduation checks

§ See your course mentor/instructor for questions and concerns about:

ú course content

ú your progress in the course

Course-specific questions you might ask a mentor or instructor:
§ “Can you help me understand the difference in meaning between the

terms protocols and standards in the Week 9 assignment? They
sound like the same thing.”

§ “What can we do about one of the other students in our group project
who isn’t doing anything? The rest of us can’t continue until she
finishes her part of the project.”

General questions a student might ask a mentor:
§ “When I go to take my proctored exam, will the proctor be able to

answer questions I might have about the test?”

§ “Will I be at a disadvantage because I live too far away from you to
ever meet with you face-to-face?”

See your lead faculty only when your mentor or instructor directs you to
do so or when you have a problem that is not adequately addressed by
your mentor or instructor.

For Help with
Technical
Problems

 If your problems or questions concern your computer equipment,
software, Internet connection, or the course website, follow the
procedures described in one of the following two boxes:

Help with Technology and FSU Policies

COP 3331 Page 4

If you have a technical question and are able to connect to
the Internet:

1. Check out the Online Support website at:

http://www.fsu.edu/~webhelp/students/index.html

2. You may go directly to the Student Handbook for Online Learning,
which provides step-by-step instructions on using the course website
as well as technical contacts. It is available online at:

http://www.fsu.edu/~distance/media/studenthandbook.pdf

3. If your question or problem is not addressed by the websites listed
above, then send an e-mail to:

oddl@inquiry.fsu.edu

If your problem concerns your course website, please include the
following information in your email:

1. The area in the course website at which you are experiencing
difficulties (e.g., Discussion Board, Virtual Chat room, or file
upload)

2. A detailed description of the problem and exact transcriptions
of any error messages

3. Your course, course prefix, section, and instructor’s name

4. Your name, e-mail address, and a daytime phone number

And, if you can, include the following technical information:

5. The Web browser your are using (e.g., Netscape Navigator,
Microsoft Internet Explorer, AOL)

6. The operating system you are using (i.e., Windows 95, 98, or
NT; Mac; Linux; or Unix)

7. Whether you are connecting with a modem or within a
network

You will receive a reply to your email on the next business day.

If you have a technical question and are not able to connect to
the Internet:

Call the ACNS Help Desk at 1-850-644-8502.

Syllabus for COP 3331

COP 3331 Page 5

Syllabus for COP 3331

Course Number,
Name, and

Prerequisite

 Course Number: COP 3331

Course Name: Object-Oriented Analysis and Design

Prerequisite: COP 3330 Object-Oriented Programming

Course
Description

 This course introduces you to software engineering and focuses on
the important activities that precede the writing of computer code. It
will build on many of the concepts and procedures you learned in the
previous courses. In the previous courses, you were acquainted with
the fundamental concepts of computer science, and began to develop
skills in computer programming. You should have learned how to
represent problems you encounter and to carefully consider
approaches to solutions before beginning to write code.

Thus far, you have dealt with small, relatively well-defined problems.
In the world of commerce and industry, technological issues and
problems are much larger and more complex. The problems are well
beyond the scope of a single individual. Software engineers, in
collaboration with others, often spend much of their time
brainstorming, discussing, and creating documentation of problems
and problem solutions (often incorporating complex diagrams), and a
relatively small amount of time writing actual code.

Analysis and design are two of the key activities involved in software
development. These activities can be carried out using a number of
different methods and tools. Many modern software development
methods are based around the object-oriented approach. It is this
approach that we will focus upon in this course, and it is assumed you
are already familiar with the basic principles of object orientation.

It is important to recognize that there is no one right or wrong way to
develop software. Two companies can organize the process of
development very differently, yet both may produce successful
systems. The overall efficiency of the development process is more
critical to the success of the project than the particular method or tool
that is used. In order to be efficient, software developers need to give
as much consideration to their development process as they do to the
product.

In this course, you will gain practical skill in analysis and design that
will complement your skills in programming. You will learn about
the problems of and approaches to developing large computer
systems, and will acquire an understanding of what constitutes a
development methodology. You will also experience using computer-
aided software engineering (CASE) tools and learn an industry
standard modeling language, Unified Modeling Language (UML).

Syllabus for COP 3331

COP 3331 Page 6

This course is designed to complement the programming course COP
3330: Object-Oriented Programming, in which you have gained the
programming experience needed to convert completed designs into
computer executable code.

This course can be divided into four learning sections. In the first
section (Weeks 1–3) you will focus on systems engineering. In the
second section (Weeks 4–7) you will focus on analysis. (Week 9 is
the midterm exam, and Week 10 is spring break.) In the third section
(Weeks 8, 11–12) you will focus on design. In the final section
(Weeks 13–14) you will focus on some issues in software
development methodology, including quality control. Use Week 15
for exam preparation.

Overall Course
Objectives

 After you have completed this course, you should be able to:

1. Describe and explain the main stages, methods, tools, techniques,
and problems involved in systems and software engineering.

2. Explain the main concepts and goals of analysis and design.

3. Demonstrate practical skill in the use of an analysis and
design notation.

4. Demonstrate technical and communication skills required for
working in systems development teams and dealing with
stakeholders.*

Required Course
Materials

 You need all of the following to complete this course:

§ Textbook

§ Study guide

§ Access to the course website

§ CD-ROM

§ UML diagramming software

Textbook:

Bruegge, B., & Dutoit, A. (2000). Object-oriented software
engineering. NJ: Prentice Hall.

Companion website for this book:
http://cw.prenhall.com/bookbind/pubbooks/bruegge/

*A stakeholder is someone who is not part of the development team but who has an interest in the success of
the project.

Syllabus for COP 3331

COP 3331 Page 7

Article:

Booch. G. (1999). The software development team.
Available:
http://www.rational.com/products/whitepapers/100580.jsp
[2000, November 30]

 (Also reprinted in the appendix to this study guide.)

Recommended Additional Reading:

This course makes use of one textbook and you are also referred to
additional readings within this study guide. If you would like to
broaden your knowledge, you are encouraged to consult other texts
and Web-based sources.

§ The textbook we are using looks at software engineering from an
object-oriented perspective, but most software engineering texts
will take a more general approach. For an example, see:

Pressman, R. (2000). Software engineering: A practitioner’s
approach. New York: Prentice Hall.

Sommerville, I. (1996). Software engineering. Harlow Essex,
England: Addison-Wesley.

§ If you wish to learn more about the general process of product
development (not restricted to computer systems), consult:

Reinertsen, D. G. (1997). Managing the design factory. New
York: The Free Press.

§ There are a number of relevant links provided on the course
website. These are update regularly. Some of the main sites
relating to software engineering and OOAD are:

The Software Engineering Institute: http://www.sei.cmu.edu/

The Method Engineering Encyclopedia:
http://panoramix.univ-paris1.fr/CRINFO/dmrg/MEE/

Rational Software—the market leader in OO computer-aided
software engineering (CASE) tools:
http://www.rational.com/index.jsp

§ If you wish to go into more depth on the use of UML in analysis
and design, the following are recommended:

Booch, G., Rumbaugh, R., & Jacobson, I. (2000). The complete
UML training course. Pearson Interactive.

Larman, C. (1997). Applying UML and patterns. New York:
Prentice Hall.

Syllabus for COP 3331

COP 3331 Page 8

Course Website Features:

On the course website you will find a number of resources, including
the following:

§ Templates for the weekly assessments and project reports.

§ Self-test quizzes

§ Lecture presentations

§ Examples

§ Useful links

§ Group working areas

CD-ROM:

The Multimedia CD-ROM (hereafter referred to as the CD-ROM)
contains material that will be used in this course. These include the
following:

§ A series of interviews with practicing software developers

§ A student version of Rational Rose visual modeling tool

§ The runtime version of Apple’s QuickTime video player

While using this learning resource, keep the following in mind:

§ Depending on the speed of your machine, there may be some
delay when loading video clips.

§ You will need to install the QuickTime software in order to play
the videos. This software is available on the CD-ROM.

§ It is recommended that you use Internet Explorer and a screen
resolution of at least 800x600 while accessing the videos.

§ The interviews will also be available at the course website in
audio-only form.

The video interviews will be utilized in a number of the weekly
assessments throughout the course. You can access the video files
from your Web browser by selecting Open from the file menu and
then selecting interviews.html from the CD-ROM. You can also
click My computer on the desktop, select the CD-ROM drive, open
the Interview folder, and then double-click the interviews.html file.
Your computer screen should look like that shown on Figure 1.

Syllabus for COP 3331

COP 3331 Page 9

Figure 1: Opening screen for the interviews

Selecting one of the numbered questions will take you to a screen like
the one shown on Figure 2.

Figure 2: Accessing the videos for each question

After you have selected a question, you will note that the next screen
contains photographs of people from the various companies. By
double-clicking on one of these pictures, you will be able to access a
video of that person’s answer to the question. A glossary defining
some of the technical terms used in the answers may be available.
There is also a link to the main page or to the next question in the
sequence.

In order to play the videos, you will need a version of Apple’s
QuickTime installed on your machine. The latest version of this

Syllabus for COP 3331

COP 3331 Page 10

software can be obtained from

http://www.apple.com/quicktime/

You will find version 4.12 (most recent version as of 11/07/00) on
your CD-ROM. Double-clicking on this icon will start the installation
program.

Course
Requirements

 To successfully complete this course you must read assigned texts,
listen to lectures, and participate in discussions. Completing the
assigned readings before their corresponding lectures and discussions
will enable you to raise relevant questions and to improve your
learning experience and your grade.

Each week of the course you will be given a set of activities to
complete. These activities usually involve taking self-tests from the
textbook and consulting the website for other learning resources.
Some weeks of the course will also provide “Additional Notes” and
Web references to cover material that is not dealt with in the
textbook.

Most weeks there are assessments to be completed. These are
designed to enhance your learning and demonstrate your
understanding of the material. Most weeks you will have to submit
assessments to your mentor or TA for grading.

In the first half of the course (prior to the midterm exam), you will
find that there are more assessments to complete. In the second half
of the course you will be completing a course project. Consequently,
there will be fewer assessments in the latter half, as you will be
expected to spend time on the course project. You should anticipate
an average of 10–15 hours for each week’s activities and
assessments.

Discussion: Active participation in discussions and group work is an
important part of the course. Your contributions to the class will
enrich your own experience and those of your classmates.

Assessment The overall course grade is determined as follows:

 Weekly Assessments 35%

 Analysis and Design Project 15%

 Midterm Exam 20%

 Final Exam 30%

Syllabus for COP 3331

COP 3331 Page 11

Weekly Assessments

Weekly assessments include assignments that ask you to demonstrate
your command of the week’s materials. Each assignment includes the
total possible points you can earn and the grading criteria on which
your submitted work will evaluated. The total number of obtainable
points will vary from week to week. Each week, the points earned on
the assignments in the assessments are totaled to give the weekly
score. The 35% portion of your grade derived from weekly
assessments will be determined by dividing the total assignment
points earned by the total number of assignment points possible. The
Week 13 assignment will not count towards the final score but will be
treated as a substitution assignment; i.e., you can substitute the score
on this assignment for your lowest score on the previous assessments.
If you miss an assignment, this score can be substituted for the
missing assignment.

Exams

The midterm and final exams will be proctored. You will be informed
when and where to report for these exams. If the maximum
obtainable score for an exam is not 100, it will be converted to a 100-
point scale.

Analysis and Design Project

You will work in a group of three or four to produce a requirements
analysis document for a new software system. Your grade will be
assessed both on the quality of the report and the assessment of your
effort by your peers and instructor.

Course Schedule The following calendar delineates the assessments throughout the
semester. It is your responsibility, however, to check the
Announcements and the Course Calendar on the course website for
the most up-to-date information and due dates of assessments.

Syllabus for COP 3331

COP 3331 Page 12

Semester Calendar

 Readings Individual Assessments Group Assessments

Week 1
Course Introduction

§ Introductory
Notes

§ Textbook
preface

§ Familiarize yourself with
the course website.

§ Week 1 Assessment
(14 pts)

None

Week 2
Systems Engineering

§ Ch 1

§ Week 2 Notes

Week 2 Assessment
(36 pts)

None

Week 3
Communication

§ Ch 3 Week 3 Assessment
(39 pts)

Workgroup assigned

Week 4
Modeling

§ Ch 2 Week 4 Assessment
(38 pts)

Group discussion
task

Week 5
Requirements

§ Ch 4

§ Week 5 Notes

Week 5 Assessment
(41 pts)

Group task

Week 6
Analysis

§ Ch 5 Week 6 Assessment
(22 pts)

Group Project
released

Week 7
Project Preparation

 § Ch 11 Week 7 Assessment
(15 pts)

Group Project
organization and
planning

Week 8
System Design

§ Ch 6 Week 8 Assessment
(15 pts)

None

Week 9
Midterm Preparation

§ Review first 5
chs.

None None

Week 10
Project Work/
Spring Break

§ Read ahead None None

Week 11
Design Methods

§ Extra
readings
provided

Week 11 Assessment
(20 pts)

None

Week 12
Object Design

§ Ch 7 Week 12 Assessment
(35 pts)

None

Week 13
Quality Control

 § Ch 9 Substitution Assessment
(30 pts)

None

Week 14
Issues in Methodology

 § Ch 12

§ Extra
readings

None Group Project due

Week 15
Revision/Exam
Preparation

 None None None

Syllabus for COP 3331

COP 3331 Page 13

Course
Policies

 Assessments should be completed using the templates provided on the
website. The assessments should be submitted before the due date
through the DropBox at the course website using the standard file naming
conventions.

Be sure to include the following information on all assessments that you
submit:

§ Student ID number

§ Name

§ Section number (for on-campus students) or mentor’s name (for
distance students)

You will receive assignment grades and feedback through
individual email.

NOTE: Please keep a backup copy of all your work. We cannot assume
responsibility for lost items.

Late Policy

Descriptions of each assignment and evaluation criteria will be provided
through the course. The dates listed for assessments may change as the
semester progresses. If they do, you’ll be notified through the course
bulletin board. However, we do expect assessments to be completed on
time.

The policy regarding late assessments is 10% penalty for late assessments
turned in within 24 hours of due date and 50% penalty for assessments
turned in more than 24 hours after the due date. Assessments submitted
later than four days after the due date will not be accepted. We use this
system even in the event of excusable situations such as minor sicknesses
or other unforeseen conflicts. However, any exceptions to this policy are
made at our discretion.

Students who miss graded assessments receive a grade of zero. If you are
ill or have a serious problem that prevents you from submitting an
assignment on the day it is due, please contact your mentor or instructor
at once and we will arrange an alternative date. This should be done at
least 12 hours before the submission deadline.

The score for the last assignment will be treated as a substitution
assignment, which can replace a missed assignment. Those who do not
miss an assignment can use their score on the substitution assignment to
replace their lowest score.

Syllabus for COP 3331

COP 3331 Page 14

Grading The grading scale for the course will be as follows:

92–100 A

90–91.99 A-

88–89.99 B+

82–87.99 B

80–81.99 B-

78–79.99 C+

72–77.99 C

70–71.99 C-

60–69.99 D

0–59.99 F

Example Grading:

Week Assessment Score Max Score Attainable

 1 14 14

 2 31 36

 3 35 39

 4 28 38

 5 31 41

 6 20 22

 7 15 15

 8 12 15

 11 15 20

 12 27 35

TOTAL 228 275

[13 28 30]

Syllabus for COP 3331

COP 3331 Page 15

Ø Substitute Assessment 13 for Assessment 8

New Total

246/275 = .8945 = 90%

Note: All percentages are rounded up.

