
March 2004 www.stsc.hill.af.mil 21

Developing software is a relatively
new area of enterprise that bears lit-

tle resemblance to other engineering dis-
ciplines. Although the term software
engineering is widely used throughout the
business, the act of creating a new piece
of software can hardly be compared to
the design and construction of a new
building or bridge. Computer scientists
are still struggling after 30 years [1] to
define software engineering and to find the
right combination of techniques, proce-
dures, and tools that assure success in
development of large complex systems.

The closest comparison I can make of
software engineering to another creative
process is writing a book. Give two
authors the exact same subject matter;
they will almost certainly generate differ-
ent works. Although the subject matter
may be the same and perhaps the out-
come of the book similar, other aspects
such as number of pages, references,
organization, writing styles, and even the
number of chapters would be all differ-
ent.

As a creative process, writing a book
shares many things in common with writ-
ing software. [2] A great deal of research
as well as planning is required. Knowing
the outcome of the book or the desired
effect is essential for success. The book,
like software, will evolve over time going
through many stages of development and
modification. Software, like a book, once
created need not be created again, just
replicated for whoever wishes to use it.

Although development of software is
a complex and mysterious process to
most, there are some basic management
techniques that you can apply that may
greatly reduce the risk of failure. In this
article, I provide some general guidelines
that I have gathered over the years in
dealing with large and complex software
development projects that have remained
constant over several decades. While
many books and articles focus on tech-
niques that you should use, they often

ignore the fact that mistakes can still be
made during a project that will cause it to
fail if certain aspects are ignored. This
article will focus on some of the more
common errors I have observed over
years of participation in large software
development projects.

Not Knowing What You Want
or Need
It is not uncommon for companies and
organizations to believe that the creation
of a piece of software in itself will reduce

costs and increase productivity. The more
accurately the needs of a proposed sys-
tem are defined the greater the chances of
success. One of the most critical pieces
of information is the proposed cost sav-
ings or benefits of the new system.
Projects that involve hundreds of thou-
sands to millions of dollars and several
years in the making should not be under-
taken unless there are clear and measura-
ble objectives with provable benefits to
the organization.

Information management (IM) or
information technology (IT) can be very
expensive to develop, purchase, and
maintain. Management must not only
consider the cost of the software but also
the hardware, infrastructure, software
maintenance, facility maintenance, addi-
tional technical support, recovery proce-
dures, alternative processing, etc.

Introducing this technology into an
organization is usually done for one or
more of the following reasons:
1. The resulting technology will reduce

manpower/labor requirements and
reduce cost by automating what was
once a manual process and prone to
errors. In other words, the cost of
developing the system in conjunction
with yearly maintenance cost is offset
by the reduction of the labor force.

2. The resulting technology will increase
the productivity of the current man-
power/labor force. The cost of devel-
oping the system in conjunction with
the yearly maintenance fees is
recouped through increased profits.
Since federal, state, and local govern-
ment agencies do not track profits,
they would be looking for an increase
in their ability to service the public by
offsetting the cost of system develop-
ment and maintenance with the cost
savings in hiring additional labor to
accomplish the same tasks.

3. The software would offer a capability
that previously was not available.
Early in the development of comput-
ers, scientists realized their potential
to perform extensive calculations. It
was not until computers became reli-
able and fast enough that certain
mathematical problems could be
solved.

4. The new IT and IM technology would
increase the decision-making capabili-
ties of upper level management.
There are instances where more accu-
rate, detailed, and properly manipulat-
ed data gives senior management bet-
ter resources to make critical business
or strategic decisions. The cost of
development and maintenance of the
system is offset by increased
profit/productivity through improved
decisions or through avoiding costly
mistakes.
Managers must understand the

intended purpose of the new system

Common Errors in Large
Software Development Projects

During the past 40 years, numerous techniques for improving software reliability and efficiency have been developed. These
techniques, when used properly, can contribute to the success of a major software development effort. However, despite these
new techniques, software projects continue to fail. This article attempts to explain a few of the reasons why, despite advances
in technology, a project can fall flat on its face, and what management can do to prevent these problems.

