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Abstract. Traditional design and implementation of large atmospheric
models is a difficult, tedious and erroneous task. With the Ctadel
project we propose a new method of code generation, where the designer
describes the model in an abstract high-level specification language which
is translated into highly optimized Fortran code. In this paper we show
the abilities of this method on a coupled ocean–atmosphere model, in
which we have to deal with multi-resolution domains and different time-
steps. We, briefly, describe a new concept in compiler design, the use of
templates for code generation, to elevate the burden of choosing archi-
tecture optimized numerical routines.

1 Introduction

Simulation of atmospheric models is a computationally intensive task, where de-
velopers of those models have to make a trade-off between numerical accuracy
and computational resources. First, approximations are made in the formulation
of the physical processes in a mathematical model by discarding certain details
that are assumed to have little impact on the overall outcome. Second, approx-
imations are made by the discretization of the model and its numerical solving
methods and the resolution of the discrete grid.

Increasing processing power and the development of new high-performance
architectures such as large networks of workstations (NOW) (for example the
Beowulf project [9]) have led to opportunities for developers of numerical models
to change the focus on more numerical detail, finer resolution or larger computa-
tional domains. This requires a significant programming effort to implement the
changes in the simulation application since a simple plug-and-play development
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paradigm with software components for scientific applications does not yet exist.
This can lead to huge amounts of undocumented code, for which new versions
have to be developed with every new computer architecture emerging.

In most cases, however, a model can be described on an abstract level, for
example mathematical equations. One of the aims of the Ctadel project is to
enable developers to formulate the problem on a high level, refraining from archi-
tecture specific dependencies, while producing highly efficient codes for a variety
of target platforms [13]. In this paper we show the possibilities of Ctadel on a
coupled ocean–atmosphere model, a quasi-geostrophic climate dynamics model
[2]. Coupled models impose certain difficulties on their implementation; often
these models use multiple resolutions on the computational grids and separate
time steps. This also assesses certain constraints on the interaction between the
different parts of the model and the parallelization of the model.

For specifications in Ctadel the ATmospheric MOdeling Language (at-
mol) [14] was developed in close collaboration with meteorologists at the Royal
Netherlands Meteorological Institute (KNMI) to ensure ease of use, concise no-
tation, and the adaptation of common notational conventions. The high-level
constructs in atmol are declarative and side-effect free which is required for the
application of transformations to translate and optimize the intermediate stages
of the model and its code. atmol is strict and requires the typing of objects
before they are used. This helps to pinpoint problems with the specification at
an early stage before code synthesis takes place. atmol supports both high-
level as well as low-level language constructs such as Fortran-like programming
statements which are used to implement and optimize the target numerical code.

This paper is organized as follows, in section 2 we will explain some of the
basic theory behind the original quasi-geostrophic model, while we discuss our
specification of the model in section 4 and the Ctadel system in section 3. Re-
sults from experiments conducted with the produced codes by Ctadel and the
original hand-written code are shown in section 5 and we draw some conclusions
in section 7.

2 Quasi-Geostrophic Dynamics

In this section we will explain the quasi-geostrophic dynamics model some more.
For the sake of understandability and readability we only briefly touch the the-
ory and interested readers are referred to [2]. The model describes a mid-latitude
coupled climate model, which is used in an attempt to understand how the ocean
climatology is modified by atmospheric coupling. At present, the best compre-
hensive coupled climate models run at resolutions far coarser than those needed
to model the inertial recirculation. The model presented here is an attempt to ex-
plicitly include eddies in general, and inertial recirculation in particular, within
the framework of an idealized climate setting. The basic model consists of a
quasi-geostrophic channel atmosphere coupled to a simple, rectangular quasi-
geostrophic ocean. Heat and momentum exchanges between the ocean and the
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atmosphere are mediated via mixed layer models and the system is driven by
steady, latitudinally dependent incident solar radiation.

Solar radiation is the basic force behind the global climate. About 30% is
reflected back to space while the remaining part is absorbed mostly at bottom
interface, whether it be land or water. Heat transfers to the atmosphere occur
either through sensible or latent fluxes, or long wave radiative surface emissions
to which the atmosphere is almost totally opaque.