Midterm 37 out of 50 74%

Final 41 out of 50 82%

Project 80%

 Overall Grade Calculation

Assessments Project Midterm Exam

90 x 0.35 = 31.5 80 x 0.15 = 12 74 x 0.2 = 15

Final Exam Total

82 x 0.3 = 25 84%

 Final Letter Grade: B

Syllabus for COP 3331

COP 3331 Page 16

About This Study Guide

COP 3331 Page 17

About This Study Guide

 This study guide presents each week or unit of this class through the
following headings and sections:

♦ Overview

This section provides a summary of the major concepts or focus of
study for the week, as well as a brief description of the assigned
readings and activities.

♦ Objectives

This section describes the knowledge and skills you should master.

♦ Focus Questions

This section poses questions about the major issues and concepts
related to the week’s topic. These questions will help you organize
and focus your readings.

♦ Readings and Presentations

This section lists the readings and presentations that you should read
or listen to before the week’s end.

♦ Activities

This section lists applications and practices that will help you achieve
the week’s objectives.

♦ Assessments

This section lists any assignments for the week that will receive
individual grades. You will complete the assignment with a written
summation or response to be uploaded to the DropBox. (For detailed
instructions on submitting a file to the DropBox, see “How do I use
my Tools area” in the Student Handbook for Online Learning,
available online at:
http://www.fsu.edu/~distance/media/studenthandbook.pdf)

♦ Checklist

This section gives you a checklist of the readings, presentations,
activities, and assessments that you should have completed by the
week’s end.

About This Study Guide

COP 3331 Page 18

Week 1: Introduction

COP 3331 Page 19

Week 1

Overview Before we focus on the analysis and design stages of the systems
engineering process, it is important to have a good understanding of the
overall development process and the different ways in which it can be
organized.

You will find that it is common to refer to software engineering rather
than systems engineering. However, it is more correct to use the term
systems engineering because most software is part of a larger system. As
the course progresses, you will begin to see that if the software
components of a system are engineered in isolation from and without
specific consideration to other system components (e.g., hardware, human
users), problems are very likely to arise.

In this first week, you will cover the Introductory Notes, familiarize
yourself with the course website, and complete your first assessment. You
will also have the opportunity to meet the lead faculty and fellow students
through the course website. Please ensure that you are familiar with the
procedure for submitting assessments and with the late policy.

Objectives Upon completion of Week 1 you should be able to:

§ Find your way around the various sections of the website

§ Access the video interviews on the CD-ROM and describe the
companies being interviewed

§ Distinguish software engineering from computer science and
programming

§ Distinguish between software engineering and systems engineering

§ Distinguish between spiral and linear processes

§ Identify the main attributes of product design

Focus
Questions

 § Think about the ways in which you organize the development of a
large software development process and then ask: What skills and
tasks would be involved?

§ When you make a purchase of a technology product (hardware or
software), what attributes do you consider when deciding among
competing products?

Readings and
Presentations

 § Read the Introductory Notes and Chapter 1 of the textbook.

§ On the course website you will be given some web references to read.

Week 1

COP 3331 Page 20

Activities § Write some notes relating to the bulleted points in the lecture slides.

§ Familiarize yourself with the course website, textbook, and CD-
ROM. While at the website do the following:

1. Take the introductory self-test quiz.

2. Set up a home page in the Student Tools area.

§ Install QuickTime on your computer.

§ Distance learning students who have not already done so should
establish contact with your mentor.

Assessments The process of developing software systems is complex, and there are
many ways of doing it. Academics often differ in what they consider to be
the best approach to process.

To give you a sense of the various perspectives on systems development,
we have conducted a series of interviews with representatives of four
software development companies. These interviews will enable you to
hear from a variety of professionals involved in the development of
software-based products and services.

Many of the assignments are designed to help you “actively listen” when
you watch the video interviews. Active listening is the ability to take note
of what is said and to consider and compare it with information received
from other sources. Active listening is an important skill required of a
systems analyst.

The interviews can be found on the CD-ROM, and also can be accessed
in audio-only form through a link on the course website.

Submit responses to the assignments below by the due date in the course
calendar. The point value of portion of the assignment is indicated in the
parentheses.

Assignment 1.1 [Total of 14 points available]

Your first task is to conduct some preliminary research on the four
companies taking part in the video interviews. Visit the websites of the
four companies. The links can be found on the course website and on the
main page of the interviews. Note the kinds of software products each
company produces. Then listen to the responses to the following
interview questions on the CD-ROM:

§ “What are your name, title, and role in the company?”

§ “How would you describe the products/projects you are currently
working on?”

In your own words and using jargon-free language, write a paragraph that

Week 1

COP 3331 Page 21

briefly summarizes pertinent information about two of these companies.
Each summary should be 60–120 words. You should have read the
Introductory Notes prior to beginning this assignment. Please note that it
is important that you stick to the word limits. An important skill for
analysts is to be able to concisely summarize the information available to
them. The word limit requires that you consider what is important
information and what can be left out.

(7 points per company)

Grading criteria:

ú Is each company’s primary business clearly stated?

ú Are the products of each company identified as either custom
or off-the-shelf software?

ú Are acronyms defined and technical phrases explained?
For example, “The company’s main business is software for
DTP,” should be “The company’s main business is desktop
publishing (DTP). DTP involves the production of high-
quality documents on a computer.

ú Are the summaries original expressions, rather than extracts
from the company’s website?

ú Are the abstracts within the word limit?

Checklist o Have you read the Introductory Notes?

o Have you read Chapter 1 in the textbook?

o Have you read the web references provided on the
course website?

o Have you visited the course website?

o Have you written notes on the main points in the lecture slides?

o Have you installed QuickTime on your computer?

o Have you completed Assessment 1.1?

o Have you completed the introductory test?

o Have you met this week’s learning objectives?

Week 1

COP 3331 Page 22

Week 1: Introductory Notes

Process and Product: An Introduction to Systems Engineering

“In most organizations product development is a mix of black art and esoteric ritual. Most
development processes have not been consciously designed, but rather evolve along a bumpy
path…like the old joke about making sausages. You may enjoy the results, but you really don’t want
to know how they do it.”

From Managing the Design Factory, by Donald G. Reinertsen

“The scientist adds to the store of verified, systematized knowledge of the physical world; the
engineer brings this knowledge to bear on practical problems. “

 Encyclopedia Britannica

In this course you will look at the process issues in developing large-scale software systems. One
approach to this subject is to think of software as a manufactured product. One of the defining
features of human civilization is the production of manufactured products, for example, metal tools,
wooden boats, etc. Humans have been developing products for thousand of years; however, starting
with the Industrial Revolution towards the end of the 18th century, products began to get very
complex. Consequently, the process of developing products has become much more dependent on
organization and planning.

One of the most significant manufactured products to appear in the latter part of the 20th century is the
computer. There are two unique aspects about the computer that distinguish it from all those products
previously developed. It acts as a tool to augment our brainpower, and it is an adaptable tool that can
be programmed to perform a variety of tasks. In a sense it is many products in one. Recently, the
power of this tool has been enhanced by the ability to connect together computers through a
worldwide communications network (the Internet).

People tend to think of a computer in the form of a PC (a monitor, box, keyboard, and mouse) and to
think of software as what they see on this machine (e.g., Windows). Actually, computers have many
different physical forms and most of the computers used in everyday life are embedded in other
products, from cars to video recorders to children’s toys. However, it is not the computer itself that is
useful; what turns the computer into a useful product is software.

Software in many varied forms controls many aspects of our lives. Software controls the power
stations that deliver power to our homes, and software is used to calculate the utility bills. It controls
the satellites that enable international communications , and it enables a telephone to retrieve a
previously dialed number.

Software engineering is concerned with the process of software development from the time that
someone determines that there is a need for a new or better software product, to the time that product
is no longer used. As a discipline, software engineering seeks to improve the development process in
order to increase the efficiency of development and the quality of the product. Software engineering
is very much related to computer science, which supplies the theory and technology that software

Week 1

COP 3331 Page 23

engineers will apply. It also borrows knowledge from other areas, including traditional engineering
subjects.

Systems
Although you will find that many people refer to software engineering, it is perhaps more accurate to
refer to systems engineering. The reason for this is that software is seldom developed in isolation;
rather, software is usually developed in conjunction with the accompanying hardware. In developing
software there is also a need to develop training and support materials, including manuals and online
help features. The overall package constitutes a system.

It is important to recognize that software will often be used as part of a system for conducting
business. Software may utilize data that is collected and processed by another system, which may be
other independent pieces of software, or a system involving human operators. Computer systems
seldom involve a single isolated program; systems are usually comprised of a collection of programs
or program components that work together. The overall success of a system is dependent on how well
the different subsystems and components interact.

Problems can arise if software developers concentrate too much on software alone and neglect the
many other areas that are part of a system. Exclusively focusing on software may lead to decisions
that will have adverse effects on other parts of the system being constructed. This course will
emphasize a team approach to systems development that requires everyone involved in systems
development to communicate and cooperate. Any changes that software developers make in software
design need to be clearly and promptly communicated to all members of the systems development
team, because those changes may impact other areas of responsibility.

Systems operate within a particular environment, but are often affected by actions or conditions out of
the immediate control of the systems developers. For example, a financial system may have to
account for tax rates, yet tax rates can be altered at any time by governments. A well-designed
system, therefore, will allow for easy updating of tax code changes.

To more fully understand the process of developing systems, we must distinguish between the overall
system development and the development of the subsystems and the components that make up the
subsystems. In most computer courses, much of a student’s time will be spent leaning how to code at
the subsystem or component level. This narrow focus can make it difficult to appreciate the “big
picture” problems that occur at the systems level.

The “big picture” of systems development begins with analysis and proceeds to architectural design.
Architectural design involves identifying the subsystems and setting up the control, coordination and
communication of the subsystem developers. Building architects will coordinate and control the work
of plumbers, bricklayers, electricians, etc., to realize their vision for a building as specified in the
architectural plan. Systems architects will coordinate and control specialists in hardware, networking,
software engineering, testing, documentation, etc., to realize their design vision of the system.

For each subsystem of the architecture, a separate analysis and design will have to be completed.
Subsystems are usually not independent; hence, the need for someone to be responsible for
coordinating the system development.

Week 1

COP 3331 Page 24

Components and Objects
Modern computer systems are seldom made up of one large program. The current trend is to construct
large programs from collections of smaller programs, known as components. If you look in the
systems directory of the Microsoft Windows operating system, you will find many files with the
extension DLL (an acronym for dynamic link libraries). These are components used by the Windows
operating system to perform various functions. A program that is built from smaller components
usually produces a program that is easier to maintain. When a problem arises it is easier to identify
the component responsible and replace it, rather than updating a whole operating system. Existing
components can also be reused in new programs; new components have to be created only to handle
new functionality.

There are now a number of different technologies, such as Microsoft’s Active X or Java Applets,
which software developers can use to create component-based applications. Although the idea of both
components and object orientation share similar goals (i.e., facilitating reuse and ease-of-
maintenance), these two concepts are not the same. Many components that are used in software
systems may be constructed with traditional rather than object-oriented programming. The modern
trend, however, is definitely towards object-oriented components.

Software as a Product
As noted in the introduction, software is a product. All products have attributes and developing a new
product requires that trade -offs be made among different attributes. The aesthetic value (or visual
appeal) of a product is one attribute; cost of manufacturing is another. All other things being equal, a
leather-covered chair will look better than a plastic -covered chair. However, leather costs more to
manufacture than plastic, and therefore a trade-off has to be made between aesthetic appeal and the
manufacturing cost.

In the early days of software, developers did not often have to consider the relative value of different
attributes and choose among them. However, many users of software now expect their software to
have aesthetic appeal, particula rly corporate websites. Thus many software projects have their cost of
production raised due to the need to employ specialists in the visual design of software interfaces. In
fact, if we look at industrial history this change has also happened for other products. Henry Ford
created the first mass-manufactured automobile (the model T) and is quoted as saying, “You can have
any color you want as long as it is black.” Any modern manufacturer of autos would not be able to
survive with this attitude towards customers’ color preference. The look of a product can have a great
effect on how easy it is to market.

In addition to aesthetics, other product attributes developers need to consider include the following:

Functionality
Functionality is what you can do with a product. Obviously, it is the most important attribute.
However, care should be taken that the focus on functionality does not take up all the attention of the
developers. Most modern software applications increase functionality with each new version or
release of a product. As an example, in the early 1980s no word processor had a spell or grammar
checker. Now this feature is fairly common. Functions that are at first innovative and unique, and that
people are willing to pay more for, will become, with time, standard on products (e.g., color on
TV sets).

Week 1

COP 3331 Page 25

Efficiency
Some products have similar functionality, but the way in which the functionality is implemented has
an effect on the efficiency. For example, all C++ compilers perform the same function of compiling
source code into machine code, but some compilers are much faster than others.

Usability
Usability is a measure of how easy a product is to learn and use. Again, different products can have
similar functionality, but interface design can vary greatly and make a big difference on how the
product is to operate for the user. A remote control for a TV is an example of a product for which
usability can vary greatly according to the design. This attribute is also very important in software
development, as customers have come to realize the training and support costs involved in purchasing
computer systems. There are additional hidden costs associated with poor interface design and low
usability when users make errors because they misunderstand the system they are using.

Reliability
Reliability is the level of continued product functionality. To avoid flaws in the product design, extra
effort and cost need to be expended at both the design and testing level of development to ensure
product reliability. It is no use for a product to have a high level of functionality, if that functionality
is seldom available due to product breakdown.

Maintainability
A product’s maintainability is determined by how easily the product can be updated, serviced, or
repaired. One of the advantages to both component and object-oriented approaches to software is that
they will result in a more maintainable system. If something is not right about a particular function,
there are identifiable components and classes related to that function that can be repaired or modified,
instead of having to search through a large program to find out which lines of code are responsible.

Safety
Safety is very much related to the reliability attribute, and its importance may be critical for certain
applications. Products can be designed to ensure maximum safety, and for some products, there are
laws to enforce safety standards. A user may be able to tolerate an occasional breakdown in the
reliability of a computer game, but for safety reasons anything less than 100% reliability in flight
control software cannot be tolerated.

Cost
This attribute is important for the profitability of the product. The greater the attention that is paid to
the other factors, the greater the cost of product design and production. The greater the cost, the fewer
the people who can afford to buy the product.

The Importance of Attributes
Designing a successful product requires that the development team consider all of these attributes.
Trade-offs among attributes will inevitably have to be made; what these trade-offs are is often
dependent on the target customer. There are cost-oriented customers who will accept lower quality in
some attributes, and there are quality-oriented customers who are willing to pay more for having a
high level of quality in all attributes.

The importance of different attributes often shifts as consumers become more informed. We have
already noted that aesthetics has become more important in modern software design. Since the advent
of the personal computer, which led to the mass use of computers in developed economies, the

Week 1

COP 3331 Page 26

attribute of usability has become increasingly significant. Many software developers used to stress in
their advertising what you could do with the product; now they stress ease of use. As more people
were required to use computers in their jobs, the cost of training and supporting these new users
began to increase. These economic pressures helped highlight the importance of usability, because the
best way to reduce training and support costs is to have software that is easy to learn and use.

If we were to attempt to rate any product on the basis of the attributes listed above, it would be
difficult to find a product that scored highly on all attributes. This is due to compromises that must be
made in order to produce a product that will both satisfy a need and make a profit. It is impractical to
design a highly efficient, functional, and aesthetically pleasing product that too few people will buy
owing to its high cost. Product design teams must balance all of these factors and considerations. This
is not always easy, as different members of the development team will have different perspectives on
what are the most important attributes.