David A. Gaitros
Florida State University

“To avoid the perception
of bias, the project

manager should not
originate from any of the

specific groups but
should be brought in

from a neutral agency.”

Software Engineering Technology

22 CROSSTALK The Journal of Defense Software Engineering March 2004

Software Engineering Technology

before investing time, money, and other
resources in the development of a com-
pletely new product. Such endeavors are
extremely expensive and there are many
risks involved with developing a new
piece of software. The spiral software
model takes into account that as a project
progresses, risks are assessed at each step
to ensure the product being developed is
not only of good quality but will be the
right project [3].

Fractured Development
Teams
Often, a company or organization will
involve several other organizations in the
actual requirements analysis and product
development. This is done to involve all
those who have a stake in the outcome
and to prevent alienating potential users.
Several textbooks and journals I have
read have never addressed this particular
problem although it is more common
than one might realize.

Modern software engineering tech-
niques all focus on the assumption that
the development will be accomplished by
a single entity under the control of a
strong management structure. The divi-
sion of work and responsibilities among
several organizations is often done for
political reasons. Although one particular
group may have the title of program
manager, they may not have any direct
authority over the other development
teams. This presents several roadblocks
to the successful development of a soft-
ware product.

Without clear lines of communica-
tions and authority, the requirements and
eventually the product development are
accomplished in an inefficient fashion
using different standards, different
approaches, and sometimes even differ-
ent technical standards. Even if all teams
adhere to written standards, common
interfaces, duplication of code, different
interpretation of those standards, and
other factors usually lead to integration
problems late in the program develop-
ment life cycle. The results are almost
always unsatisfactory and at best it is inef-
ficient.

One particular example typifies this
problem. Several government agencies
were tasked to develop a standard soft-
ware package to be used by all branches
of the federal government and military
[4]. Although one branch was titled as the
project lead, each branch that would use
the end product was permitted to identi-
fy their own requirements, establish their
own development teams, propose techni-

cal standards, identify existing modules to
be used as an interim solution, and main-
tain their own cadre of contractors for
support. After several years and several
millions of dollars, very few lines of code
had been successfully delivered.

Each different government agency
perceived its requirements to be different
from the other agencies, resulting in the
very basic requirements of the system to
be different. Different requirements dic-
tate different specifications, which lead to
different designs and even different
implementation strategies. Unless great
care is taken to ensure there are sufficient
lines of communication among the dif-
ferent agencies, the products will almost
always be incompatible.

To increase the chance of success, the
development team should be geographi-
cally located in the same town, in the
same building, and if at all possible, on
the same floor [5]. Also, there must be

clear and undisputed lines of authority
even if some of the team members orig-
inate from other companies or groups.
This clears up any ambiguity for both the
development group and the customers
who now have a single focal point for
feedback. The customers identified with
each of the groups must have equal say in
the outcome of the new product, and
great care should be taken to include rep-
resentatives from each group in all critical
phases of the project. To avoid the per-
ception of bias, the project manager
should not originate from any of the spe-
cific groups but should be brought in
from a neutral agency.

Lack of Experienced and
Capable Management
Organization and proper planning are
absolutely essential elements of any proj-
ect. You would not think of hiring an
experienced chef to run an automobile
assembly line or likewise a software
development project. Through years of
experience and mistakes, I have discov-

ered there are no such things as generic
managers capable of managing any type
of project. Other large software develop-
ment firms have learned the same lesson.

Although the customer calls the shots
as far as functionality, cost, and schedule,
the person in charge of the actual soft-
ware production should be an experi-
enced data automation manager with
technical knowledge in the area being
developed. Hire someone with experi-
ence in dealing with the kind of system
you are trying to develop. The following
are some reasons for hiring such a per-
son:
1. IT managers must be competent

enough to identify and hire a qualified
work force.

