
Copyright August 2006, Daniel Chang
COP 3344 Introduction to UNIX

COP 3344 Introduction to UNIX
Lecture

Session: Shell Programming
Topic: Advanced Commands

Daniel Chang

Copyright August 2006, Daniel Chang
COP 3344 Introduction to UNIX

Text File Processing

Reading and filtering text files

• cut - Print specific columns from a text file
• awk - Print specific lines from file based on filter
• grep - Print lines or filenames filtered by Regular

Expressions (regex)
• find - Locate files based on pattern and perform commands

Modifying text files

• sed - Edit portions of text file based on filter
• |, >, >> - Redirect desired output to original or new file

Reference

• awk - http://www.vectorsite.net/tsawk.html
• sed - http://www.grymoire.com/Unix/Sed.html
• Regular Expressions - http://www.regular-expressions.info/

Copyright August 2006, Daniel Chang
COP 3344 Introduction to UNIX

Application - Simple Database

> cat dvd.txt
1994 12 19.99 Action True Lies
2003 10 24.99 Adventure Pirates of the Carribea n
1990 3 9.99 Comedy Kindergarten Cop
1990 10 14.99 action Total Recall
1996 6 14.99 Comedy Jingle All the Way

Reading Fields

> cut -c 11-17 dvd.txt
19.99
24.99
9.99
14.99
14.99

> cut -c -28 dvd.txt
1994 19.99 Action
2003 24.99 Adventure
1990 9.99 Comedy
1990 14.99 action
1996 14.99 Comedy

Copyright August 2006, Daniel Chang
COP 3344 Introduction to UNIX

Filtered Reading - awk
• "awk" is a program that expects a text file containing "awk

commands" (can contain shell commands)
• Commands passed through the command line must be sent

as-is (single-quoted string)

awk Command Generally

> awk <search pattern> {<awk commands>}

Example

> awk '/[Aa]ction/' dvd.txt
1994 12 19.99 Action True Lies
1990 10 14.99 action Total Recall

> awk '/[Aa]ction/ {print $5}' dvd.txt
True
Total

> awk '/[Aa]ction/ {print $0 | "cut -c 18-"}' dvd.t xt
Action True Lies
action Total Recall

> awk '/[Aa]ction/ {if ($1 > 1992) print $0 | "cut -c 29-"}' dvd.txt
True Lies

• Commas can be used to space outputs
• 'BEGIN' and 'END' occur before and after the searching of all

the lines

> awk 'END {print NR,"DVDs"}' dvd.txt
5 DVDs

Copyright August 2006, Daniel Chang
COP 3344 Introduction to UNIX

awk Program File
• Typically awk commands are stored as a program in a file

and executed with

awk -f <filename>

awk Program File Generally

comments do not work on all systems
BEGIN {<initialization commands>}
<pattern1> {<commands1>}
<pattern2> {<commands2>}
...
END {<final commands>}

• Multiple commands must be separated by ";" (semicolon)

Copyright August 2006, Daniel Chang
COP 3344 Introduction to UNIX

User Variables
• Can be declared by simply using a new variable name
• Common operations: +, -, *, /, ++, +=, --, -=
• Use similar to C or C++ variables
• Referenced by simply using name (no special character)

Predefined Variables

• NR - Count of the number of input lines (real-time value)
• NF - Count of the number of words in an input line ($NF

corresponds to the last field)
• FILENAME - Name of input file
• FS - "Field Separator" character used to divide fields on the

input line (default is all "white space"). FS assigned another
character to change the field separator.

• RS - "Record Separator" character delimiting records, which
by default are single lines separated by a "newline".

• OFS - "Output Field Separator" used when printing (default
is a "space").

• ORS - "Output Record Separator" used when printing
(default is a "newline" character).

Copyright August 2006, Daniel Chang
COP 3344 Introduction to UNIX

awk Program File Example

> cat prog.awk
process dvd.txt
BEGIN { action_num = 0; adventure_num = 0;
 action_cost = 0; adventure_cost = 0 }
/[Aa]ction/ { action_num++; action_cost += $2 * $3}
/[Aa]dventure/ { adventure_num++; adventure_cost += $2 * $3 }
END { print "DVD Inventory";
 printf("\n");
 printf("Action Movies: %2d\n", action_ num);
 printf("Inventory Value: %7.2f\n", action_cos t);
 printf("Adventure Movies: %2d\n", adventu re_num);
 printf("Inventory Value: %7.2f\n", adventure_ cost);
 printf("\nTotal DVDs %d\n", NR) }

> awk -f prog.awk dvd.txt
DVD Inventory

Action Movies: 2
Inventory Value: 389.78
Adventure Movies: 1
Inventory Value: 249.90

Total DVDs 5

Copyright August 2006, Daniel Chang
COP 3344 Introduction to UNIX

Filtered File Editing - sed

sed [flags|range] '<command>' [< oldfile > newfile]
sed [flags|range] '<command>' [filename]