The importance of any given attribute will depend on the product and its purpose. In the example
given at the start of this section, a leather chair is appropriate for use as home furniture, and plastic
chairs are preferable for use in a school canteen. In the school dining room, where many chairs have
to be supplied and the chairs’ users are not particularly careful with the product, durability and cost
are the most important attributes. In the home, aesthetics and comfort take precedence. The same kind
of give-and-take between attributes is also true for software products. If the software is being
designed for computer systems specialists, functionality and efficiency will be much more important
than usability or aesthetics. Some experienced computer users have a dislike for graphical user
interfaces, which they believe get in the way of the functionality. Conversely, a blank screen, flashing
cursor, and cryptic error messages create an unnecessary barrier to novice computer users.

Two Categories of Product
There are two main categorie s of product, each of which has a slightly different design process.

Commercial Off-the-Shelf (COTS) Products
These products are designed and manufactured to a set standard and are usually purchased through a
retail outlet. If you go into a software store, you will see many software products that you can take
“off the shelf” and purchase. With these kinds of products, someone first perceives a need, and then
works on inventing a product to satisfy that need. No money is made until the product ships (is
purchased by retail outlets to be offered for sale), and often considerable investment will have to be
made prior to shipping. Once a new product type has been developed, other companies will often
begin to develop competing products, and will look for ways to attract more customers by improving
the product design, such as adding more functions or improving the usability. Off-the-shelf products
are sometimes referred to as shrink-wrapped products.

Custom Products
While off-the-shelf products serve the need of a general market, an organization often has unique
requirements that cannot be met by off-the-shelf products. In such cases it is necessary for a custom
product to be developed. For custom products, developers may receive some up-front or initial
payment, but the developers have to carefully balance what they promise the customer against what is
charged. A currently popular custom software product is the development of corporate websites.
Although there are off-the-shelf products to assist in constructing websites, most websites must be
custom-constructed to the exact specifications of the user. For a large interactive site, this will involve
a significant amount of effort. Another example of a custom product is software that is designed for

Week 1

COP 3331 Page 27

integration into another product, such as a video recorder. While VCRs themselves are off-the-shelf
products, the software contained in the VCR had to be custom-developed for that particular model.

Be aware that there is some overlap to these categories. Off-the-shelf software products often have
features that can be customized to individual requirements, and customized products often incorporate
off-the-shelf products as part of the system. For example, a customized website may utilize an off-
the-shelf database product to store information accessed through that website.

Approaches to Process
This introduction has intended to get you to think about software as part of a system that constitutes a
product to serve some human need. You will now begin to look at the process by which this product
is produced.

Much of computer science tends to be concerned with computer technology and how it is
implemented. Systems and software engineering is concerned with the development process, from the
initial idea for a new software product to its delivery and beyond. Questions that systems and
software engineering ask include: How is this process made efficient? How can we ensure that the
end product will be of the highest quality? How can we ensure the product is needed and will be
used?

The way software is developed varies from organization to organization. Some organizations have
formalized methods for developing software that involve distinct stages, clear division of
responsibilities, and well-specified documentation requirements. Other companies have informal
development methods, with no clearly definable stages, small teams of people who cover more than
one role, and little documentation. There are a number of factors influencing where on the continuum
a company will appear, but basically, smaller companies are more likely to have a more informal
process. This generalization should be qualified, however, because the specific application for the
software will also influence the level of formality in the development process. If a company is
creating safety-critical systems, such as for aircraft or nuclear power stations, it is very likely that the
company will have a highly formalized process.

In addition to differences in the level of formality in a method, there are also differences in the flow
of the process. The process of software development can be broken down into identifiable stages that
take place. The main stages are:

Analysis: Where there is an attempt to understand the problem.

Design: Where a system is designed to solve the problem.

Implementation: Where the system design is converted into a real product.

Quality assurance: Where there is scrutiny of the output of various stages to ensure that a quality
product is likely to result. This will incorporate some form of testing.

Installation: Where the completed product is installed into the working environment.

Maintenance: Where the product is upgraded and corrected after installation.

Week 1

COP 3331 Page 28

All these stages can be further subdivided into activities; for example, analysis can be broken down
into requirements elicitation, user analysis, business analysis, etc. Different methods will involve
different stages, and sometimes use different terms to refer to the various stages.

A process can flow in a linear manner, where one stage of development follows another. This is
characterized by the traditional waterfall method. Another approach is to use an iterative method,
where the stages are repeated over a number of cycles, the output at the end of each cycle moving
closer towards being a final product. This is also referred to as a spiral process, which is a more
appropriate description, as a spiral suggests that with each loop you get closer towards an end point.

It is also possible to have hybrid processes. For example, an iterative development is used to construct
a prototype. The prototype is thoroughly analyzed and tested to determine the requirements for the
final product. In the final product development, a linear process is used.

Prototyping involves constructing a working model of the final product to illustrate how it will look
and operate. Many companies find this a useful way of removing the ambiguity that surrounds spoken
and written descriptions of a design. Rapid development tools such as Visual Basic have increased the
ease with which accurate prototypes can be constructed. Sometimes a prototype is used to facilitate
understanding and to compare design options, but is then thrown away prior to the development of the
final product (throwaway prototyping). Sometimes a prototype is incrementally developed to the
extent that it becomes the final product (incremental prototyping).

Terminology
Many disciplines generate a lot of special terminology (more negatively referred to as jargon). This
terminology can help experts to refer to complex concepts and processes, thus allowing for more
precise and efficient communication. However, such terminology can also cause confusion, especially
to those unfamiliar with a subject. Software engineering is no exception, and you will find that a
particular term can have different meanings depending on the context in which the word is used, or
the expert who is using it.

We have already clarified the difference in terminology between software and systems engineering,
and looked at the term component.

In the above section, “Approaches to Process,” the word method was used to describe a particular
process of software development. Many people use the term methodology instead of method to refer
to the process of development. Strictly speaking, the suffix “ology” denotes the study or science of
the root word (psychology is the study of the “psyche,” or mind). Thus, methodology more correctly
describes the academic study of methods of software development, rather than a specific development
process. To further confuse the issue, method is also a term used in some object-oriented
programming languages to refer to the code controlling a certain behavior within an object. Whatever
the strictly correct use of the word method is, many people will continue to use “method” and
“methodology” interchangeably, just as they will continue to interchange software development and
system development.

Still more potential for confusion exists when communicating with people in other disciplines who
also share some of the same terms, but use the terms differently. For example, in some fields the term
design incorporates the activities that software engineers would identify as “analysis.” You should
prepare to be flexible in your understanding of such terms, taking into account the speaker’s frame of
reference, the subject under discussion, and the context in which the term is used.

Week 1

COP 3331 Page 29

Key points

Systems

The concept of systems engineering is distinguished from the concept of software engineering.
Software is generally a subsystem of a larger system incorporating hardware, support, and
training. Most modern software itself is a system comprised of a number of distinct components.

Components

Modern software often consists of a collection of smaller programs that perform a specific set of
functions. As with object-orientation in general (which forms the basis of many component
technologies), component technologies assist engineering efficiency by facilitating reuse and
ease-of-maintenance.

Products

Manufactured products, such as software, are created to serve some human need. Systems
engineers should ensure that development efforts pay appropriate attention to the different
product attributes such as usability and aesthetic appeal, and not focus on functionality alone.

Process

There are a number of approaches to the process of developing systems. Processes can be
characterized as linear, spiral, or hybrid . Processes differ in their level of formality. It is now
common to use prototyping as part of the software development process.

Terminology

In many subjects it is often difficult to develop an understanding of the various terms used. You
should be aware that the same terms could be used to mean different things in different contexts.

Week 1

COP 3331 Page 30

Week 2 : Systems Engineering

COP 3331 Page 31

Week 2

Overview Last week we introduced you in general terms to systems engineering and
product development. This week we look at some of these concepts in
more detail. In particular, we will examine the concept of a system, and
begin to explore the concept of systems modeling. We will also
investigate the various stages of the development process, and the
management issues involved in software development. In doing so, you
will investigate the different roles in the software development team, and
some specific tools used in the development process.

In this second week you will read part of Chapter 12 on life-cycles
processes. You will also begin to use a modeling tool to illustrate your
understanding of a situation. This is a common activity for an analyst.

Objectives Upon completion of Week 2 you should be able to:

§ Categorize a process according to the SEI process maturity levels

§ Create a model of a company’s development process

§ Describe the stages and activities involved in systems development

§ Summarize the management activities that occur in software
development

§ Identify the main problems that can occur in systems engineering

§ Identify the different skills involved in systems development

§ Describe different ways that systems development projects are
coordinated and controlled

§ Provide detailed examples of the various kinds of tools and
techniques used to support the software development process

Focus
Questions

 § What do you think are some of the biggest problems in developing a
large system?

§ If you were in charge of a large software development project
working with a number of others, what policies or rules would you
institute to ensure the success of the project?

Readings and
Presentations

 § Read Sections 12.1, 12.2, & 12.3 of Chapter 12 in Object-Oriented
Software Engineering, by Bruegge and Dutoit.

§ When you have completed reading the chapter in the textbook, read
the Additional Notes for Week 2 (see the next section).

You are encouraged to take notes on your understanding of these
readings, as well noting any clarifications you may require.

Week 2

COP 3331 Page 32

Activities § Attempt the exercises in Chapter 1 of the textbook. You will not be
asked to submit your work, but try to answer the exercise questions.
This will provide an excellent review of the key points of the chapter,
and an opportunity to check your knowledge and understanding of the
material.

§ Check the Announcements area of the course website for additional
instructions. Consult any learning materials listed, and then complete
the weekly self-test quiz.

Assessments The following assignments require consulting the software development
company video interviews on the CD-ROM. The interviews also can be
accessed in audio-only form at the course website.

Submit responses to the assignments below by the due date in the course
calendar. The point value of the assignment is indicated in the
parentheses.

Assignment 2.1 [Total of 20 points available]

Listen to the responses to the following interview question on the
CD-ROM:

“Could you give an overview of the software
development process at your company?”

On the website under “Assessments” there is a diagram that illustrates the
development process at one of the companies interviewed.

(A)

1) Identify the company whose process is represented in the diagram

(2 points)

2) Identify one flaw in the diagram.

(2 points)

Grading criteria :

ú Is the company represented in the diagram correctly identified?

ú Has a flaw in the diagram been identified?

(B) Based on information provided in the video interview, create a
similar diagram to illustrate the development process for the

Week 2

COP 3331 Page 33

company that will be listed in this week’s Course Announcements.
The diagram should be constructed in one of the tools specified on
the course website.

(10 points for correctness,
6 points for presentation)

Grading criteria:

ú Have all the activities and products of the company been
represented?

ú Are the activities and products in the correct order?

ú Is the diagram neat and clear with appropriate labeling?

Assignment 2.2 [Total of 10 points available]

Do a Web search on the term software engineering. Visit at least three
sites, list the URLs and titles of the sites, and then write a brief (60–120
words) description of the site you found to be the most interesting.

Grading criteria:

ú Have three URLs been listed?

ú Has a website been adequately described?

ú Is the description in the student’s own words?

Assignment 2.3 [Total of 6 points available]

Listen to the responses to the following interview questions on the
CD-ROM:

§ “What do you consider to be the most important part of the software
development process?”

§ “How is the work of the different people coordinated?”

(A) List the most important part in the development process as
described by each company.

(4 points)

 Company Most important step

Week 2

COP 3331 Page 34

 (B) Identify two methods of coordinating work that are mentioned by
at least two companies.

(2 points)

Grading criteria:

ú Are the steps in the development process identified for
each company?

ú Have two work coordination techniques common to two or more
companies been identified?

Checklist o Have you read Sections 12.1, 12.2, & 12.3 of Chapter 12 in the
textbook?

o Have you completed the exercises at the end of the Chapter 1?

o Have you read the Week 2 Additional Notes?

o Have you checked the Announcements area of course website for
additional instructions?

o Have you completed Assignments 2.1, 2.2, and 2.3?

o Have you completed the self-test?

o Have you met this week’s learning objectives?

Week 2

COP 3331 Page 35

Week 2: Additional Notes
A Guide to System Stakeholders and Developers:
Who are the people involved in the development process?

“…there’s a big difference between cutting code and shipping products: deploying quality software is a
team sport that requires a group of people with a variety of skills working together towards a common
goal.”

From Rational Software “white paper,” by Grady Booch.

In this course we pay particular emphasis on communication within a development team. Good
communication is not only dependent on the actual channels of communication, it is also dependent
on psychological factors. One of the keys to good communication is effective leadership by the
project/product manager. Different areas of expertise will result in different perspectives and
priorities. Personality also plays a part in productive communication. A good project manager will be
able to smooth communication through managing the interpersonal relationships of the project
development team members.

The production of software-based products has undergone a rapid transition from a limited-market
craft to an industry. In the past many software products were produced by individuals. The product
designer was also the implementer, and implementation skills were highly regarded. The
industrialization of production leads to a division of labor and people begin to specialize in different
aspects of the production process. There is a separation between the designers and the constructors of
a product; constructors often work on factory assembly lines and are no longer required to be
knowledgeable of or skilled in the entire development process. Often, much of the implementation
simply becomes automated.

An example of this industrial transition is the development of the automobile. Most of the very early
automobiles were designed and handcrafted by small groups or individuals. Today, the design of
automobiles is seen as a highly skilled activity, although designers are not expected to actually
construct the automobiles. Actual construction (the implementation of the design) of automobiles is
now an extremely automated process.

You should be aware that the success of a project depends not only on those immediately involved in
the development. There are also other groups of people who have a stake in the outcome of the
project, even though they are not directly involved in its development. This group includes the
managers that commissioned the system, the senior management of the company doing the
development, and the people who will eventually use the system.

It is very difficult to offer a clear and complete list of the job titles and responsibilities of those who
will be involved in a software development project. Some companies will use a different job title for
people performing essentially the same role. On smaller projects and in smaller companies, one
person may perform a number of roles though maintaining only one job title. Companies which
develop specialized types of software, such as multimedia, may require specialized job titles and
responsibilities (e.g., audio production). Larger companies tend to have a relatively clear division of
labor.

Week 2

COP 3331 Page 36

Customer
For off-the-shelf products, this is the person or company who is likely to purchase the product; for
custom software, it is the person or company who commissions and pays for the product.

End-User
The customer and the end-user are not always the same. For example, if you are producing children’s
educational software, the end-user is a child but the customer, the one who makes the purchasing
decision, is the parent or teacher. In custom products it is usually the management that commissions
the system, but they are seldom the end-users. During product development it is important to consider
the end-user and to evaluate the product using representative end-users. Many products have failed
because although they initially pleased the customer, they created a high level of dissatisfaction in
end-users who were not directly considered in the development process.

Marketing Specialist
A marketing specialist should have good knowledge about the geographic and demographic area in
which the product is to be sold, the size of the market, competing products, product attributes that are
important to customers, and the price customers are willing to pay for the product. Such information
will have an important impact on the development process, helping the developers pay attention to the
features of a product that will make it commercially viable.

Project/Product Manager
The project/product manager is usually the one responsible for ensuring that the system is completed
on time and on budget. Prior to the commencement of a project, a project manager will plan the
timeline for the project and arrange for the resources that will be required to complete this plan. Once
the project has commenced, the project manager monitors progress against the plan, and identifies
and solves any problems that could prevent completion of the project on time and on budget. Product
manager is the term used in companies that develop off-the-shelf software.