2. Unqualified managers too often must
rely on less experienced technical staff
or, worse yet, vendors on project
decisions.

3. Managers must be able to assess accu-
rately the capabilities of other shops
and sub-contractors assigned to the
project. Shop managers or contrac-
tors who hire inexperienced or the
wrong type of personnel will find out
late in the project that they must hire
expensive consultants to make up the
differences. An experienced manager
will have a good idea what capabilities
are required to complete an assign-
ment and be aware of the risks of
peer organizations that hire sub-stan-
dard personnel.

4. The manager is usually the face-to-
face customer contact. He or she
must converse intelligently on the
impacts of alternatives and be able to
address technical questions without
drawing from other staff members.
Customers must have confidence in
management.

5. Decisions on cost, schedule, and per-
formance cannot be delegated and
must be made based upon a combina-
tion of education, experience, met-
rics, and the interpretation of those
metrics.

Lack of Proper Work
Environment
Imagine a hospital with a staff of highly
trained and skilled surgeons that lacked
proper operating rooms, instruments,
and other medical staff for support.
Operating on a patient would be haz-
ardous at best. Likewise, software devel-
opment organizations will sometimes
hire very skilled software engineers and
purchase expensive computer-aided soft-
ware engineering (CASE) tools but

“Through years of
experience and mistakes,
I have discovered there
are no such things as

generic managers
capable of managing
any type of project.”

March 2004 www.stsc.hill.af.mil 23

Common Errors in Large Software Development Projects

ignore establishing the right development
environment needed to ensure a success-
ful project.

Having modern automated software
products in conjunction with proper
organization, a skilled support staff, and
the right work environment can greatly
increase overall productivity and improve
software quality at the same time.
Organizing your staff is just as important
as the tools they use. Here are a few hints
on setting up the proper environment:
1. Be sure to separate your development

staff from computer operations. You
do not want your programmers and
analysts spending their time trou-
bleshooting networks, installing
servers, maintaining a database envi-
ronment, creating Web pages, etc.
They should spend their time using
the services of the system to satisfy
customer requirements. It is well
worth the money to hire a few dedi-
cated help-desk/operations staff to
alleviate the burden from the rest of
the workers. Part time or on-call serv-
ices usually benefit smaller projects by
not requiring full time employees.

2. Do not purchase top-of-the-line
equipment for the development phase
of your project. If software is
designed on state-of-the-art equip-
ment, chances are it will only work
properly in that environment.
Developers/coders/analysts should
try to develop systems that run effi-
ciently and will operate across a broad
spectrum of capabilities using the
worst-case scenario for standard test-
ing and development. Provide com-
puter programmers with the mini-
mum configuration you would expect
most of the users to possess. Be sure
to test it on all target platforms, mem-
ory ranges, and operating systems.

3. Set up a separate configuration and
control group that keeps close tabs on
quality control and version mainte-
nance. Individual programmers usual-
ly do a poor job of policing them-
selves. It is equally important that the
configuration and control group not
be managed by anyone in the devel-
opment chain but report directly to
the IT manager. This will avoid any
attempts by development staff to
fudge on schedules and skip impor-
tant reviews and test cycles.

4. Although your hardware should be
minimal in nature, do not scrimp on
sophisticated tools or software engi-
neering environments. Automatic
code generators, development envi-
ronments, and extensive library setups

with automated configuration and
control tools increase productivity
tremendously. Their only drawback is
the extensive amount of training
required for their use.

Inexperienced or Mediocre
Technical Staff
The last thing a manager needs on a proj-
ect that requires creativity and ingenuity
is mediocre people. A few highly experi-
enced and educated developers can out-
produce any number of average pro-
grammers. A painful lesson that I keep
learning repeatedly is to hire top-notch
people and empower them to do the job.
Here are some hints on hiring good peo-
ple:
1. Be very specific on technical experi-

ence and education when advertising

for empty positions. If you need
experience in specific languages, oper-
ating systems, machines, and net-
works with specific versions then
specify them on your advertisement
and do not accept less. A common
mistake some companies make is to
advertise for an employee with a wide
range of experience never really
expecting to find such a person but
rather to find someone as close as
possible.

