
It is all about programming! Over the last
few years we have noticed worrisome

trends in CS education. The following rep-
resents a summary of those trends:

1. Mathematics requirements in CS pro-
grams are shrinking.

2. The development of programming
skills in several languages is giving way
to cookbook approaches using large
libraries and special-purpose packages.

3. The resulting set of skills is insufficient
for today’s software industry (in partic-
ular for safety and security purposes)
and, unfortunately, matches well what
the outsourcing industry can offer. We
are training easily replaceable profes-
sionals.

These trends are visible in the latest
curriculum recommendations from the
Association for Computing Machinery
(ACM). Curriculum 2005 does not mention
mathematical prerequisites at all, and it
mentions only one course in the theory of
programming languages [1].

We have seen these developments from
both sides: As faculty members at New
York University for decades, we have
regretted the introduction of Java as a first
language of instruction for most computer
science majors. We have seen how this
choice has weakened the formation of our
students, as reflected in their performance
in systems and architecture courses. As
founders of a company that specializes in
Ada programming tools for mission-critical
systems, we find it harder to recruit quali-
fied applicants who have the right founda-
tional skills. We want to advocate a more
rigorous formation, in which formal meth-
ods are introduced early on, and program-
ming languages play a central role in CS
education.

Formal Methods and Software
Construction
Formal techniques for proving the correct-
ness of programs were an extremely active
subject of research 20 years ago. However,

the methods (and the hardware) of the
time prevented these techniques from
becoming widespread, and as a result they
are more or less ignored by most CS pro-
grams. This is unfortunate because the
techniques have evolved to the point that
they can be used in large-scale systems and
can contribute substantially to the reliabili-
ty of these systems. A case in point is the
use of SPARK in the re-engineering of the
ground-based air traffic control system in
the United Kingdom (see a description of
iFACTS – Interim Future Area Control
Tools Support, at <www.nats.co.uk/arti-
cle/90>). SPARK is a subset of Ada aug-
mented with assertions that allow the
designer to prove important properties of
a program: termination, absence of run-
time exceptions, finite memory usage, etc.
[2]. It is obvious that this kind of design
and analysis methodology (dubbed
Correctness by Construction) will add sub-
stantially to the reliability of a system
whose design has involved SPARK from
the beginning. However, PRAXIS, the
company that developed SPARK and
which is designing iFACTS, finds it hard to
recruit people with the required mathemat-
ical competence (and this is present even in
the United Kingdom, where formal meth-
ods are more widely taught and used than
in the United States).

Another formal approach to which CS
students need exposure is model checking
and linear temporal logic for the design of
concurrent systems. For a modern discus-
sion of the topic, which is central to mis-
sion-critical software, see [3].

Another area of computer science
which we find neglected is the study of
floating-point computations. At New York
University, a course in numerical methods
and floating-point computing used to be
required, but this requirement was dropped
many years ago, and now very few students
take this course. The topic is vital to all sci-
entific and engineering software and is
semantically delicate. One would imagine
that it would be a required part of all cours-
es in scientific computing, but these often

take MatLab to be the universal program-
ming tool and ignore the topic altogether.

The Pitfalls of Java as a First
Programming Language
Because of its popularity in the context of
Web applications and the ease with which
beginners can produce graphical programs,
Java has become the most widely used lan-
guage in introductory programming cours-
es. We consider this to be a misguided
attempt to make programming more fun,
perhaps in reaction to the drop in CS
enrollments that followed the dot-com
bust. What we observed at New York
University is that the Java programming
courses did not prepare our students for
the first course in systems, much less for
more advanced ones. Students found it
hard to write programs that did not have a
graphic interface, had no feeling for the
relationship between the source program
and what the hardware would actually do,
and (most damaging) did not understand
the semantics of pointers at all, which
made the use of C in systems program-
ming very challenging.

Let us propose the following principle:
The irresistible beauty of programming
consists in the reduction of complex for-
mal processes to a very small set of primi-
tive operations. Java, instead of exposing
this beauty, encourages the programmer to
approach problem-solving like a plumber
in a hardware store: by rummaging through
a multitude of drawers (i.e. packages) we
will end up finding some gadget (i.e. class)
that does roughly what we want. How it
does it is not interesting! The result is a stu-
dent who knows how to put a simple pro-
gram together, but does not know how to
program. A further pitfall of the early use
of Java libraries and frameworks is that it is
impossible for the student to develop a
sense of the run-time cost of what is writ-
ten because it is extremely hard to know
what any method call will eventually exe-
cute. A lucid analysis of the problem is pre-
sented in [4].

We are seeing some backlash to this

Computer Science Education:
Where Are the Software Engineers of Tomorrow?

By Dr. Robert B.K. Dewar and Dr. Edmond Schonberg
AdaCore Inc.

It is our view that Computer Science (CS) education is neglecting basic skills, in particular in the areas of programming and
formal methods. We consider that the general adoption of Java as a first programming language is in part responsible for this
decline. We examine briefly the set of programming skills that should be part of every software professional’s repertoire.