Product Development Director/Operations Manager
Most companies will be working on several projects at the same time. The operations manager
functions at a level above the project managers, and works with and assists the project/product
managers to prioritize the allocation of resources to the different projects. The operations manager
may also monitor the general operation of the support services that the projects make use of.

Technical Writer
Writing is a skill that is often underestimated. Most people can write, so it is difficult for many people
to understand why a specialist is needed in this area. If you were to read the manuals for products
developed 20 years ago compared with the ones produced by large software companies today, you
would soon recognize that specialist writers are really required. Because the developers of a system
know the system so intimately, it is hard for them to identify what may be difficult to understand for
those who know nothing about the product (new users). A technical writer will work with the system
developers and analyze what information a new user of the system will need to know. The writer will
then compose, edit, and/or organize this information for manuals and online guides so that it will be
clear and easy to understand. Technical writers try to keep the end-user in mind and will attempt to
write in a jargon-free manner, or, if jargon cannot be avoided, ensure that the terminology is
explained.

Programmer
This is one of the most general job titles. In the strictest sense, a programmer merely implements a
design. However, in many situations a programmer will have a more creative role and is expected to
perform some analysis and design (especially at the subsystem or component level). When

Week 2

COP 3331 Page 37

constructing novel systems, a programmer has to select or create efficient algorithms and often has to
experiment with different ways of doing things. It is important to recognize that there are different
skill levels within programming. General programmers can produce code in one or more languages.
Specialist programmers have knowledge of the tools, techniques, algorithms, and data structures for
constructing programs in a specialist areas such as databases, telecommunications, computer games,
multimedia, and graphics.

Analyst/Designer
Some companies will differentiate the roles of the analyst and designer of software from that of the
programmer. In these companies there usually are defined documentation standards for designs (e.g.
the use of UML) which programmers then translate directly into program code.

Software Engineer
Software engineer is a relatively general term. In some companies, a software engineer’s role will be
akin to that of the analyst/designer. In others, the software engineer performs analysis, design, and
coding. There are also cases where “software engineer” is used as an up-market job title to describe
people who are primarily programmers.

Hardware Engineer
This person, who is an electronic, mechanical, or other type of engineer, will be involved in systems
that require specialized hardware.

Human Factors Expert
This is someone who is specially trained in human psychology and can perform analysis and provide
testing expertise relating to the usability attribute of a product. A human factors expert who focuses
primarily on computers is sometimes referred to as an expert in human-computer interaction.

Graphics Designer
This is someone who has artistic skill and can create visual designs that will be visually appealing.

Multimedia Specialist (e.g., sound/video specialist)
In the past, information in computer systems was available only in the form of text. Many current
software applications also make use of other media such as sound, graphics, and video to present
information. A multimedia specialist will be expert in using one or more of these forms of media.

Instructional Designer
The instructional designer specializes in designing instructional material. Many complex software
products require the creation of course and instructional materials to help people learn how to use the
product. An instructional designer would assist in developing these instructional materials.

Research & Development (R&D) Specialist
Many companies will have research and development specialists who will evaluate and create new
technologies to be integrated into the systems being developed.

Systems Support
Systems development requires a computer and communications support infrastructure. A systems
support specialist will set up and support this infrastructure. The efficiency of systems support can
seriously affect the efficiency of an entire project.

Week 2

COP 3331 Page 38

Financial Officer/Accountant
The overall goal of most businesses is to make a profit. Unless there is someone effectively
estimating and monitoring the costs involved in developing a system, there is a danger that the
development process may end up costing more than the customer has agreed to pay. The financial
officer’s responsibility is to be alert to and avoid cost overruns. The officer will also assist in budget
planning and cost estimation.

Quality Control Manager
Companies often distinguish quality control and testing from the actual development process. It is
sometimes difficult for developers to objectively evaluate their own work, as they will have biases
against possible negative aspects of what they have done. A quality control manager will
independently monitor the quality of a product (and sometimes the process) and provide constructive
feedback on how things may be improved.

Communication
Given all the different job roles and types of expertise that could be involved in a systems
development process, good communication is essential to ensure a project actually progresses toward
completion. This requires a strong and open communications infrastructure. Some scientists and
researchers believe that the use of Internet technology facilitates communications in development
groups. In contrast, others believe that the best way to ensure good communication is to have the
development team members located physically together. One reason for Microsoft’s success may be
that the company has until recently concentrated most of its developers in one geographical location.
Because this is a technologically based learning course, you have the opportunity to experience
Internet-facilitated group development.

Further Reading

“The Software Development Team,” a “white paper,” by Grady Booch. Available in the appendix of
this study guide and at the course website.

Week 3: Communication

COP 3331 Page 39

Week 3

Overview You should by now have developed a good overview of the systems
development process. This week you will begin to examine the process in
more detail, paying particular regard to people, communication, and tools.
Last week you focused on the job roles of the development team
members. You learned that maintaining open and clear lines of
communication is crucial to the success of any project. In this third week
you will continue to build upon these concepts by analyzing how project
teams are organized and made efficient.

In this third week your instructor/mentor will assign you to a work group,
with which you will collaborate throughout the semester. Your work
group will later complete a project involving the analysis and design of a
small system. As soon as you have been assigned your work group, send
email to the other group members and introduce yourself.

Objectives Upon completion of Week 3 you should be able to:

§ Explain why documentation is necessary in the systems
development process

§ Distinguish synchronous and asynchronous communications
mechanisms

§ Identify the main mechanisms of communication used in a systems
development process

§ Identify advantages and disadvantages of each communication
mechanism

§ Describe the steps involved in planning project communications
activities

§ Distinguish scheduled and event-driven modes of communication

§ Summarize the main types of communication that may occur in a
systems development project

Focus
Questions

 § Email is increasingly being used as the main communication tool.
What advantages does using this tool have? What disadvantages does
its use have?

§ What are the specific communication problems that occur within
multi-disciplinary teams?

Readings and
Presentations

 § Read Chapter 3 of the textbook. In preparation for next week, also
read Sections 2.1, 2.2, & 2.3 in Chapter 2. You are encouraged to take
notes on your understanding of the material, as well as note any
clarifications you may require.

Week 3

COP 3331 Page 40

§ Read Grady Booch’s white paper, “The Software Development
Team,” which is provided in the appendix to this study guide.

Activities § Attempt the exercises at the end of Chapter 3. You will not be asked
to submit your work, but try to answer the exercise questions. This
will provide an excellent review of the key points of the chapter, and
an opportunity to check your knowledge and understanding of the
material.

§ Check the Announcements area of the course website for additional
instructions. Consult any learning materials listed, and then complete
the weekly self-test quiz.

Assessments The following assignments require consulting the video interviews on the
CD-ROM. The interviews also can be accessed in audio-only form at the
course website.

Submit responses to the assignments below by the due date in the course
calendar. The point value of portion of the assignment is indicated in the
parentheses.

Assignment 3.1 [Total of 10 points available]

Listen to the responses to the following interview questions on the
CD-ROM:

§ “Can you describe what documentation occurs as part of the
process?”

§ “What is the purpose of the documentation?”

(A) List the types of documentation mentioned in the interview, marking
with an asterisk (*) those common to at least three companies.

(5 points)

(B) What do you consider to be the most convincing reason given for
extensive documentation? Why?

(3 points)

(C) Listen to the responses to the following interview question on the CD-
ROM:

“What kind of skills/qualities do you consider a good
software developer should have?”

Week 3

COP 3331 Page 41

Identify two skills of a good software developer that were mentioned
by at least two companies.

(2 points)

 Grading criteria:

ú Is the list of documentation types used by the companies
complete?

ú Have types of documentation common to three or more
companies been identified?

ú Has a reason for extensive documentation been identified
and justified?

ú Have two skill requirements of a software developer been
identified?

Assignment 3.2 [Total of 14 points available]

On the course website there will be a reference to some site that provide
information on object-oriented computer-aided software engineering
(CASE) tools. These tools can facilitate one or more activities in the
development process and often complement programming environments
such as Microsoft’s Visual Studio. You will be guided to select two tools,
and write in your own words a summary of each tool’s purpose and
function. Each description should be 60–120 words.

1. Tool Name:
Description:

2. Tool Name:
Description:

 (7 points per tool)

Grading criteria:

ú Are the descriptions within the stated length?

ú Are the descriptions in the student’s own words?

ú Do the descriptions give an adequate summary of the tools’
functionality?

ú Does the description identify what part of the process the tool
provides assistance with?

Week 3

COP 3331 Page 42

Assignment 3.3 [Total of 15 points available]

Last week you received your work group assignments. This week interact
with the group to complete this assessment. Distance learning students
will do this online in their group discussion area, and on-campus students
will use class time. You will conduct a discussion on what you have
learned from watching the video interviews. Each group member should
rate the companies’ level according to Capability Maturity Model (CMM)
and then state an opinion on which company appeared to have the most
efficient development process, and why. Not everyone agrees with the
CMM, so do not feel bound to say that a company on a high level of
CMM is the most efficient. You may also want to state which response
from an interviewee was the most surprising. Each group member should
post at least one follow-up response to another group member’s opinion.

This assignment has three phases:

Phase 1: Estimate what level on the CMM each company is on.
Submit your estimates and your response to the question,
“Which company appears to have the most efficient
development process?” and “Which response from an
interviewee was the most surprising?” Include justification
for your opinion.

Phase 2: Post at least one message constructively responding to
another student’s post.

Phase 3: Cut and paste the responses you made in Phases 1 and 2 of
the threaded discussion. Include the date and time each
response was made to the discussion. If you made more than
one contribution in Phase 2, include these additional
contributions.

Grading criteria:

ú Has an opinion been posted for one of the two questions?

ú Is the opinion adequately supported?

ú Has at least one follow-up message been posted in response to
another group member’s opinion?

ú Is the response clear, polite, and constructive?

Checklist o Have you read Chapter 3 of the textbook?

o Have you read Sections 2.1, 2.2, & 2.3 in Chapter 2 of
the textbook?

o Have you completed the exercises at the end of the Chapter 3?

o Have you completed Assignments 3.1, 3.2, and 3.3?

Week 3

COP 3331 Page 43

o Have you completed the self-test?

o Have you met this week’s learning objectives?

Week 3

COP 3331 Page 44

Week 4: The Unified Modeling Language

COP 3331 Page 45

Week 4

Overview In the first three weeks of this course you have examined some of the
more general aspects of the systems development process, including the
stages of production, job titles and roles, and the organization of project
teams. You will now begin to focus on practical tools and techniques for
analyzing large-scale problems that involve the construction of computer-
based systems. You will become familiar with Unified Modeling
Language (UML), which has emerged as a standard modeling language
for the construction of object-oriented systems.

Analysis and design requires that developers understand the problem area
and design a solution for that problem. To accomplish this goal,
developers will attempt to model the problem area and the proposed
solution. In the early days of computing, when a single person often
designed a computer system, analysis and design models were conceived
in the head of the developer, or were informally sketched in a non-
standard way. Because teams of people build most modern systems, there
needs to be a standard way of communicating both about the problem
area and the proposed design solution. This is the role performed by a
modeling language such as UML.

Using a natural language, such as English, to describe a model is difficult
due to the ambiguities and inconsistencies inherent in any natural
language. In order to avoid such ambiguities, analysts and designers have
found it helpful to use graphical techniques to represent their ideas. This
is common approach for many creative activities. For example, musicians
will use musical notation, geographers will use mapping notations and
architects architectural drawing notations.

UML was developed through the work of three of the most prominent
thinkers in software engineering methodology: Grady Booch, Ivar
Jacobson, and Jim Rumbaugh. Basically, UML is a notation that allows
developers to graphically model a system under development from
different perspectives. Different types of diagrams are used for different
perspectives on a system.

In this fourth week you will be introduced to UML. You will use the
language for the next several weeks, and will also use it in your class
project (assigned in Week 6).

Objectives Upon completion of Week 4 you should be able to:

§ Explain the role of modeling in systems engineering

§ Describe the role of notation in analysis and design

§ Identify the different kinds of modeling that occur in analysis
and design

§ Distinguish between the functional, object, and dynamic models

Week 4

COP 3331 Page 46

§ Demonstrate the ability to use UML notations on a simple problem

§ Explain the role of the different UML diagrams

§ Create a simple use case, class, sequence, and state chart diagram

§ Describe the relation between scenarios and use cases

§ Distinguish among phenomena, concepts, and abstraction, and be able
to provide examples of each

Focus
Questions

 Some software developers go straight to coding projects without
documenting any analysis or design thinking. What do you think are the
main problems of this type of approach?

Readings and
Presentations

 § Last week you were asked to read Sections 2.1, 2.2, & 2.3 in Chapter
2 of the textbook. This week you should complete the rest of
Chapter 2 and read the additional notes on UML. You are encouraged
to take notes on your understanding of the material, as well as note
any clarifications you may require.

§ You should also try to read Sections 4.1, 4.2, & 4.3 of Chapter 4 in
preparation for next week’s topic.

Activities § Attempt the exercises in the chapter. You will not be asked to submit
your work, but try to answer the exercise questions. This will provide
an excellent review of the key points of the chapter, and an
opportunity to check your knowledge and understanding of the
material.

§ Check the Announcements area of the course website for additional
instructions. Consult any learning materials listed, and then complete
the weekly self-test quiz.

Assessments Submit responses to the assignments below by the due date in the course
calendar. The point value of each portion of the assignment is indicated in
parentheses.

You will be provided with a description of a new product on the course
website. As a software engineer, you would be involved in the design and
construction of the software program to make the product useful. As a
systems engineer, you would model the complete product, including
software and hardware. In the following assignments you will analyze the
system and create a model of it using UML diagrams.

Week 4

COP 3331 Page 47

Assignment 4.1 [Total of 14 points available]

(A) Create a use case diagram for the given system similar to that on
Figure 2-1 in the textbook.

(7 points)

(B) Create a class diagram for the given system similar to that on Figure
2-2 in the textbook.

(7 points)

Grading criteria:

ú Does each diagram represent an accurate model of the system?

ú Are diagrams constructed according to those illustrated in the
textbook?

Assignment 4.2 [Total of 14 points available]

On the website you will be given an example of a use case for the given
system.

(A) Create a sequence diagram for the given system similar to that on
Figure 2-3 in the textbook.

 (7 points)

(B) Create a state chart diagram for the given system similar to that on
Figure 2-4 in the textbook.

 (7 points)

Grading criteria:

ú Does each diagram represent an accurate model of the system?

ú Are diagrams constructed according to those illustrated in the
textbook?

Assignment 4.3 [Total of 10 points available]

(A) List three phenomena and three concepts in this course.

 (6 points)

(B) Create a UML class diagram for the given system similar to that on
Figure 2-10 in the textbook that depicts two classes described on the
course website.

(4 points)

Week 4

COP 3331 Page 48

Grading criteria:

ú Have three phenomena and three concepts of this course been
listed?

ú Are diagrams constructed according to those illustrated in the
textbook?

Checklist o Have you completed your reading of Chapter 2 in the textbook?

o Have you completed the exercises at the end of the textbook?

o Have you begun reading Chapter 4 in the textbook?

o Have you completed Assignments 4.1, 4.2, and 4.3?

o Have you completed the self-test?

o Have you met this week’s learning objectives?