2. Confirm all applicable classes/
schools attended along with grades,
degrees awarded, companies worked
for, as well as contacting all refer-
ences. Do not hire someone who has
lied on his or her resumé.

3. Test the applicant. If the applicant
claims to be an experienced C++ pro-
grammer, give him or her a test. Have
him or her write a small complex pro-
gram in the environment they claim
to have experience in. You will be sur-

prised how few are capable of passing
these kinds of tests.

4. Technology changes rapidly. Look for
experienced developers who continue
to update their skills. A good,
prospective employee will keep up
with technology and be willing to
prove it.

Getting a Slow Start
The easiest place to make up for lost time
is during the beginning of the project.
Too often, slow and methodical project
starts result in a panic race near the end
to finish and deliver the software. All too
often, this results in a shoddy product.
This is where experienced management
will be the most visible and aggressive.
The first half of the project should not
be devoid of meaningful deliverables.
Too often, high-level models, minutes of
meetings, funding expenditures rates, and
personnel reports take up most of the
first half of a project.

An experienced manager should be
looking for results of requirements analy-
sis, architecture plans, development
strategies and schedules, technical
impacts, preliminary database design,
detailed models, timing diagrams for real
time systems, etc. These time-consuming
and important efforts cannot be put off
until the latter half of the project.

Communication
Requirements
Some of the most non-productive time
spent on a project can be meetings. Take
a tip from professional business process
engineers on conducting meetings. First
and foremost, each meeting must have
meaning other then just a routine sched-
ule [6]. Always have a published agenda
with the specific meeting purpose stated.
If upper-level management or the con-
tract requires routine meetings, they
should follow these simple guidelines:
• Have a fixed agenda and purpose.
• Always appoint someone in charge

that can minimize extraneous talk.
• Track and publish decisions made

during the meeting and deliver to
appropriate parties.

• Adjourn the meeting when business
has been conducted.

• Do not go beyond the scope of the
meeting’s original intent. Rather, you
should conduct a smaller meeting with
only the interested parties to avoid tak-
ing other individuals’ time.
When coordinating project technical

requirements, minimize the number of
people in the meeting to essential person-

“Set up a separate
configuration and control
group that keeps close
tabs on quality control

and version
maintenance. Individual
programmers usually do
a poor job of policing

themselves.”

nel only. Make sure the people attending
can satisfy all the requirements that arise
during the meeting. Nothing is more frus-
trating than attending a meeting where key
technical personnel were replaced by the
next level of management who were
unable to discuss the project details thus
requiring another meeting. If key person-
nel cannot attend, postpone the meeting.

There is a huge debate going on in the
industry concerning using e-mail and the
Internet in the office [7]. Proponents of e-
mail claim it improves communication
within an organization by allowing people
to transfer information anytime during the
day or night ensuring that the person gets
the information. Opponents claim it
wastes time and productivity through
abuse of the technology. Companies have
restricted some office personnel to receive
internal e-mails only while reserving exter-
nal e-mail privileges for individuals that
have bona fide requirements to do so. My
recommendation is to allow e-mail
throughout the organization since I
believe the benefits outweigh the bad. The
Internet can be a very useful tool, but it
can also be a costly waste of time in both
manpower and network bandwidth. Since
this is primarily a research tool, I would
limit access to those individuals who truly
need it.

Relying Only on User
Interviews for Requirements
Definition
A good computer systems analyst will
extensively explore other avenues of
information on gathering requirements. A
common error in most failed projects is
using only a selected number of individu-
als from the user community to define
accurately functional requirements. It is
rare to find individuals that possess all or
most of the knowledge required to devel-
op fully a complete information technolo-
gy software system. On the contrary, cor-
porate knowledge is usually spread among
several individuals and groups. Many
times, crucial business processes are con-
tained in notebooks, briefcases, a PC
spreadsheet, or in a person’s desk. Here
are some recommendations to help
resolve this:
1. Obtain copies of any legacy software

system that is being used. This will give
some insight into documented busi-
ness practices.