Open Forum

28 CROSSTALK The Journal of Defense Software Engineering January 2008

approach. For example, Bjarne Stroustrup
reports from Texas A & M University that
the industry is showing increasing unhappi-
ness with the results of this approach.
Specifically, he notes the following:

I have had a lot of complaints about
that [the use of Java as a first pro-
gramming language] from industry,
specifically from AT&T, IBM, Intel,
Bloomberg, NI, Microsoft, Lock-
heed-Martin, and more. [5]

He noted in a private discussion on this
topic, reporting the following:

It [Texas A&M] did [teach Java as
the first language]. Then I started
teaching C++ to the electrical engi-
neers and when the EE students
started to out-program the CS stu-
dents, the CS department switched
to C++. [5]

It will be interesting to see how many
departments follow this trend. At
AdaCore, we are certainly aware of many
universities that have adopted Ada as a first
language because of similar concerns.

A Real Programmer Can
Write in Any Language (C,
Java, Lisp,Ada)
Software professionals of a certain age will
remember the slogan of old-timers from
two generations ago when structured pro-
gramming became the rage: Real program-
mers can write Fortran in any language.
The slogan is a reminder of how thinking
habits of programmers are influenced by
the first language they learn and how hard
it is to shake these habits if you do all your
programming in a single language.
Conversely, we want to say that a compe-
tent programmer is comfortable with a
number of different languages and that the
programmer must be able to use the men-
tal tools favored by one of them, even
when programming in another. For exam-
ple, the user of an imperative language
such as Ada or C++ must be able to write
in a functional style, acquired through prac-
tice with Lisp and ML1, when manipulating
recursive structures. This is one indication
of the importance of learning in-depth a
number of different programming lan-
guages. What follows summarizes what we
think are the critical contributions that
well-established languages make to the
mental tool-set of real programmers. For
example, a real programmer should be able
to program inheritance and dynamic dis-
patching in C, information hiding in Lisp,

tree manipulation libraries in Ada, and
garbage collection in anything but Java.
The study of a wide variety of languages is,
thus, indispensable to the well-rounded
programmer.

Why C Matters
C is the low-level language that everyone
must know. It can be seen as a portable
assembly language, and as such it exposes
the underlying machine and forces the stu-
dent to understand clearly the relationship
between software and hardware. Perfor-
mance analysis is more straightforward,
because the cost of every software state-
ment is clear. Finally, compilers (GCC for
example) make it easy to examine the gen-
erated assembly code, which is an excellent
tool for understanding machine language
and architecture.

Why C++ Matters
C++ brings to C the fundamental concepts
of modern software engineering: encapsu-
lation with classes and namespaces, infor-
mation hiding through protected and pri-
vate data and operations, programming by
extension through virtual methods and
derived classes, etc. C++ also pushes stor-
age management as far as it can go without
full-blown garbage collection, with con-
structors and destructors.

Why Lisp Matters
Every programmer must be comfortable
with functional programming and with the
important notion of referential transparency.
Even though most programmers find imper-
ative programming more intuitive, they must
recognize that in many contexts that a func-
tional, stateless style is clear, natural, easy to
understand, and efficient to boot.

An additional benefit of the practice of
Lisp is that the program is written in what
amounts to abstract syntax, namely the
internal representation that most compilers
use between parsing and code generation.
Knowing Lisp is thus an excellent prepara-
tion for any software work that involves
language processing.

Finally, Lisp (at least in its lean Scheme
incarnation) is amenable to a very compact
self-definition. Seeing a complete Lisp
interpreter written in Lisp is an intellectual
revelation that all computer scientists
should experience.

Why Java Matters
Despite our comments on Java as a first or
only language, we think that Java has an
important role to play in CS instruction.
We will mention only two aspects of the
language that must be part of the real pro-
grammer’s skill set:

1. An understanding of concurrent pro-
gramming (for which threads provide a
basic low-level model).

2. Reflection, namely the understanding
that a program can be instrumented to
examine its own state and to determine
its own behavior in a dynamically
changing environment.

Why Ada Matters
Ada is the language of software engineer-
ing par excellence. Even when it is not the
language of instruction in programming
courses, it is the language chosen to teach
courses in software engineering. This is
because the notions of strong typing,
encapsulation, information hiding, concur-
rency, generic programming, inheritance,
and so on, are embodied in specific fea-
tures of the language. From our experience
and that of our customers, we can say that
a real programmer writes Ada in any lan-
guage. For example, an Ada programmer
accustomed to Ada’s package model, which
strongly separates specification from
implementation, will tend to write C in a
style where well-commented header files
act in somewhat the same way as package
specs in Ada. The programmer will include
bounds checking and consistency checks
when passing mutable structures between
subprograms to mimic the strong-typing
checks that Ada mandates [6]. She will
organize concurrent programs into tasks
and protected objects, with well-defined
synchronization and communication
mechanisms.

The concurrency features of Ada are
particularly important in our age of multi-
core architectures. We find it surprising that
these architectures should be presented as a
novel challenge to software design when
Ada had well-designed mechanisms for writ-
ing safe, concurrent software 30 years ago.