Week 4

COP 3331 Page 49

Week 4: Additional Notes

Notations, Modeling, and UML

The success of humans as a species is largely built upon their ability to communicate. At first we
could only communicate directly by word of mouth. The development of written language greatly
spurred the development of civilization as it allowed us to transmit knowledge through space and
time. Written language is a notation. It is a set of symbols that we learn to associate with the sounds
of spoken language. In a sense we speak through the page to others. Different languages have
developed different notations for written communication and some, e.g., Japanese, have more than
one notation. Some use alphabets and some use pictograms (e.g., Chinese, Ancient Egyptian).
Notations for human language have not solved all our communication needs : for example , if I wanted
to communicate how to play a part of Bach’s lute suite on the guitar, I could use human language as
follows:

Simultaneously pluck the sixth, fourth, third and second strings while holding down the fourth string
at the second fret. Sustain this for one second. Pluck the second string while holding down on the first
fret, and then pluck it open. Pluck the third string on the second fret, then pluck it open and hammer
on then pull off. Pluck the fourth string while holding on at the fourth fret and then at the second fret.

This only describes one small section of the suite and it would be difficult for any musician to read
and play this at the same time. Musicians have therefore developed a special notation that has become
standardized and communicates the information needed for an experienced musician to play as they
read. It also allows composers to efficiently describe and edit new music.

In many other areas of human activity we have developed special notations to communicate
information efficiently. Other examples include road signs, icons on computer screens, and mapping
notations. Looking at the notation below allows us to instantly answer a number of questions about
geography, e.g., what is the nearest town from the highest point between Birmingham and Atlanta?

From its earliest days the world of computing has developed and used notations to represent design
information, examples include flow-charting and data-flow diagrams. The importance of UML is that

Week 4

COP 3331 Page 50

it is a well-defined language supporting all aspects of analysis and design process. The usefulness of
any notation is related to how widely accepted it is and the level of standardization. Thus, for
example, musical notation is standard and universally accepted. UML was adopted as a standard by
the object management group* in 1997 and is well accepted within the software industry (at least in
large companies working on large projects).

UML can be used for building models of both the problem domain and the solution domain. In
modeling the problem domain we would be building an understanding of an existing system and
where it needs to be improved. For example, if we were automating some business process it may
help to understand the problem by modeling what currently occurs in the manual system. In modeling
the solution domain we would be building a model of one or more proposed solutions to the problem
domain that uses computer technology.

UML consists of a number of conventions for creating diagrams. The diagrams and accompanying
documentation offer different views of a problem and the proposed solutions. The main views
possible in a UML model are as follows:

The Use Case View
The use case view contains the diagrams used in analysis (use case and interaction diagrams), and all
the elements that comprise these diagrams (e.g., actors). It is central to the other views as it describes
the behavior of the system; if the system built does not behave as specified in the use case view, it
will fail. In creating the use case view, we would begin by identifying the categories of users in a
system; these would be represented on our diagrams as actors. An actor can be a human user or it can
be another existing system. In use case analysis we would be concerned with looking at scenarios of
how people work in an existing system (problem modeling) or will work in a proposed system
(solution modeling). From these scenarios we can derive use cases that basically describe the
functionality of a system. We can also illustrate the flow of control through a system using a sequence
diagram.

Design View
The design view contains the diagrams used in object design (class diagrams, interaction and state
transition diagrams). It offers a view of objects and their relationships either in the problem domain
(e.g. paper forms, reports) or in a proposed solution (e.g., digital equivalent of forms and reports). In
solution modeling the design view provides a bridge between the functionality envisaged in the use
case view and the implementation. The basic element in this view is the class. A class diagram will

*
An industry standards group supported by the main computer companies (see www.omg.org)

DESIGN VIEW IMPLEMENTATION
VIEW

PROCESS VIEW

DEPLOYMENT
VIEW

USE CASE
VIEW

Week 4

COP 3331 Page 51

often begin by showing the names of the classes of objects and the relationships between the classes.
Later in design (during solution modeling) details of class attributes and operations will be added. A
detailed class diagram should directly correspond with the class structure of object-oriented program
code. The attributes in UML are implemented as data members in C++ or data fields in Java. The
operations are implemented as member functions in C++ or methods in Java.* Many CASE tools
allow the automatic generation of skeletal code for C++, Smalltalk, Java or Visual BASIC from a
class diagram. In some tools you can also reverse engineer program code created in these languages
into class diagrams. This allows existing components to be included in documented models, if there is
access to the source code. In addition, changes that need to be made during implementation can be
reflected in the documentation of the design model.

Process View
The process view models the threads and processes that will occur in the more complex systems. This
is required for determining system throughput and scalability. We will not cover this aspect of UML
in this course.

Implementation View
The implementation view looks at how the various new and existing components, systems (e.g., a
database system) and files will be assembled into the physical system. This includes information
about the code libraries, executable programs, runtime libraries, and other software components that
comprise the completed systems. Components that do not exist and need to be created by you will
have to be designed as part of the design view. The static aspects of this are captured in component
diagrams and the dynamic aspects (communication among components) in interaction, state chart,
and activity diagrams.

Deployment View
The deployment view illustrates how the completed system will be physically deployed. This view is
necessary for complex applications in which a system will have different components located on
different machines. For example, interface components may be located on a user machine whereas
other components may be located on a network server.

Constructing UML Diagrams
There are now a variety of tools that support the creation of UML diagrams. There are computer-
aided software engineering tools (CASE) such as Rational Software Corporation’s Rational Rose,
which allows the creation and documentation of UML views. In addition, many general diagramming
tools now support UML, e.g., Microsoft Visio Professional. CASE tools differ from diagramming
tools in that they allow the automatic generation of skeletal program code from UML class diagrams.

If you have access to a diagramming tool and are familiar with and are able to create UML diagrams,
feel free to use it. If not, you will be directed to alternatives at the course website.

*
Different object-oriented programming languages tend to use different names for the same concept. UML uses

the terms operations and attributes, as it is not tied to any specific programming language.

Week 4

COP 3331 Page 52

Week 5: Requirements Elicitation

COP 3331 Page 53

Week 5

Overview Most systems development processes begin by defining the requirements
for the system that is to be constructed. To determine these requirements
an analyst will use general information-gathering techniques, such as
interviews, as well as specifically object-oriented methods, such as use
case analysis.

A requirement is a statement of what the system must be able to do. If the
requirement analysis is not done correctly, a great deal of time and effort
may be spent designing a system, only to have it fail to meet the needs of
its users. Although it may be impossible to account for all system
requirements at the outset of the development process, the success of this
stage will have the greatest effect on the overall efficiency of the process.
A requirement that has to be amended or added at the design or
implementation stage will have a greater cost implication than a
requirement that is correctly accounted for at the start. The later it is in
the development process, the more difficult it is to accommodate changes
in design. Therefore, clear and open communication is crucial to
requirements elicitation; without full understanding and cooperation
between the software developers and users, this important stage in the
development process will not be successful.

UML and in particular scenarios and use cases provide an important tool
for formulating and communicating requirements. When requirements are
stated in natural language they are often vague and open to different
interpretations. This is particularly a problem when the developer and the
client understand something different. Use case forces a more precise
definition of functionality and provides a clear guide for design and
implementation.

Objectives Upon completion of Week 5 you should be able to:

§ Describe the activities included in requirements elicitation

§ Describe how an interview should be conducted

§ Demonstrate the ability to ask appropriate questions in an
analysis interview

§ Identify actors, scenarios, and use cases

§ Identify what constitutes a system requirement

§ Create the documentation for a use case and scenario

§ Distinguish the relationships that occur within use case diagrams

§ Distinguish between functional, nonfunctional, and pseudo
requirements

§ Define the concepts of correctness, completeness, consistency,
clarity , and realism as they relate to requirements

Week 5

COP 3331 Page 54

Focus
Questions

 In order to stay in business software development companies have to
estimate the cost of development add a reasonable profit margin and then
ensure they satisfy the customer without spending more than the cost of
development. How does requirements analysis play a role in this?

Readings and
Presentations

 § Last week you were asked to read Sections 4.1, 4.2, & 4.3 in Chapter
4 of the textbook. This week you should complete the rest of
Chapter 4, and the Additional Notes for Week 5 (see next section of
this study guide). You are encouraged to take notes on your
understanding of the material, as well as note any clarifications you
may require.

§ You should also try to read Sections 5.1, 5.2, & 5.3 of Chapter 5 in
preparation for next week’s topic.

Activities § Attempt the exercises in the chapter. You will not be asked to submit
your work, but try to answer the exercise questions. This will provide
an excellent review of the key points of the chapter, and an
opportunity to check your knowledge and understanding of the
material.

§ Check the Announcements area of the course website for additional
instructions. Consult any learning materials listed, and then complete
the weekly self-test quiz.

Assessments The following assignments are based on concepts presented in the
textbook and on the software development company interviews on the
CD-ROM. Submit responses to the assignments below by the due date in
the course calendar. The point value of each portion of the assignment is
indicated in parentheses.

Assignment 5.1 [Total of 6 points available]

Listen to the responses to the following interview question on the CD-ROM:

“How do you develop an understanding of the problems
you are developing software to solve?”

(A) Identify three techniques for understanding problems that could be
applied to all problem areas.

(3 points)

Week 5

COP 3331 Page 55

(B) Briefly describe two difficulties that can arise in understanding the
problem.

(3 poin ts)

Grading criteria:

ú Have three techniques for understanding problems been
identified?

ú Have two difficulties in understanding the problem been
identified?

ú Are the descriptions of the difficulties clear and concise?

Assignment 5.2 [Total of 8 points available]

On the website you will be given the description of a system for which
you will write the requirements.

(A) In Section 4.3.1 of the textbook, the functional requirements of
“Satwatch” are provided. Using this as an example, write in your
own words functional requirements for the given system.

(6 points)

(B) Using the given system, identify an example of each of the
following:

1. non-functional requirement

2 pseudorequirement

(2 points)

Grading criteria:

ú Have four functional requirements for the system been identified?

ú Have correct examples of a non-functional requirement and a
pseudorequirement been identified?

Assignment 5.3 [Total of 12 points available]

Consider this course, COP 3331: Object-Oriented Analysis and Design,
as a system.

(A) Represent the actors for this system in a manner similar to that
shown on Figure 4-3 in the textbook.

(2 points)

Week 5

COP 3331 Page 56

(B) Describe a scenario from your own experience in this course in the
same manner as that on Figure 4-5 in the textbook.

(5 points)

(C) Identify a use case for this system similar to the one depicted on
Figure 4-7 in the textbook.

(5 points)

Grading criteria:

ú Have the main actors been identified and correctly represented?

ú Has a scenario from your own experience been correctly
described?

ú Has a use case been identified and correctly depicted?

Assignment 5.4 [Total of 15 points available]

(Distance learning students will do this online in their group discussion
area, and on-campus students will use class time.) Consult the course
website, where you will be given a scenario for a group exercise in
requirements analysis. You will be graded on your participation.

Checklist o Have you completed your reading of Chapter 4 in the textbook?

o Have you completed the exercises in Chapter 4?

o Have you begun reading Chapter 5 in the textbook?

o Have you read the Week 5 Additional Notes?

o Have you completed the self-test?

o Have you completed Assignments 5.1, 5.2, 5.3, and 5.4?

o Have you met this week’s learning objectives?

Week 5

COP 3331 Page 57

Week 5: Additional Notes

Requirements Elicitation: Interviewing Users and Domain Experts
One of the most important tools in the analysis phase of a systems development project is the
interview. In order to get a better understanding of the problem, interviews can be conducted with
experts involved in the problem area, and with the people who are likely to use the completed system
(or in the case of an off-the-shelf product, potential customers).

The most important initial decision is who should be interviewed. It would be a mistake to interview
only those who have commissioned the project, especially since they are not likely to use it. Those
who commission new systems are usually in positions of management; while they may believe they
know enough about the situation to act as the sole point of information, management is not always
aware of crucial details and constraints in the working situation. To gain a more accurate perspective
a variety of people must be interviewed, especially those who will actually use the completed system.
There have been instances of large-scale software systems that had to be abandoned because of
adverse user reaction. It is better to deal with any potential adverse user reaction in the analysis phase,
rather than encountering it after completion of a system.

On the surface, interviewing may seem like a straightforward technique for gathering information,
without need for any special training, and many people conduct interviews without having training.
However, interviewing is both an art and a skill. Some people will prove naturally good interviewers,
while others may need instruction or tips on how to conduct an interview. Barone and Switzer
distinguish the art of interviewing from the skill of interviewing. Skilled interviewers may be able to
elicit the desired information, but those who possess the art of interviewing will be able to accomplish
this while also leaving the interviewee in a positive frame of mind. Barone and Switzer quote the
example of a physician who, in addition to asking the right diagnostic questions, takes the time to
reassure the patient.

People who will to be interviewed as part of a software development process may be wary of outside
scrutiny, apprehensive about the effect of a computer system on their jobs, and unmotivated in
offering assistance to the interviewer. The ability to both inform and reassure an interviewee during
an interview is a highly desirable trait in a computer analyst.

Preparation
Reflecting on the skills and techniques of interviewing will certainly make the information gathering
process more efficient. An interview has three main components: the opening, the body, and the
conclusion. Reviewing the purpose of each of these three parts will help the interviewer organize the
questions, thereby making the interviewing process easier on all concerned.

The Opening
The opening serves to introduce the interview participants to each other, establish a good working
relationship, and motivate the interviewee to provide information to the interviewer. How the opening
is conducted is very important. Research has shown that people generally form impressions early on
in an interview, and once impressions have been formed it is difficult to change them. In order to
facilitate an interviewee’s full assistance, an interviewer must take great care to appear organized,
friendly, and concerned. One mistake that interviewers make is spending too much time on their own

Week 5

COP 3331 Page 58

agenda and failing to show concern for the interviewee, who may desire understanding or
reassurance. A motivated interviewee is the key requirement to getting good and useful information
through an interview.

As part of the opening, the interviewer should inform the interviewee of the following:

1. What is expected from the interview

2. The probable length of time the interview will take

3. The purpose of the interview and how the information will be used

4. How that particular interview fits in with the general analysis effort

5. How the dialogue will be conducted (For example, can the interviewee ask questions any time she
wishes? Can the interviewee contact the interviewer if she thinks of additional responses at a later
time?)

The Body
The body of the interview is where the information-gathering work is done. In order to determine the
requirements of the project, it is very important to have a clear understanding of what information is
needed, and the questions that must be asked to elicit that information. Depending on how questions
are phrased and the order in which they are asked, it is possible to get different responses and levels
of information out of an interview.

There are many approaches to the interviewing process. One effective technique is the funnel
sequence. This begins with a series of broad questions and moves to increasingly narrow or specific
questions. This technique helps to relax the interviewee by first posing easier questions, in which the
interviewee’s own concerns can be included, prior to shifting the focus to the specific concerns of the
interviewer. A series of funnel sequences can be used for each topic to be dealt with in an interview.

The Conclusion
In the conclusion the interviewer should summarize the interview and state his or her understanding
of the information the interviewee has given. This will enable the interviewee to verify that the
information is correct, as well as to clarify any additional points. The interview participants should
then address and agree upon the issues that are still to be resolved, and set up a procedure for follow-
up communication. Finally, there should be a closure, when the interviewer brings the interview to an
end by standing, shaking hands with the interviewee, and making a closing statement.

Questioning
Questions can be asked in many different ways, and how they are asked can influence the success of
the interview. For example, a question can be asked in a natural conversational manner, or it can be
asked in an abrupt, formal tone. In order to build a rapport with the interviewee, a natural manner
should be used in an analysis interview and questions should be clear, concise, and free from jargon.
Double-barreled questions (two questions incorporated into one) should be avoided.