2. Obtain and thoroughly read all opera-
tions manuals, pamphlets, brochures,
regulations, or laws that pertain to the
organization.

3. Hire your own full-time functional

experts to assist in filling any gaps in
users’ requirements. Recently retired
individuals are particularly useful.
Companies will seldom allocate an
employee full time to your develop-
ment team.

4. Perform as many of the above func-
tions as possible before your first offi-
cial meeting with the customers. You
will find the advanced preparation will
make your first and subsequent meet-
ings very productive.

Not Involving the User at All
Stages
The most elaborate and efficient system in
the world is doomed to failure if the tar-
geted users are not enthusiastic about its

arrival. A good deal of public relations
work should be done at all stages of the
project to ensure that users eagerly antici-
pate the new system. The best way to
accomplish this feat is to involve as many
of the users as possible in the software
development stages. It is absolutely neces-
sary to make a little bit of time and effort
during each stage of the project to keep
the user community informed and obtain
their feedback.

Cutting Short Testing
The computer industry calls its mistakes
bugs. Rarely does a software package make
it to market without bugs, which are a
result of three basic acts: (1) an omitted or
improperly stated requirement, (2) errors
in computer logic, and (3) a performance
or timing error usually associated with
hardware or networks [6]. A good soft-
ware development organization will have
strict testing requirements to discover as
many defects as possible. Each test should
examine utility, correctness, robustness,

and performance. Here are the usual defi-
nitions of the different testing cycles [1]:
• Programmer Test: Individual pro-

grammers test their specific modules
against the specifications they were
given. Interfaces to external modules
or systems are usually simulated.

• Software Inspections: No one likes to
have their work criticized in an open
forum, but scientists have always been
accustomed to having their work
reviewed. Software inspections come
under the category of fault-avoidance
techniques. Code reviews, software
inspections, and walkthroughs have
proven to be very effective in detecting
errors [6]. Experiments have shown that
up to 85 percent of software faults have
been detected by such techniques [8].

• CASE Tools: Although we mentioned
CASE tools before, they can also be
used to enforce programming stan-
dards. Capability Maturity Model®

Level 3, 4, and 5 organizations often
will introduce strict coding standards
into their projects to prevent common
programming mistakes.

• Configuration and Control Test:
The configuration and control group
tests whether the delivered modules
meet specific programming standards
set down by the company and whether
the software specifications match the
documentation.

• Alpha Test: This test is usually done
by the company either at their site or at
a user’s location. The following fea-
tures are tested: (1) deployment fea-
tures, (2) interfaces to other systems,
(3) upload/download procedures, (4)
requirements compared against design
specifications, (5) basic user function-
ality, and (6) performance.

• Beta Test: This is the first truly oper-
ational test where the new system
replaces the legacy or manual system
in its entirety at limited locations or
sites. This is not only an extension of
the Alpha Test but also a measure of
whether the initial feasibility studies on
the usefulness of the new system were
accurate. These test results are used in
determining if the new system is
acceptable to the user.

• Extended Beta Test: After correc-
tions or modifications on the Beta
Test, the new software is released to a
larger community of users before
organizational or worldwide deploy-
ment. Tests should endure past several
milestones such as end-of-day, end-of-
week, end-of-pay cycle, calendar date
rollovers, etc. to ensure adequate num-
bers of scenarios are tested.

24 CROSSTALK The Journal of Defense Software Engineering March 2004

Software Engineering Technology

“A common mistake
some companies make is

to advertise for an
employee with a wide
range of experience

never really expecting to
find such a person but
rather to find someone
as close as possible.”

