
Copyright August 2006, Daniel Chang 
COP 3344 Introduction to UNIX 

template 
 
header 

item1 
item2 

 
item3 

 
header 

make some files of our own (text for now, programming later) 
put them somewhere. 

 
 
 
 
 
 



Copyright August 2006, Daniel Chang 
COP 3344 Introduction to UNIX 

COP 3344 Introduction to UNIX 
Lecture 
 

 
Session: Shell Scripts and Programming 
Topic: Shell Programming 
 
Daniel Chang 
 
 



Copyright August 2006, Daniel Chang 
COP 3344 Introduction to UNIX 

Shell Scripts 
 

• An executable ordinary file containing 
 

1. Zero or more UNIX commands 
 
2. Zero or more Programming structures 

 
• A basic form of "program" 

 
• Commands and Programming Structures are specific to 

various shells 
 

• Script should specify the shell used to interpret the script 
 

• Useful when operations must be repeated 
 
 
 



Copyright August 2006, Daniel Chang 
COP 3344 Introduction to UNIX 

Basic Shell Script Contents 
 
 
  #! /bin/tcsh 
 
  # this is not processed 
 
  cal 
  date 
  ps 
  exit 
 
 

• Note the "#! " before the shell indicator 
• The "exit" command immediately quits the shell script (which 

otherwise quits at end) 
 
 
Executing Shell Scripts 
 

• Use the shell as a command with the script 
 

> sh myscript    # uses bourne shell 
> tcsh myscript  # t-cshell 

 
• Set "execute" permission on the script file, then run as a 

command 
 

> chmod 755 myscript 
> myscript 

 
 

Indicates shell used 
to interpret script 

Comments begin 
with "#" (usually) 

Some commands of 
your choice 



Copyright August 2006, Daniel Chang 
COP 3344 Introduction to UNIX 

Variables 
 
Environment Variables 

• Variables provided by shell as part operation 
• E.g. USER, HOME, PATH, SHELL, HOSTNAME 
• You can change them, but you do not initially create them 

(exist at startup) 
• The "setenv" command views and sets environment 

variables 
 

setenv path $path:\home\here\bin 
(Sets "path" variable to its current value plus \home\here\bin) 

 
User-Defined Variables 

• Variables you specify yourself (can be used in a script) 
• Use the "set" command, specifying a variable name not 

already in use 
 

set mywebpath = ~dchang/public_html 
 

• To use the value inside the variable place a "$" in front of the 
variable name 

 
ls -l $mywebpath 

 
• Typically User-Defined variables are in all lower case to 

distinguish them from Environment Variables and other Shell 
Variables. 

 
 
 



Copyright August 2006, Daniel Chang 
COP 3344 Introduction to UNIX 

setenv  [variable [value]] 
 
Description:  Sets the value of an environment variable.  With no 
parameters "setenv" displays current environment variables and 
their values. 
 
Options: 

• [variable] Some UNIX environment variable.  
• [value] A string value  

    
Example: 

setenv path $path:\home\here\bin 
(Sets the path variable to its current value plus 
\home\here\bin) 

 
 
set  [variable = value] 
 
Description: Sets the value of a user shell variable.  With no 
parameters "set" displays the current user shell variables and 
their values.  Specifying a variable name not currently in use will 
create a new user shell variable.  Variable settings will stay active 
until you logout or change the value.  
 
Options: 

• [variable] Some UNIX shell variable.  
• [value] A string value  

    
Examples: 

set workdir=\~dchang\sample 
 
 
 



Copyright August 2006, Daniel Chang 
COP 3344 Introduction to UNIX 

Positional Parameters 
 

• Also called "read-only" parameters 
• Numbered $1 - $9 and correspond to the parameters 

entered as part of the execution of the command (shell 
script) 

• $0 is always the command itself, and each additional 
parameter is separated by a space 

• $# contains the actual number of parameters, starting with 
the first parameter (not the command itself) 

• $* is a string that contains the entire command with all 
parameters 

 
 
 



Copyright August 2006, Daniel Chang 
COP 3344 Introduction to UNIX 

Strings and Quotes 
 

• Certain "special characters" have special meanings 
 

& * \ | [ ] { } $ < > ( ) # ? ' " / ; ^ ! ~ % ` 

 
• To use one of these characters in a string you must "escape" 

the character, meaning to precede it with a backslash (\) 
• The backslash only applies to the character immediately 

following it 
 

echo What \#\!\* time is it\? 

 
 
Quote Mark Effect 
\ Cancels the special meaning of a single  

character within a string 
 

'somestring'  Cancels the special meaning of any and all 
special characters within the quote marks 
 

"somestring"  Cancels the special meaning of any special 
characters within the quote marks except $, ` `, 
and \ 

`somestring`  Run the string specified within the quote marks 
as a command.  The output of the command will 
replace `somestring`.  (Note: the ` is a 
backquote.) 

 
 



Copyright August 2006, Daniel Chang 
COP 3344 Introduction to UNIX 

Arithmetic Operations 
 

• The "expr" shell command can perform simple integer math 
 
 
expr  value1 operation value2 
 
Description:  Performs a simply integer operation on two values, 
then outputs the result 
 
Options: 

• [value1], [value2] Some integers 
• [operation] Mathematical operations (*) (+) (-) (/) (%).  When 

necessary the operator must be escaped with a backslash. 
    