The wording of the question can greatly influence the answer. Care should be taken not to ask leading
questions, for example, “Your supervisor told me that process X is the most important activity. What
do you think?” Responses will also vary depending on how open or closed a question is. An open
question can have a very broad range of response, for example, “What do you believe will be the
main benefits of the new system?” A closed question will attempt to restrict the range of responses,

Week 5

COP 3331 Page 59

for example, “Do you see the main benefit of the system as decreasing cost or increasing quality?”
The funnel technique begins with more open questions and moves on to more closed questions.
Inexperienced interviewers will sometimes combine open and closed questions, such as, “What do
you believe will be the main benefits of the new system…um…like would you say it is decreasing the
costs?” These types of questions may result in a simple “yes” or “no” answer that, had the inquiry
been phrased as an open question, might have received an entirely different response.

Listening
In addition to being careful about the selection, phrasing, and order of the questions, a good
interviewer should be alert and active in dealing with answers. There may be ambiguity in an answer,
or the answer may indicate that the question was not understood. Often there will be a need for a
follow-up question. A good interviewer will not remain restricted to a predetermined set of questions.

Observation
Direct observation of people working within their environment can also be useful in understanding a
domain of work and determining the requirements for a computer system that will operate in that
domain. Occasionally this may be done in a laboratory situation using video recording; more often it
is done more informally in the workplace. Observation has some advantages over interviewing, as it
can reveal the ways people actually work that would not normally be disclosed in an interview. Often
people become so habituated to their everyday work tasks that they are unable to clearly describe
what it is that they do. Some activities become so automatic that people are unaware that they do
them, or are seen as so mundane as to be not worth mentioning.

In conducting workplace observation, there should be an awareness of what is known as the
“Hawthorne effect.” This effect is named after a famous study dealing with the psychology of work.
In the study, a group of workers at a factory were isolated and a number of their working conditions
were altered, in order to discover the effect of these changes on the workers’ efficiency. It was found
that no matter what change was made, efficiency increased. It was later determined that the increase
in efficiency was not due to the changes in the working conditions. Rather, the motivating factor was
that the workers felt special because the professors from the local university were taking an interest in
them. The lesson learned was that the act of observation itself could alter the very behavior you hope
to observe.

Further Reading
For a more comprehensive treatment on interviewing, consult:

Barone, J. T., & Switzer, J. Y. (1995). Interviewing: Art and skill. Needhan Heights, MA:
Simon & Schuster.

Week 5

COP 3331 Page 60

Week 6: Analysis

COP 3331 Page 61

Week 6

Overview Last week you examined requirements elicitation, which involves
understanding the problem area and determining what the completed
system is to achieve. The next stage in an analysis is to produce a model
of the system that will structure and formalize the requirements. This
model is used to verify the developer’s understanding of the system and
to identify any additional requirements or potential problems. Many failed
computer systems are the result of incorrect or missing requirements. If
an analysis is performed correctly, then the risk of such failures or
omissions is greatly reduced.

Objectives Upon completion of Week 6 you should be able to:

§ Identify entity, boundary, and control objects

§ Represent and qualify associations

§ Use appropriate heuristics to identify model components from
natural language

§ Determine the association and multiplicity of an association
among objects

§ Model generalized relationships

§ Conduct a review of an analysis model

Focus
Questions

 Developers sometimes refer to the danger of “analysis paralysis.” What
do you think this phrase describes?

Readings and
Presentations

 Finish reading Chapter 5 in the textbook. Although you will not be tested
on the material in Section 5.5, you are encouraged to read it. You are
encouraged to take notes on your understanding of the material, as well as
note any clarifications you may require.

Activities § Attempt the exercises in the chapter. You will not be asked to submit
your work, but try to answer the exercise questions. This will provide
an excellent review of the key points of the chapter, and an
opportunity to check your knowledge and understanding of the
material.

§ Check the Announcements area of the course website for additional
instructions. Consult any learning materials listed, and then complete
the weekly self-test quiz.

Assessments The following assignments are based on concepts covered in the
textbook. Submit responses to the assignments below by the due date in

Week 6

COP 3331 Page 62

the course calendar. The point value of each portion of the assignment is
indicated in parentheses.

Assignment 6.1 [Total of 11 points available]

(A) Refer to the system that will be described on the course website
under Assessments. Identify two examples of a boundary, an entity,
and a control object.

(6 points)

(B) Viewing this course as a system, identify at least one example of the
following associations, and represent your examples as illustrated on
Figure 5-6 in the textbook.

1. One to one

2. One to many (do not use the example illustrated below in
Part C)

3. Many to many

(3 points)

(C) Refer to the example of a one-to-many association on the course
website under Assessments. Qualify the given example.

(2 points)

Grading criteria:

ú Have two correct examples been given for each type of analysis
object?

ú Has one example of each type of relationship been identified?

ú Are the relationships represented using the correct notation?

ú Has the given example been qualified?

Assignment 6.2 [Total of 11 points available]

Refer to the scenario that is contained in a document you will find at the
course website.

(A) Referring to the description in the scenario, use Abbot’s heuristics to
identify at least one of each of the following:

Object, Class, Operation, Inheritance, Aggregation,
Constraints, Attribute

(7 points)

(B) Submit an example of a question you might ask to clarify or elicit

Week 6

COP 3331 Page 63

important missing information from the description given in the
scenario.

(2 points)

(C) Using the heuristics for identifying boundary and control objects,
give at least one example of each.

(2 points)

Grading criteria:

ú Has one correct example been given for each type of model
component?

ú Have two correct follow-up questions been identified?

ú Have examples of both a boundary and a control object been
identified?

Checklist o Have you completed your reading of Chapter 5 in the textbook?

o Have you completed the exercises in Chapter 5?

o Have you completed Assignments 6.1 and 6.2?

o Have you completed the self-test?

o Have you met this week’s learning objectives?

Week 6

COP 3331 Page 64

Week 7: Project Preparation

COP 3331 Page 65

Week 7

Overview This week you will begin to work with your team on the Group Project.
The directions and specifications for the Group Project will be available
on the course website under Course Documents . By this time you should
have already made contact with your team members.

The Group Project will involve you working within a team to analyze a
problem and produce a detailed requirements document for a system. The
Group Project is due Week 12, and teams will be expected to have the
project underway by the end of this week. Because communicative
planning and collaborative skills are crucial to the success of a project,
you should take the time now to discuss with your team members a
schedule for project activities. You may wish to appoint a team leader,
and assign other roles, e.g., proofreader, diagram creators.

Objectives Upon completion of Week 7 you should be able to:

♦ Create a simple project plan

♦ Identify the main issues that occur in project management

♦ Describe how your group will communicate over the course of the
project

Readings Read Chapter 11 of the textbook. The content of this chapter will provide
you with a guide to organizing and managing your group project.

Activities § Review the specifications for the Group Project. Note that the project
is to be completed by the end of Week 13.

§ Meet with your project team and discuss the division of
responsibilities and the project activity schedule.

§ Listen to the responses to the following interview question on the
CD-ROM:
“How do you ensure you complete on time and on budget?”

Assessments Assignment 7.1 [Total of 15 points available]

Projects in industry are usually planned using project management
software. This software would allow you to produce Gantt charts like the
one illustrated on Figure 11-17 of your textbook (p. 437).

Week 7

COP 3331 Page 66

(A) Use a diagramming tool to illustrate the plan for your team’s project
activities over the next few weeks. The plan should be fairly
detailed, noting when meetings will take place and when all tasks
(e.g., document section creation, document review) start and finish.
You will also indicate which group members will be responsible for
each task. You should expect to compare your actual progress on the
group project with this plan.

(12 points)

(B) After reading the project directions , list the three most important
questions you need to ask the customer. These should be phrased in
the exact way you would ask them. For example:

“Could you please inform us if you currently have a web server and
give us details on its current use and capacity?”

Not: “I would ask them if they had a server”

(3 points)

Grading criteria:

ú Is the plan in agreement with the rest of the group members?

ú Is there an appropriate amount of detail?

ú Has it been indicated which group member takes part in each
task?

ú Have three appropriate questions been identified?

Checklist o Have you read Chapter 11 in the textbook?

o Have you met with your group to discuss the project?

o Have you submitted a project plan?

o Have you listened to the responses on the CD-ROM?

o Have you completed Assignment 7.1?

Week 8: Systems Design

COP 3331 Page 67

Week 8

Overview So far in this course, you have covered UML techniques to formulate
requirements and construct an analysis model of a system. You will now
examine the next stage of the development process: design. In design, a
developer performs a number of activities to determine the details of how
the system must be built to meet the requirements. In analysis we were
concerned with understanding the problem domain and what is required
to effect a better solution for dealing with the problem of the domain. In
design we are concerned with the solution domain, and deciding which of
the many potential technologies, architectures, algorithms, and pre-
existing code will combine to effect an optimal solution.

In systems design we take a high-level view of the design of the whole
system. We determine the design goals and the systems architecture, and
decide how the system will be deployed into a working situation. We
need to decide on such questions as what hardware will be required?
What data needs to be stored (will a database be required)? Are there
security concerns? How will the system be distributed between servers
and client machines? What off-the-shelf solutions can be used?

The answers to some of these questions would have started to form during
analysis. There is not always a clear division between different phases of
the software development process. The important point about each phase
is that there should be a clear and unambiguous documentation at the end
of each stage, which addresses the main focus of that stage. Thus at the
end of requirements elicitation there should be a requirements analysis
document, clearly specifying the requirements of the system to be built.
By the end of the systems design phase there should be a clear statement
of the structure of the system to be built. There is an analogy to building
architecture in that we draw a plan which shows the size of the house,
where it will be located, and how it will be divided into rooms, but we do
not specify the exact details of how each piece of wood will be cut and
how each brick should be laid.

Objectives Upon completion of Week 8 you should be able to:

§ Identify a design goal

§ Explain the heuristics that are used to identify subsystems

§ Describe the products of a system design

§ Define the concepts of a subsystem, coupling, and coherence

§ Explain the techniques of layering and partitioning

§ Define persistent data stores

§ Define access control

§ Identify boundary conditions

§ Describe the factors that necessitate change in a system design.

Week 8

COP 3331 Page 68

§ List the conditions that determine whether a system design is correct,
complete, realistic, and readable

§ Map subsystems to processors and components

§ Create a UML deployment diagram

Focus
Questions

 Systems design is often said to be analogous to building architecture. Are
there any differences between the two design areas that argue against the
analogy?

Readings and
Presentations

 Finish reading Chapter 6 in the textbook. Although you will not be tested
on Section 6.5, you are encouraged to read it. Take notes on your
understanding of the material, as well as note any clarifications you may
require. This is one of the most conceptually difficult chapters in the book
you may wish to consult other reading materials to help in your
understanding.

Activities § Attempt the exercises in the chapter. You will not be asked to submit
your work, but try to answer the exercise questions. This will provide
an excellent review of the key points of the chapter, and an
opportunity to check your knowledge and understanding of the
material.

§ You should also try to read Sections 7.1–7.3 in Chapter 7 in
preparation for next week’s topic.

§ Check the Announcements area of the course website for additional
instructions. Consult any learning materials listed, and then complete
the weekly self-test quiz.

Assessments The following assignments are based on concepts covered in the
textbook. Submit responses to the assignments below by the due date in
the course calendar. The point value of each portion of the assignment is
indicated in parentheses.

Assignment 8.1 [Total of 15 points available]

Consult the course website. You will be given a scenario that contains a
systems design.

(A) Create a UML deployment diagram that illustrates the hardware and
represents how you think the software would be deployed. Consider
which software needs to be installed on which machine.

(12 points)

Week 8

COP 3331 Page 69

(B) For such a system give one example of each of the following:

1. Data that would need to be persistent

2. The access control for a specified actor

3. A boundary condition

(3 points)

Grading criteria:

ú Has a deployment diagram been created?

ú Are all the machines represented?

ú Is all the software represented?

ú Are correct connections specified?

ú Has a correct example been given for data persistence, access
control, and a boundary condition?

Checklist o Have you read Chapter 6 of the textbook?

o Have you completed the exercises in Chapter 6?

o Have you begun reading Chapter 7?

o Have you completed Assignment 8.1?

o Have you completed the self-test?

o Have you met this week’s learning objectives?

Week 8

COP 3331 Page 70

Week 9: Midterm Preparation

COP 3331 Page 71

Week 9

Overview In this ninth week, you will review the material covered in the first eight
weeks of the course and complete the midterm exam. Consult the course
calender on the website for details, including dates, times, and location
for this exam. The midterm will count as 20% of your final grade.

No assessments will be given this week. After you have reviewed the
course material covered in the first seven weeks and completed the
midterm, we recommend that that you read ahead in your textbook. Over
the next several weeks you will be working on a Group Project in
addition to the usual weekly course activities and assessments.

Readings Prior to the midterm, you should have a good understanding of Chapters 1
through 5, and all the additional notes and readings.

Checklist o Have you read everything required for the first eight weeks?

o Have you written summaries of the key points covered in the
readings?

o Have you reviewed all the learning objectives for the first eight
weeks?

o Have you done additional study for the objectives you have not met?

o Have you completed the self-test quizzes and reviewed the sample
questions?

Week 9

COP 3331 Page 72

Week 10: Project Work/ Spring Break

COP 3331 Page 73

Week 10

Overview In this week on-campus students will be on spring break. I would
recommend all students take some well-earned rest and recuperation
during this period. Do try and take at least some time to read ahead to the
next part of the course and do not forget about your project. Distance
learning students should use this week to progress in your projects.

Objectives Upon completion of Week 10 you should:

§ Have rested your weary brain and be ready for the second half of the
course

§ Be well on course for completing your group project

Readings Read at least Sections 7.1, 7.2, & 7.3 in the textbook.

Checklist o Did you take a break?

o Did you at least read something related to the course?

Week 10

COP 3331 Page 74

Week 11: Design Methods

COP 3331 Page 75

Week 11

Overview While you will continue to explore how UML is used in analysis and
design, you will also be introduced to other techniques that can be used in
OOAD. CRC cards are a simple and effective technique for identifying
classes in a domain and determining how those classes of objects will
interact. Another popular trend in systems design is to build systems
based upon pre-existing components built around component
technologies such as Microsoft’s COM objects (mentioned in the
interview with ATG) and Sun’s Java Beans. Finally, a popular concept to
emerge in recent years, which borrows from building architecture design,
is design patterns.

In addition to looking at different design approaches, in the readings we
will begin to look at the area of object design. This follows on from the
systems design where we determine the high-level structure of the system
we will build to meet the requirements. In object design we focus more on
the detailed structure of each sub-system and component.

Objectives Upon completion of Week 11 you should be able to:

§ Plan and conduct a CRC card session

§ Distinguish between the analysis and design model of a system

§ Describe the process of component-based design

§ Define the term component

§ Explain the concept of design patterns

§ Distinguish application and solution objects

§ Define type, signature, and visibility

§ Provide examples of contracts for a class

Focus
Questions

 What do you think are the relative advantages and disadvantages of CRC
cards and UML?

Readings and
Presentations

 § Read Sections 7.1, 7.2, & 7.3 of the textbook.

§ Complete additional readings, which will be available at the course
website.

Activities Check the Announcements area of the course website for additional
instructions. Consult any learning materials listed, and then complete the
weekly self-test quiz.

Week 11

COP 3331 Page 76

Assessments The following assignments are based on concepts covered in the
textbook. Submit responses to the assignments below by the due date in
the course calendar. The point value of each portion of the assignment is
indicated in parentheses.

Assignment 11.1 [Total of 20 points available]

This will be a team assignment. You will work in the same group you
have been assigned for your project. Confer with your group to arrange a
mutually agreeable time to organize a CRC card session. You may try to
complete the session in a single evening or over a number of evenings.