March 2004 www.stsc.hill.af.mil 25

Conclusion
Other engineering disciplines have the
benefit of many decades if not centuries
of refinement on their processes. The
building of software is still in its infancy
and may take several years to fully
mature; we can help it along by practicing
a few basic management techniques that
have proven successful.

There have been many attempts by
individuals to identify which step of the
development process is the most critical.
Some say the early stages of require-
ments definition, others say testing, while
some conclude it is the actual develop-
ment itself. I believe that all stages are
critical to the success of any project.
Failure can and does occur at any stage
while success can be claimed only after
the completion of all phases and success-
ful product delivery to the customer.
Software development is extraordinarily
tedious and time consuming; minute
details have been known to bring project
personnel to their knees. A successful
project will have top-notch management,
a healthy work environment, expert tech-
nical staff dedicated to specific tasks,
clear lines of communication and author-
ity, involvement of the user community,
high standards, modern development
tools, and clear goals.◆

References
1. Sommerville, Ian. Software

Engineering. 6th ed. Addison-Wesley,
2002: Chap. 1.

2. Hamming, R. “Mathematics on a
Distant Planet.” Invited Talk, 1996.

3. Boehm, B. “A Spiral Model of
Software Development and
Enhancement.” Software Engineering
Project Management, 1987: 128-142.

4. Office of the Inspector General.
“Audit Defense Environmental
Security Corporate Information
Management Program.” Project No.
D2000AS-0207.000. 7 Dec. 2000.

5. Jensen, R.W. “Lessons Learned From
Another Failed Software Contract.”
CrossTalk Sept. 2003: 25-27.

6. Bruegge, B., and A.H. Dutoit. Object-
Oriented Software Engineering:
Conquering Complex and Changing
Systems. Prentice Hall, 28 Oct. 1999.

7. Coetzer, Dudly. “Cut Unnecessary
Communication Costs.” Accountancy
SA Oct. 2003 <www.account
ancysa.org.za/archives/2002oct/
features/Limiting.htm>.

8. Fagan, M.E.. “Design and Code
Inspections to Reduce Errors in
Program Development.” IBMB
System Journal 15.3 (1976): 182-211.

About the Author

David A. Gaitros is
the associate chair of
the Computer Science
Department at Florida
State University, Talla-
hassee, Fla. He spent

22 years in the U.S. Air Force as a
software developer and manager of
large software projects as well as the
associate chair for the Naval
Postgraduate School, Monterey, Calif.
He has worked on the Airborne
Warning and Control System, the Air
Force Data Systems Design Center,
and various other development proj-
ects for Air Force Material Command
(former Systems Command) and the
Air Force Civil Engineer.

Florida State University
Department of Computer Science
261 James J. Love BLDG
Mail Code 4530
Tallahassee FL, 32306-4530
Phone: (850) 644-4055
Fax: (850) 644-0058
E-mail: gaitrosd@cs.fsu.edu

Common Errors in Large Software Development Projects

THIS COULD BE YOUR LAST ISSUE!
CrossTalk has lost its funding.

Our ability to provide CrossTalk to you at no cost and with no advertising or commercial
influences may no longer be possible. However, your answers to 12 simple survey questions on our
Web site will help us determine the future direction of CrossTalk and even if it continues to exist.

Also, you can easily enter our contest to win a Nikon Coolpix 3100 3.2 MP Digital Camera. The
Nikon Coolpix 3100 creates beautiful photos up to 8" x 10" for professionals and amateurs with
auto-exposure functions.

Go to <www.stsc.hill.af.mil/crosstalk> or call (801) 775-5555 or DSN 775-5555 and take five minutes to
help determine CrossTalk's future. Take our survey and tell us how important CrossTalk is to
you, and what subscripton price you would be willing to pay to keep it coming to your mailbox each
month. The Nikon Coolpix 3100 could be yours for simply answering 12 survey questions.
*Hurry – the deadline to respond is Mar. 12th.

* Many readers did not receive the advertisement announcing this survey attached to their February issue, so we have
extended the deadline to respond to the survey and enter the Nikon Coolpix contest.