Programming Languages Are
Not the Whole Story
A well-rounded CS curriculum will include
an advanced course in programming lan-
guages that covers a wide variety of lan-
guages, chosen to broaden the understand-
ing of the programming process, rather
than to build a résumé in perceived hot lan-
guages. We are somewhat dismayed to see
the popularity of scripting languages in
introductory programming courses. Such
languages (Javascript, PHP, Atlas) are
indeed popular tools of today for Web
applications. Such languages have all the
pedagogical defaults that we ascribe to Java
and provide no opportunity to learn algo-
rithms and performance analysis. Their
absence of strong typing leads to a trial-

Computer Science Education: Where Are the Software Engineers of Tomorrow?

January 2008 www.stsc.hill.af.mil 29

and-error programming style and prevents
students from acquiring the discipline of
separating design of interfaces from speci-
fications.

However, teaching the right languages
alone is not enough. Students need to be
exposed to the tools to construct large-
scale reliable programs, as we discussed at
the start of this article. Topics of relevance
are studying formal specification methods
and formal proof methodologies, as well as
gaining an understanding of how high-reli-
ability code is certified in the real world.
When you step into a plane, you are putting
your life in the hands of software which
had better be totally reliable. As a comput-
er scientist, you should have some knowl-
edge of how this level of reliability is
achieved. In this day and age, the fear of
terrorist cyber attacks have given a new
urgency to the building of software that is
not only bug free, but is also immune from
malicious attack. Such high-security soft-
ware relies even more extensively on for-
mal methodologies, and our students need
to be prepared for this new world.u

References
1. Joint Taskforce for Computing

Curricula. “Computing Curricula 2005:
The Overview Report.” ACM/AIS/
IEEE, 2005 <www.acm.org/education

/cur r i c_vo l s/CC2005-March06
Final.pdf>.

2. Barnes, John. High Integrity Ada: The
Spark Approach. Addison-Wesley,
2003.

3. Ben-Ari, M. Principles of Concurrent
and Distributed Programming. 2nd ed.
Addison-Wesley, 2006.

4. Mitchell, Nick, Gary Sevitsky, and
Harini Srinivasan. “The Diary of a
Datum: An Approach to Analyzing
Runtime Complexity in Framework-
Based Applications.” Workshop on
Library-Centric Software Design,
Object-Oriented Programming, Sys-
tems, Languages, and Applications, San
Diego, CA, 2005.

5. Stroustrup, Bjarne. Private communica-
tion. Aug. 2007.

6. Holzmann Gerard J. “The Power of
Ten – Rules for Developing Safety
Critical Code.” IEEE Computer June
2006: 93-95.

Note
1. Several programming language and sys-

tem names have evolved from
acronyms whose formal spellings are
no longer considered applicable to the
current names for which they are read-
ily known. ML, Lisp, GCC, PHP, and
SPARK fall under this category.

Open Forum

30 CROSSTALK The Journal of Defense Software Engineering January 2008

Get Your Free Subscription

Fill out and send us this form.

517 SMXS/MXDEA

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

OCT2006 c STAR WARS TO STAR TREK

NOV2006 c MANAGEMENT BASICS

DEC2006 c REQUIREMENTS ENG.

JAN2007 c PUBLISHER’S CHOICE

FEB2007 c CMMI

MAR2007 c SOFTWARE SECURITY

APR2007 c AGILE DEVELOPMENT

MAY2007 c SOFTWARE ACQUISITION

JUNE2007 c COTS INTEGRATION

JULY2007 c NET-CENTRICITY

AUG2007 c STORIES OF CHANGE

SEPT2007 c SERVICE-ORIENTED ARCH.

OCT2007 c SYSTEMS ENGINEERING

NOV2007 c WORKING AS A TEAM

DEC2007 c SOFTWARE SUSTAINMENT

To Request Back Issues on Topics Not
Listed Above, Please Contact <stsc.
customerservice@hill.af.mil>.

About the Authors

Edmond Schonberg,
Ph.D., is vice-president
of AdaCore and a pro-
fessor emeritus of com-
puter science at New
York University. He has

been involved in the implementation of
Ada since 1981. With Robert Dewar and
other collaborators, he created the first
validated implementation of Ada83, the
first prototype compiler for Ada9X, and
the first full implementation of
Ada2005. Schonberg has a doctorate in
physics from the University of Chicago.

AdaCore
104 Fifth AVE
15th FL
New York, NY 10011
E-mail: schonberg@adacore.com

Robert B.K. Dewar,
Ph.D., is president of
AdaCore and a professor
emeritus of computer
science at New York
University. He has been

involved in the design and implementa-
tion of Ada since 1980 as a distinguished
reviewer, a member of the Ada Rappor-
teur group, and the chief architect of
Gnu Ada Translator. He was a member
of the Algol68 committee and is the
designer and implementor of Spitbol.
Dewar lectures widely on programming
languages, software methodologies, safe-
ty and security, and on intellectual prop-
erty rights. He has a doctorate in chem-
istry from the University of Chicago.

AdaCore
104 Fifth AVE
15th FL
NewYork, NY 10011
Phone: (212) 620-7300 ext. 100
Fax: (212) 807-0162
E-mail: dewar@adacore.com