Consult the course website for the description of a problem area to
address using CRC cards. At the end of the session, you will produce a
report on the outcome of the CRC card session. The report should include
the following:

1. A short introduction to the problem

2. A description of how the group planned the session and what the
plan was

3. An overview of the session, including any difficulties encountered
and the issues that were discussed

4. A copy of the cards at the end of the session

Your mentor/TA will monitor your involvement in the session.

Grading criteria:

ú Did each student actively participate in the CRC card session?

ú Was it evident that the group pre-planned for the session?

ú Were the outcomes of the session adequately described?

ú Was a complete list of classes identified for the problem area?

ú Were correct responsibilities and collaborators identified for each
class?

Checklist o Have you started reading Chapter 7 of the textbook?

o Have you checked the course website for additional instructions?

o Have you completed Assignments 11.1??

o Have you completed the self-test?

o Have you met this week’s learning objectives?

o Is your project on schedule to be completed on time?

Week 12: Object Design

COP 3331 Page 77

Week 12

Overview We have already looked at systems design, in which the overall
architecture for a system is designed and the components are identified. It
is rare, however, that a project can be put together entirely from existing
components. Usually, there is a need to design and program new
components (some of which may be modifications of existing
components). The design at the component level requires we determine
the classes needed to make an individual component. This level of design
requires a high level of understanding of object-oriented concepts and
programming languages.

You have already been practicing object design in your programming
classes; however, the difference here is that you are required to document
your design thinking in UML diagrams. Documenting designs in UML
allows developers to reflect upon the design before progressing to coding.
For all but very small programs, changing a design diagram is more
efficient than changing and recompiling code.

Objectives Upon completion of Week 12 you should be able to:

§ Refine a class diagram to its most detailed level

§ Identify missing attributes and operations

§ Convert a class diagram into C++ code

§ Reverse engineer C++ code into a class diagram

§ Specify type signatures and visibility

§ Explain the need to specify constraints and exceptions

§ Explain the role of class libraries and application frameworks

§ Realize associations

§ Remove implementation dependencies

§ Turn objects into attributes

Focus
Questions

 What are the disadvantages of using third-party components rather than
creating your own code?

Readings and
Presentations

 Complete the reading of Chapter 7 of the textbook. Although you will not
be tested on Section 7.5, it is recommended that you read it. Take notes
on your understanding of the material, as well as note any clarifications
you may require.

Activities § Attempt the exercises in the chapter. You will not be asked to submit
your work, but try to answer the exercise questions. This will provide

Week 12

COP 3331 Page 78

an excellent review of the key points of the chapter, and an
opportunity to check your knowledge and understanding of the
material.

§ You should also try to read Sections 11.1, 11.2, & 11.3 in Chapter 11
in preparation for next week’s topic.

§ Check the Announcements area of the course website for additional
instructions. Consult any learning materials listed, and then complete
the weekly self-test quiz.

Assessments Submit responses to the assignment below by the due date in the course
calendar. The point value of each portion of the assignment is indicated in
parentheses.

Assignment 12.1 [Total of 10 points available]

On the course web site you will be given a small piece of C++ code.
Reverse engineer this code into a refined class diagram.

Grading criteria:

ú Is the diagram complete?

ú Does the structure of the diagram completely match the structure
of the code?

Assignment 12.2 [Total of 25 points available]

Consult the scenario presented at the course website under Course
Documents .

(A) In the scenario you will be given the basic class structure for a
component of a system. It will show the names of the classes and
their relationships. You will refine this diagram into a detailed UML
class diagram, which is ready to be implemented into code.

(15 points)

(B) Select two of the classes you have designed and implement them as
C++ code. One of the classes must be a superclass.

(10 points)

Grading criteria:

ú Is the diagram complete?

ú Have the attributes and operations been specified for
each class?

Week 12

COP 3331 Page 79

ú Do the classes represented cover all the functionality required by
the scenario?

ú Is the C++ implementation of the two classes completely
consistent with the design specification?

Checklist o Have you completed your reading of Chapter 7 in the textbook?

o Have you completed the exercises in Chapter 7?

o Have you begun reading Chapter 11?

o Have you completed Assignments 12.1 and 12.2?

o Have you completed the self-test?

o Have you met this week’s learning objectives?

Week 12

COP 3331 Page 80

Week 13: Quality Control and Testing

COP 3331 Page 81

Week 13

Overview The exceptional importance of testing was emphasized in the video
interviews with practicing software development companies. Regardless
of the care a developer takes in each stage of software development,
errors are still likely to arise. Testing is incorporated within quality
control. Quality control must be integrated into the whole development
process in order to be effective; it is not something that occurs at the end.
Quality control has two functions: 1) to minimize the occurrence of error,
and 2) to detect any error that has occurred through product testing (by
product we mean all outputs of development including requirements and
design models). These two functions must be carefully balanced. As in
medicine, prevention is better than cure, so we must be careful not to
overemphasize testing. A good system of quality control will look at
errors discovered in testing and find ways of preventing the re-occurrence
of such errors.

This week’s Assessment is a substitution assessment. Your score on this
assignment will be used to substitute for your lowest score on the
previous week’s assessments.

Objectives Upon completion of Week 13 you should be able to:

§ Identify quality control activities that occur during the systems
development process

§ Describe the activities that are part of testing

§ Distinguish between usability testing and functional testing

§ Describe the three main categories of quality control techniques

§ Distinguish between faults, errors, and failures

§ Provide an example of a test case

§ Define a test stub and a test driver

Focus
Questions

 What kind of quality control procedures do you have in your project
work? How could they be improved?

Readings and
Presentations

 Finish reading Chapter 9 in the textbook. Although you will not be tested
on Section 9.5, you are encouraged to read it. Take notes on your
understanding of the material, as well as note any clarifications you may
require.

Activities § Attempt the exercises in the chapter. You will not be asked to submit
your work, but try to answer the exercise questions. This will provide an
excellent review of the key points of the chapter, and an opportunity to

Week 13

COP 3331 Page 82

check your knowledge and understanding of the material.

§ You should also try to read Sections 12.1, 12.2, & 12.3 in Chapter 12
in preparation for next week’s topic.

§ Check the Announcements area of the course website for additional
instructions. Consult any learning materials listed, and then complete
the weekly self-test quiz.

Assessments The following assignments require that you consult the video interviews
on the CD-ROM. The interviews also can be accessed in audio-only form
at the course website.

Submit responses to the assignments below by the due date in the course
calendar. The point value of each portion of the assignment is indicated in
parentheses.

Assignment 13.1 [Total of 7 points available]

Listen to the following interview question on the CD-ROM:

“What quality testing is done during and after
software development?”

For one of the software companies, describe in 60-120 words or less how
its working situation (company size, product type, etc.) affects the testing
process.

 Company name:
 Description:

(7 points)

Grading criteria:

ú Are the descriptions within the word limit?

ú Does the description address the influence of the working
situation on the testing process?

Assignment 13.2 [Total of 15 points available]

(A) Listen to the responses to the following interview question on the
CD-ROM:

“How do you ensure that your products will be usable?”

Based on these responses, indicate two reasons why usability testing
is important.

Week 13

COP 3331 Page 83

(2 points)

(B) At the course website you will be informed of a site to visit.

1. In 60–120 of your own words, explain what is meant by [term
provided at course website]?

(7 points)

2. What are the four types of [term provided at course website]?

(3 points)

3. Name four tools or techniques used [term provided at course
website]?

(3 points)

Grading criteria:

ú Have two reasons been given for the importance of usability
testing?

ú Has the term been explained?

ú Is the explanation in the student’s own words?

ú Is the explanation within the designated length?

ú Are the four types of term identified?

ú Have four tools or techniques used in the term been identified?

Assignment 13.3 [Total of 8 points available]

Listen to the responses to the following interview questions on the
CD-ROM:

§ “What kinds of problems arise in the development process?”

§ “How do you resolve the problems?”

Complete the table provided by listing one problem experienced by each
of the companies, and the solution used by the company.

(8 points)

Grading criteria:

ú Has a problem in the development process and the solution
utilized been identified for each company?

ú Are the problems and solutions an accurate reflection of what is
expressed in the interview?

Week 13

COP 3331 Page 84

Checklist o Have you completed your reading of Chapter 9 in the textbook?

o Have you completed the exercises in Chapter 9?

o Have you begun reading Chapter 12 in the textbook?

o Have you completed Assignments 13.1, 13.2, and 13.3?

o Have you completed the self-test?

o Have you met this week’s learning objectives?

Week 14: Process Issues

COP 3331 Page 85

Week 14

Overview In this course we have looked at how some real software companies
develop software. By now, you should have come to the realize that there
is no single right or wrong way to develop software, and arguments can
be made for the relative efficiency of different methods of development.
Many academics have put a great deal of thought and research into
different methods of organizing the development process. We will
conclude our study with a look at some different life-cycle models.

We will also take a brief look at some recently emerging contentious
issues relating to the software development process. The first issue
emerges form a backlash against the complexity and what some would
see as the bureaucratic nature of many software development
methodologies (such as those encouraged by the CMM). It has resulted in
a movement towards “lighter,” more informal, methodolgies. The second
issue relates to the predominance of closed software development where
companies develop software with the internal workings hidden from
customers. The open software movement promotes the development of a
product where the source code is available for anyone to collaboratively
alter and improve.

Please note that your Group Project is due this week.

Objectives Upon completion of Week 14 you should be able to:

§ Describe the IEEE 1074 standard for developing lifecycle process

§ Contrast traditional and light methodologies

§ Describe the main principles of extreme programming

§ Explain the philosophy of open source development

§ Compare and contrast the Waterfall, V-model, Spiral, Sawtooth, Issue
based, and Sharktooth models

§ Describe the benefits of rationale and configuration management

§ Provide an overview of the unified development process

Focus
Questions

 What is your feeling on the issues of open versus closed development and
light versus heavy methodologies? If you favor one perspective, what would
you say is the strongest argument supporting the opposing perspective?

Readings and
Presentations

 § Finish reading Chapter 12 in the textbook. Although you will not be
tested on Section 12.5, you are encouraged to read it. Take notes on
your understanding of the material, as well as note any clarifications
you may require.

Week 14

COP 3331 Page 86

§ Read at least Sections 1 and 2 in Chapters 8 and 10.

§ You will be provided with additional introductory readings and
materials on light methodology and open source development.

Activities § Attempt the exercises in the chapter. You will not be asked to submit
your work, but try to answer the exercise questions. This will provide
an excellent review of the key points of the chapter, and an
opportunity to check your knowledge and understanding of the
material.

§ Check the Announcements area of the course website for additional
instructions. Consult any learning materials listed, and then complete
the weekly self-test quiz.

Assessments There are no assessments for this week. You should take advantage of
this extra time to begin preparing for the final exam.

Checklist o Have you completed your reading of Chapter 12 in the textbook?

o Have you read the first parts of Chapters 8 and 10 in
the textbook?

o Have you read the additional materials provided?

o Have you completed the exercises in Chapter 12?

o Have you completed the self-test?

o Have you met this week’s learning objectives?

Week 15: Exam Preparation

COP 3331 Page 87

Week 1 5

Overview You should use this week to continue your review of the material covered
during the course (with an emphasis on the material covered since the
midterm exam) and to complete the final exam. Consult the course
calendar on the course website for details of this assessment. The final
exam will count as 30% of your final grade.

We hope that in this course you have learned some essential concepts and
ideas in software engineering, and that you have gained a good
understanding of the process issues in software development. We also
hope that you have been able to develop practical skills in analysis and
design that you will practice and continue to improve on in the future.

We look forward to having you register for subsequent courses in
Computer Science and Software Engineering.

Checklist o Have you produced notes summarizing clearly and concisely the main
point in each of the required readings?

o Have you reviewed all the learning objectives to ensure you have met
them?

Week 15

COP 3331 Page 88

Week 16: Course Evaluation

COP 3331 Page 89

Week 16

Overview Your mentor or instructor, and the course developers would like to get
feedback from you on this course, COP 3331: Object-Oriented Analysis
and Design. This information will be used to improve this course, as well
as other courses in this program. You will be asked to evaluate your
mentor or instructor, course content, assessments, etc. Your mentor or
instructor will give you further instructions on how to complete a course
evaluation.

Week 16

COP 3331 Page 90

Appendix

COP 3331 Page 91

Appendix

Required
Reading

 The publisher has given permission for the reprinting of “The Software
Development Team,” by Grady Booch. Copyright 1999 by Rational
Software Corporation.

 The Software Development Team

By Grady Booch

Rational Fellow

A Rational Software White paper

Developing quality software in a repeatable and predictable fashion is a
job that requires the coordinated activity of a team of developers.
Although individual productivity is still important, as systems get larger
and more complex, the productivity of the team as a whole becomes a
much more important factor in the success or failure of a project. This
paper examines the importance of teams, their organization and tools, and
pragmatic ways to grow a productive team so as to unify, optimize, and
simplify their work.

 TABLE OF CONTENTS

 THE IMPORTANCE OF TEAMS.. 1

 ORGANIZING THE SOFTWARE DEVELOPMENT TEAM......... 3

 IMPROVING TEAM PRODUCTIVITY... 4

 TEAMS AND TOOLS... 5

 THE NEXT GENERATION OF TEAM TOOLS.............................. 6

 GROWING A TEAM... 7

 WRAPPING UP... 8

 GRADY BOOCH, RATIONAL FELLOW.. 8

 ABOUT RATIONAL SOFTWARE CORPORATION..................... 8

 NOTES... 9

 BIBLIOGRAPHY... 9

The Importance of Teams

As Gerald Weinberg pointed out over 25 years ago in his seminal work,
The Psychology of Computer Programming, “computer programming is a
human activity.”1 When you are up at 2 AM trying to stamp out an
elusive bug, programming does indeed look like an isolated human
activity. However, there’s a big difference between cutting code and

Appendix

COP 3331 Page 92

shipping products: deploying quality software is a team sport that requires
a group of people with a variety of skills working together toward a
common goal. Associated with his work on the Capability Maturity
Model (CMM) for development organizations, Watts Humphrey observed
that “the history of software development is one of increasing scale.
Initially, a few individuals could hand craft small programs; the work
soon grew beyond them. Teams of one or two dozen professionals were
then used, but success was mixed. While many organizations have solved
these small-system problems, the scale of our work continues to grow.
Today, large projects require the coordinated work of many teams.
Complexity is outpacing our ability to solve problems intuitively as they
appear.”2

There are perhaps two major forces that drive this complexity. First, there
is technology push, wherein the ever-declining cost of hardware and the
growing availability of high-speed networks makes it possible to develop
automated solutions that, even a year ago, would not have been
economically feasible. Second, there is the societal pull, wherein
individuals and organizations have come to rely upon such automation,
and in so doing have developed an insatiable demand for systems that are
better, faster, and cheaper. Combine that with a world-wide shortage of
skilled software developers, the net result is that the typical development
team is being asked to do more with less: more features and more quality
with less resources and less time.