• oldfile - File to be used as input is redirected into command
• newfile - Output redirected into this file
• filename - If redirection is not used filename can be used to

specify the input file
• Typically <command> must be literalized (single quotes)

Substitution Command

sed s/<pattern>/<newpattern>/ [filename]

• "&" can be used in <newpattern> to refer to pattern matched
• Patterns are actual Regular Expressions
• Wildcards refer to quantities of the preceding character or

set only (they do not standalone)

Copyright August 2006, Daniel Chang
COP 3344 Introduction to UNIX

Example - Substitution

> sed 's/Adventure/Adv /' dvd.txt
1994 12 19.99 Action True Lies
2003 10 24.99 Adv Pirates of the Carribea n
1990 3 9.99 Comedy Kindergarten Cop
1990 10 14.99 action Total Recall
1996 6 14.99 Comedy Jingle All the Way

> sed 's/[0-9]*/&Y/' dvd.txt
1994Y 12 19.99 Action True Lies
2003Y 10 24.99 Adventure Pirates of the Carribe an
1990Y 3 9.99 Comedy Kindergarten Cop
1990Y 10 14.99 action Total Recall
1996Y 6 14.99 Comedy Jingle All the Way

• sed actions can be restricted to specific lines
• Ranges are specified using ',' (not '-'). '$' specifies last line

$ sed '3 s/[0-9]*/&Y/' dvd.txt
1994 12 19.99 Action True Lies
2003 10 24.99 Adventure Pirates of the Carribea n
1990Y 3 9.99 Comedy Kindergarten Cop
1990 10 14.99 action Total Recall
1996 6 14.99 Comedy Jingle All the Way

$ sed '3,$ s/[0-9]*/&Y/' dvd.txt
1994 12 19.99 Action True Lies
2003 10 24.99 Adventure Pirates of the Carribea n
1990Y 3 9.99 Comedy Kindergarten Cop
1990Y 10 14.99 action Total Recall
1996Y 6 14.99 Comedy Jingle All the Way

Copyright August 2006, Daniel Chang
COP 3344 Introduction to UNIX

Deletion Command

sed /<pattern>/ d [filename]

Example

$ sed '/[Aa]ction/ d' dvd.txt
2003 10 24.99 Adventure Pirates of the Carribea n
1990 3 9.99 Comedy Kindergarten Cop
1996 6 14.99 Comedy Jingle All the Way

Print Command

sed -n /<pattern>/ p [filename]

• Will print all lines matching patterns
• "-n " prevents normal printing (of matched lines)

Example

$ sed -n '/[Aa]ction/ p' dvd.txt
1994 12 19.99 Action True Lies
1990 10 14.99 action Total Recall

Copyright August 2006, Daniel Chang
COP 3344 Introduction to UNIX

cut [-d char] -c|-f <range> filename

Description: Prints selected columns from a text file.

Options:

• [-c] - Print characters range
• [-f] - Print field range (this can be incompatible with use of

cut)
• [-d] - Use specified delimiter instead of TAB (specify single

character)
• filename - Specifies text file to read (by default will not be

modified)

Range:

• "n" - Single character or field position
• "n-" - From position to end of line
• "n-m" - Range of positions
• "-m" - From start to position

Example:

print characters 10-20 from all lines
cut -c 10-20 table.txt

print first four fields
use single space as delimiter, not tab
cut -d ' ' -f -2 table.txt

Copyright August 2006, Daniel Chang
COP 3344 Introduction to UNIX

grep [-i] [-l] [-n][-v] text filename

Description: Finds characters or lines of text in one or more files
and displays the information to the screen.

Options:

• [-i] - ignores case
• [-l] - Displays only names of files not actual lines.
• [-n] - Displays the line numbers
• [-v] - Look for lines that don't have text
• text - word or phrase that contains text you want to search

for. If there are spaces or things that confuse UNIX enclose
them in quotation marks. Actually a "regular expression",
which can be very complex

• filename - File(s) you want to search.

Example:

grep -i "smith" *

alias finger "ypcat passwd|grep -I"
finger dchang

Copyright August 2006, Daniel Chang
COP 3344 Introduction to UNIX

find directories [name filename] [-user
username] [-atime +days] [-mtime +days] [-
print] [-exec command {} \:][ok command {}\;]

Description: Finds one or more files, based upon rules you give,
and then allows you to execute a command on those files. Totally
cryptic.

Options:

• directories - list of directories you want to search
• name filename - file(s) you want to search for
• user username - user who owns the files
• atime +days - Files that have not been accessed in +days.

A minus sign instead of a + sign you get the files that were
looked within those number of days.

• mtime +days - Files that have not been modified in those
number of days. A minus sign instead of a + signs gets you
files that were modified within those number of days.

• print - Displays names of files. Always use this.
• exec command {} \; - Runs the command when it finds the

files. Puts the found filename inside the {}. Be sure and use
the \; as a separator.

• ok command {}; - Same as exec only it asks before it runs
the command.

Example:
find ~dchang\wishlist -name dvd.txt -exec cat {} \;