Example: 

set sum = `expr 1 + 2` 
set final = `expr $sum \* 2` 
echo $final 

 
 
 



Copyright August 2006, Daniel Chang 
COP 3344 Introduction to UNIX 

Programming Structures 
 
if  test then  
  commands1 
[ else  
  commands2] 
endif 
 
Description:  "test" is evaluated, and if true (non-zero) 
"commands1" will be executed.  If the "else" clause is specified, 
"commands2" will be executed if "test" evaluates to false (zero). 
 
Options: 

• [commands1], [commands2] Any number of shell commands 
 
Example: 

if ($1 == $2) then 
  echo "$1 is equal to $2" 
else 
  echo "$1 is not equal to $2" 
  exit 
endif 
 

 
 



Copyright August 2006, Daniel Chang 
COP 3344 Introduction to UNIX 

"Test" Expressions 
 
Test Effect 
val1 == val2 Compares two values for equality 
val1 != val2 Compares two values for inequality 
val1 > val2 Tests if "val1" is greater than "val2" 
val1 < val2 Tests if "val1" is less than "val2" 
val1 >= val2 Tests if "val1" is greater than or equals "val2" 
val1 <= val2 Tests if "val1" is less than or equals "val2" 
-e filename Tests if "filename" exists 
-d filename Tests if "filename" is a directory 
-f filename Tests if "filename" is an ordinary file 
-r filename Tests if "filename" is readable 
-s filename Tests if "filename" size is greater than 0 
-w filename Tests if "filename" is writeable 
-x filename Tests if "filename" is executable 
 
Shell Script Parameters 

• You will receive a "Missing file name" error if you try to pass 
in and use a parameter to your shell script that starts with a 
comparison flag (e.g. "-domore ") 

• Unused test expression flags: a, h, i, j, n, q, v, y   
• Use double quotes and single quotes or double-aliasing for 

flags that would otherwise be treated as Test Expressions 
 

if ("$1 == '-r') then 
  set rflag = true; 
  echo "you chose option -r" 
else 

 
if ("x$1 == "x-d") then 
  echo "you chose option -d" 
else 

 



Copyright August 2006, Daniel Chang 
COP 3344 Introduction to UNIX 

while  test 
  commands 
end 
 
Description:  "test" is evaluated, and if true "commands" will be 
executed.  This process will then be repeated until "test" 
evaluates to false. 
 
Options: 

• [commands] Any number of shell commands 
 
 
foreach  item (wordlist) 
  commands 
end 
 
Description:  For each item in "wordlist", the single item is 
assigned to "item" and then "commands" are executed. 
 
Options: 

• [item] A variable that will be assigned the word from the 
"wordlist" that is in current use. 

• [wordlist] any list of one or more words (for example, a 
directory listing) 

• [commands] Any number of shell commands 
 
Example: 

foreach filename (*) 
  if (-d $filename) then 
    echo $filename is a directory 
  endif 
end  # foreach filename 

 
 



Copyright August 2006, Daniel Chang 
COP 3344 Introduction to UNIX 

switch  (string) 
  case  string1 
    commands1 
    breaksw 
  case  string2 
    commands1 
    breaksw 
  [...] 
  default 
    commandsdef 
endsw 
 
Description:  "string" is matched against each "stringX" in the 
cases.  For the first case that matches, execution will jump to the 
"commandsX" within that case, then the switch statement ends.  
There can be multiple cases.  The "default" case is executed if no 
match occurs. 
 
A "switch" essentially works like a multiple "if-then-else" 
statement. 
 
 
goto  label 
 
Description:  Immediately transfers execution to the instruction 
following "label".  Labels must be on a line by themselves, with a 
trailing colon 
 
Example: 

goto enditall 
[...] 
enditall: 
exit 

 
 



Copyright August 2006, Daniel Chang 
COP 3344 Introduction to UNIX 

'sh' or 'bash' - Shell Programming 
 
read  variable 
 
Description:  Prompts for input and sets "variable" to the input.  
Can be used to input values during the execution of a shell script. 
 
Example: 

echo "What is your name?" 
read name 
echo "Your name is $name" 

 
 
set  string1  ... 
 
Description: Within a shell script, will set the positional parameters 
one by one to whatever strings are specified. 
 
Example: 

set `date` 
echo "Time: $4 $5" 
(`date` will be replaced by the output of the "date" command, 
then each part of the date command will be assigned to a 
positional parameter) 

 



Copyright August 2006, Daniel Chang 
COP 3344 Introduction to UNIX 

'sh' or 'bash' - Shell Programming 
 
if  test 
then  
  commands1 
[ elif  elseif-test 
  then  
    commands2] 
[ else  
  commands3] 
fi 
 
Description:  This format allows for multiple tests to be performed 
using an "else if" structure. 
 
Options 

• [test] Must be performed using the "test" command, followed 
by the actual test, 

• Note that some "tests" are different than for the c-shell. 
 
Test Effect 
val1 -eq val2 Compares two numeric values for equality 
val1 -ne val2 Compares two numeric values for inequality 
val1 -gt val2 Tests if "val1" is greater than "val2" 
val1 -lt val2 Tests if "val1" is less than "val2" 
val1 -ge val2 Tests if "val1" is greater than or equal to 

"val2" 
val1 -le val2 Tests if "val1" is less than or equal to "val2" 
str1 = str2 Compares two strings for equality 
str1 != str2 Compares two strings for inequality 
 
 



Copyright August 2006, Daniel Chang 
COP 3344 Introduction to UNIX 

'sh' or 'bash' - Shell Programming 
 
for  item (wordlist) 
do  
  commands 
done 
 
Example: 

for test in "one" "two" "three" 
do 
  echo "$test" 
done  # for 

 
 
while  condition 
do  
  commands 
done 
 
 
until  condition 
do  
  commands 
done 
 
 
 