Weinberg goes on to note that “for the best programming at the least cost,
give the best possible programmers you can find sufficient time so you
need the smallest number of them.”3 That is certainly sound advice: all
things being equal, it’s better to have a small team than a large one, and to
be relatively unconstrained by schedule. But, as Fred Brooks points out,
“the dilemma is a cruel one. For efficiency and conceptual integrity, one
prefers a few good minds in doing design and construction. Yet for large
systems one wants to find a way to bring considerable manpower to bear,
so that the product can make a timely appearance.”4

Most problems are sufficiently complex that they simply require a lot of
hard work and sustained labor, more than can be carried out by a single
developer working in isolation.5 However, you cannot just expect a
project to succeed by staffing it with superstars and arming them with
powerful tools. Walker Royce points out that, although hiring good
people is important, it’s far more important to build a good team.6 He
goes on to explain that balance and coverage are essential characteristics
of such a team, and describes this by analogy. “A football team has a need
for diverse skills, very much like a software development team. There has
rarely been a great football team that didn’t have great coverage; offense,
defense, and special teams, coaching and personnel, first stringers and
reserve players, passing and running. Great teams need coverage across
key positions with strong individual players. But a team loaded with
superstars, all striving to set individual records and competing to be the
team leader, can be embarrassed by a balanced team of solid players with
a few leaders focused on the team result of winning the game.”7

Appendix

COP 3331 Page 93

In the context of software development, “winning the game” means
developing and deploying quality software in a predictable and
sustainable fashion. As Barry Boehm demonstrates in COCOMO (a
model for software cost estimation), the capability of the team has the
greatest impact upon productivity.8 Tom DeMarco and Tim Lister go on
to note that, within a team, an organizations most productive people will
tend to outperform its least productive by a factor of 10:1.9

Historically, most advances in software development languages and tools
have focused on improving the productivity of the individual developer.
This is not to say that such advances are unimportant: I’d rather have a
fast compiler than a slow one. However, given the importance of teams to
modern software development, such advances in individual productivity
have diminishing returns relative to winning the game. As such, it makes
sense to turn our attention to the software development team, and ways to
prove its productivity.

Organizing the Software Development Team

Drawing upon his experience inside Microsoft, Steve McConnell notes
that “it takes more than just a group of people who happen to work
together to constitute a team. In their book The Wisdom of Teams,
Katzenbach and Smith define a team as ‘a small number of people with
complementary skills who are committed to a common purpose,
performance goals, and approach for which they hold themselves
mutually accountable.’”10 He goes on to enumerate the characteristics of a
hyperproductive team:11

§ a shared, elevating vision or goal

§ a sense of team identity

§ a results-driven structure

§ competent team members

§ a commitment to the team

§ mutual trust

§ interdependence among team members

§ effective communication

§ a sense of autonomy

§ a sense of empowerment

§ small team size

§ a high level of enjoyment

There are many different ways to organize such a team: the business
team, the chief-programmer team, the skunkworks team, the feature team,
the search-and-rescue team are among those that McConnell

Appendix

COP 3331 Page 94

identifies.12 Although no one organization is optimal for every team or
problem domain, the surgical team (as Brooks calls it13), also known as
the chief programmer team, is perhaps the most common and most
effective.

In this organization, the central player in the development organization is
the architect, who is responsible for the “conceptual integrity of all
aspects of the product perceivable by the user.”14 Don’t confuse the role
of the architect and the project manager, however, they encompass very
different activities.15 A team’s architect is responsible for designing the
system, where as the project manager is responsible for designing the
team, and making it possible for them to do their job.

Within a team, you should choose an architect who possesses a vision
large enough to inspire the project to great things, the wisdom born from
experience that knows what to worry about and what to ignore, the
pragmatism necessary to make hard engineering decisions, and the
tenacity to see this vision through to closure.16 On small projects, one
architect is sufficient. On larger projects, architects are a recursive
feature: different subsystems will require their own architect, with the
overall conceptual integrity of the system being maintained by a single
architect or, more commonly, a small team of architects.

Surrounding these architects at each level in the system are application
developers, people who love to code and who are able to turn abstractions
into reality.

Thus, the center of gravity of the development team should be formed by
a tight grouping of the organization’s project manager, its architect, and
its application developers. Jim Coplien, in his study of hyperproductive
organizations, has found that many such teams exhibit this common
pattern or organization.17

These three skill groups are necessary but, as it turns out, insufficient.
The successful deployment of any complex system requires a variety of
other skills: toolsmith, quality assurance, system integration, build and
release, and analyst are some of the identifiable roles you’ll need to fill on
most projects. Capers Jones notes that “the software industry reached the
point of needing specialists as long ago as twenty years.… For some large
enterprises, there may be more than one hundred different occupational
groups within an overall software organization.18 In large projects, you’ll
have specific individuals for each such role; in smaller teams, each
individual will end up playing multiple, simultaneous roles.

Improving Team Productivity

Staffing a project with the right people who have the right skills is
important, but that alone does not explain the differences in productivity
one sees among such teams. In this context, DeMarco and Lister speak of
a “jelled team” which they define as “a group of people so strongly knit
that the whole is greater than the sum of the parts. The productivity of

Appendix

COP 3331 Page 95

such a team is greater than that of the same people working in unjelled
form. … Once a team begins to jell, the probability of success goes up
dramatically.”19

Essential to the formation of jelled teams is this precondition: a project
must honor and respect the role of every one of its developers. This
means that each project must recognize that its developers are not
interchangeable parts, and that each brings to the table unique skills and
idiosyncrasies that must be matched to the needs at hand and calibrated
within the organization’s development culture. This is one of the five
basic principles of software staffing that Boehm describes: “fit the tasks
to the skills and motivation of the people available.”20

DeMarco and Lister suggest a simple formula for creating a jelled team:21

§ get the right people

§ make them happy so that they don’t want to leave

§ turn them loose

They go on to note ways to develop an organizational culture that
encourages jelled teams to develop and flourish:22

§ make a cult of quality

§ provide lots of satisfying closure

§ build a sense of eliteness

§ allow and encourage heterogeneity

§ preserve and project successful teams

§ provide strategic but not tactical direction

Teams and Tools

When projects were simple and teams were small (often involving teams
of one), an organization could get by with only the simplest of tools: an
editor, a compiler, and a linker would be quite sufficient for many
problems. Add a debugger, and you were really rocking.

Amazingly, lots of organizations still get by with only this minimalist set
of tools. However, in the context of contemporary software development,
that’s akin to banging rocks together to light a fire: you can do it, but it’s
not particularly efficient. Rather, as the complexity of your project grows,
you must consider other, more targeted tools, such as tools for
requirements capture, visual modeling, configuration management and
version control, performance analysis, and testing.

Personal integrated development environments are important in making
the individual programmer productive. Indeed, there’s been a long history

Appendix

COP 3331 Page 96

of maturation of such tools, and their advances have been essential in
enabling the creation of larger and more complex systems. However,
there are limits to the cool features you can provide to the individual
developer, and it would appear that we as an industry are getting close to
those limits. Indeed, there is only such much you can do to help an
individual developer bang out code faster.23

A recent trend in the industry has been the integration of such tools, tools
that individually address point problems but that collectively cover the
full spectrum of life cycle activities. That’s certainly a predictable
advance, but it’s not necessarily the most important one. Rather, a greater
improvement in the overall productivity of a project will only come from
tools that empower the team as a whole. In other words, you must
integrate your team, not just your tools.

Ed Yourdon points out that “the only way such a tool could be a silver
bullet is if it allows or forces the developers to change their processes.”24
In other words, while it’s important to supply your development team
with good tools, you’ll only see a state change in your team’s productivity
if you apply tools that encourage and enforce a sound development
process.

The Next Generation of Team Tools

Elaborating upon Yourdon’s comments, that suggests three trends that
will likely drive future software development tools.

First, there is the need to unify a team’s tools around a common process
and a common set of artifacts. Development teams create and modify
artifacts such as requirements, plans, models, code, components, tests,
and so on. They employ tools to create and modify those artifacts. Insofar
as those tools are clumsy to use or that get in the ways of manipulating
those artifacts, they detract from the primary focus of the development
team, namely, deploying quality systems in a predictable and sustainable
fashion. That means that, across the set of tools used by the development
team, they must share and preserve a uniform understanding of the
semantics of these artifacts and the activities that manipulate them.

Second, there is the need to optimize a team’s tools to the different skill
sets that exist within the team, since many of a project’s artifacts will be
created and manipulated by different stakeholders. For example, a
requirement may be created by an end user, elaborated upon by the
project’s architect, and referenced by the project’s quality assurance
personnel. Each one of these stakeholders has a different view into the
artifacts of the project. As such, it would be suboptimal to provide a one
size fits all development environment. Rather, its far better to provide a
tool set that permits different, simultaneous views into a project’s artifacts
optimized to the needs of each individual stakeholder.

Third, there is the need to simplify the delivery of these tools, especially
for development teams that are distributed in time or in space. Practically,

Appendix

COP 3331 Page 97

this means we’ll likely see such tool sets become Web-centric, since the
Web is the quintessential common vehicle for providing access to and
visualization of information. Already, we find projects that use the Web
as a repository for all of their project’s artifacts. Open communication is a
key enabler in forming a jelled team, and making all such artifacts visible
to the project facilitates that kind of communication.

Growing a Team

All that being said, how do you grow a team? Even if you’ve loaded up
your team with all the latest and greatest tools and techniques, what must
you do next to turn a disjoint set of individuals into a jelled team whose
productivity is greater than the sum of its parts?

There are three pragmatic techniques that I’ve seen work.

First, identify clear roles and responsibilities suitable to your development
culture and necessary for your particular domain, and then match
individuals with the right skills to those roles.25 For example, perhaps the
most important role you need to identify is that of architect: an architect is
the person or persons responsible for establishing the significant design
decisions for the system and for creating and validating a suitable
architectural style. An architect may not be your fastest or most clever
programmer, but he or she must certainly be your most wise.

Second, consider the essential artifacts of your project, and organize your
team around the set of activities that produce and manipulate those
artifacts. Clearly, the most important artifact of the software project is the
running system itself, but that alone is insufficient: the team must create a
scaffold of other artifacts around that system in order to build it in an
efficient and predictable fashion. This means selecting what other work
products you need—such as software architecture documents, test plans,
releases, and so on—and then establishing a plan for growing and
evaluating those artifacts. For example, in an iterative style of
development, it’s important to drive each iteration according to essential
use cases (which specify the desired behavior of the system and
additionally serve as test cases) and according to project risk (which
changes with each iteration, and may be manifest as technical, economic,
or business risk). By focusing on artifacts such as these in a controlled
and measured way, you create an environment that encourages your team
to drive their work to closure and to focus on the most important things
they can do at each moment to mitigate the risks of the project.

Third, leverage tools that let each individual manipulate these artifacts in
a manner appropriate to their specific role and consistent with other roles,
and in a manner that reduces the interference between individuals. This is
what the emerging generation of team tools is all about: providing an
environment that encourages individual skills and enables those
individuals to work productively and cooperatively.

Appendix

COP 3331 Page 98

Wrapping Up

These are indeed interesting times. The challenges of software
development are certainly not going to go away, for we as an industry are
continually being driven to do more with less. Methods and processes
help; so do languages, frameworks, and point tools. However, software
development is ultimately a human endeavor, and as such its ultimately
the efforts of the software development team that enable us to deliver
quality systems in a predictable and sustainable fashion. Tools that unify,
optimize, and simplify the work of that team represent the next state
change in helping create jelled teams.

Grady Booch, Rational Fellow

Grady Booch is one of the leading software development methodologists
in the world. He is recognized internationally for his work on software
architecture, modeling, and software engineering processes, all of which
have contributed to improving the effectiveness of developers worldwide.
Now serving as a Rational Fellow, Grady was a Chief Scientist for
Rational Software Corporation from 1981-1999, where he was
responsible for the development of many Rational tools, including
Rational Rose, the world’s leading visual modeling tool. Grady was one
of the original developers of the Unified Modeling Language (UML), the
industry standard language for specifying, visualizing, constructing, and
documenting the artifacts of software systems. He is the author of six best
selling books, has published several hundred technical articles on
software engineering, and has lectured and consulted worldwide. In
addition to Grady’s continued affiliation with Rational, Grady is Chief
Technical Officer and Vice President of Catapulse:
www.catapulse.com

About Rational Software Corporation

Rational Software Corporation (Nasdaq: RATL), the e-development
company, helps organizations develop and deploy software for
e-business, e-infrastructure, and e-devices through a combination of
tools, services and software engineering best practices. Rational’s
e-development solution helps organizations overcome the e-software
paradox by accelerating time to market while improving quality.
Rational’s integrated solution simplifies the process of acquiring,
deploying and supporting a comprehensive software development
platform, reducing total cost of ownership. International Data Corporation
(IDC) has recognized Rational as the leader in multiple segments of the
software development life-cycle management market for three years in a
row. Founded in 1981, Rational, one of the world’s largest Internet
software companies, had revenues of $572 million in its fiscal year that
ended in March, 2000 and employs more than 3,000 people around the
world.

Appendix

COP 3331 Page 99

Notes

1. Weinberg, p. 3.
2. Humphrey, p. vii.
3. Weinberg, p. 69.
4. Brooks, p. 31.
5. Booch, p. 190.
6. Royce, p. 43.
7. Royce, p. 43.
8. Boehm, p. 642.
9. DeMarco, p. 45.
10. McConnell, p. 275.
11. McConnell, pp. 278 279.
12. McConnell, pp. 304 313.
13. Brooks, p. 29.
14. Brooks, p. 256.
15. Booch, p. 200.
16. Booch, p. 197.
17. Booch, p. 207.
18. Jones, p. 215.
19. DeMarco, p. 123.
20. Boehm, p. 669.
21. DeMarco, p. 93.
22. DeMarco, p. 151.
23. As an aside, I’ve often said that the best way to accelerate software
development is simply by writing less software. That’s why object-
oriented techniques and component-based development are useful: the
former encourages you to write less code via inheritance and abstractions
that form a balanced set of responsibilities, and the latter encourages you
to reuse and adapt existing components and frameworks rather than
writing your own from scratch.
24. Yourdon, p. 183.
25. For example, the Rational Unified Process specifies a common set of
roles, which it calls workers.

Bibliography

Boehm, B. 1981. Software Engineering Economics. Englewood Cliffs,

New Jersey: Prentice-Hall.
Booch, G. 1996. Object Solutions: Managing the Object-Oriented Project.

Menlo Park, California: Addison-Wesley.
Brooks, F. 1995. The Mythical Man-Month: Essays on Software

Engineering, anniversary edition. Reading, Massachusetts:
Addison-Wesley.

DeMarco, T. and Lister, T. 1987. Peopleware: Productive Projects and
Teams. New York, New York: Dorset House.

Gilb, T. 1988. Principles of Software Engineering Management.
Wokingham, England: Addison-Wesley.

Appendix

COP 3331 Page 100

Glass, R. 1998. Software Runaways: Lessons Learned from Massive
Software Project Failures. Upper Saddle River, New Jersey:
Prentice Hall.

Humphrey, W. 1989. Managing the Software Process. Reading,
Massachusetts: Addison-Wesley.

Jones, C. 1996. Patterns of Software Systems Failure and Success.
London, England: Thomson Computer Press.

McCarthy, J. 1995. Dynamics of Software Development. Redmond,
Washington: Microsoft Press.

McConnell, S. 1996. Rapid Development: Taming Wild Software
Schedules. Redmond, Washington: Microsoft Press.

Royce, W. 1998. Software Project Management. Reading, Massachusetts:
Addison-Wesley.

Shneiderman, B. 1980. Software Psychology: Human Factors in
Computer and Information Systems. Cambridge, Massachusetts:
Winthrop Publishers.

Weinberg, G. 1971. The Psychology of Computer Programming. New
York, New York: Van Nostrand Reinhold.

Yourdon, E. 1997. Death March. Upper Saddle River, New Jersey:
Prentice Hall.

Appendix

COP 3331 Page 101

Appendix

COP 3331 Page 102