The model is based on a classical β-plane mid-latitude representation and
a two layered version of the quasi-geostrophic (QG) equations. For the most
part, classical QG models are adiabatic, i.e. thermodynamics are neglected [4].
If the standard QG scaling is used and the usual Rossby number expansion is
employed, the momentum equations yield the non-dimensional vorticity equation

(
∂

∂t
+ J(pi, .))(∇2pi + βy) = wi1z + HF, (1)

where J denotes the usual Jacobian operator, pi is the layer pressure, y is the
meridional coordinate, HF denotes the horizontal frictional effects and all vari-
ables are non-dimensional.

The final dimensional forms of the QG equations for both ocean layers can
now be extracted, for example the first layers reads,

d
dtq1 = A1h∇6p1 + f0

H1
(wek − E(−H1 − h1+))

q1 = ∇2p1
f0

+ βy − f0
g′H1

(p1− p2),
(2)

where F1 denotes the effects of the upper and lower layer horizontal frictional
processes. Here ∇6p1 is used as closure for for the latter and super slip boundary
conditions (i.e. ∇2pi = ∇4pi = 0).

3 Ctadel

Many attempts have been made to solve scientific or physical models numeri-
cally using computers. Today, a large collection of libraries, tools, and Problem
Solving Environments (PSEs) have been developed for these problems. The com-
putational kernels of most PSEs consist of a large library containing routines for
several numerical solution methods. These routines form the templates for the
resulting code. The power of this library determines the numerical knowledge of
such a system.

A different approach to those so-called library-based PSEs consists of a col-
lection of tools that generate code based on a problem specification without the
use of a library. The numerical knowledge is determined by the expressiveness
of the problem specification language and the underlying translation techniques.
Ctadel belongs to this class of PSEs. Besides, a hardware description of the
target platform is included in Ctadel’s problem specification. This makes it
possible to produce efficient codes for different types of architectures.

The Ctadel system provides an automated means of generating specific high
performance scientific codes. These codes are optimized for a number of different

421



architectures, like serial, vector, or shared virtual memory and distributed mem-
ory parallel computer architectures. One of the key elements of this system is the
usage of algebraic transformation techniques and powerful methods for global
common subexpression elimination. These techniques ensure the generation of
efficient high performance codes.

For a more detailed description of Ctadel see [11].

4 Specification and Implementation

In this section we describe the specification of the quasi-geostrophic model using
the atmol specification language for Ctadel and one of the main problems
with this specification, the separate domain resolutions.

4.1 Spatial resolutions

As seen in section 2 both the ocean and atmosphere model have their own
spatial domain resolution, which leads to several problems when combining both
models into a mixed model. For example, when exchanging data between the two
models, a spatial interpolation has to take place. Another problem arises with
differentiation of a function, Ctadel can’t assume a default grid size but has
to determine this from the context. For example, one would normally write a
differentiation like,

coordinates := [dx,dy].
Q = diff(P,y).

which would be translated into

DO 10 j = 1,m-1
DO 20 i = 1,n

Q(i,j) = (P(i,j-1) - P(i,j)) / dy
20 CONTINUE
10 CONTINUE

Since we work with two different grid sizes, this is not conceivable. One possibility
is to hard-code the distance between two grid-points into the specification, which
is not desirable. Therefor we couple the specification of a domain to it’s spatial
grid sizes. For example, the definition of a domain could look like,

domain_a := i=1..X_a by j=1..Y_a by k=1..Z_a.
domain_a‘coordinates := [dxa,dya].

If we define a variable with this domain Ctadel knows which distances to choose
from. A problem arising with this implementation is when two variables with
different domains are combined in one equation. Since this has been avoided in
the original model, we did not investigated this problem.
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4.2 Implementation

For the sake of separation of concern we divided the original model in three
clearly distinguishable sub-parts,

1. Initialization, in this initial data for the model is calculated for the ocean
and atmosphere models. We discuss this step some more in subsection 4.3.

2. Ocean step, this sub-part performs one time step for the ocean model, which
we will explain in subsection 4.4.

3. Atmosphere step, analogue with the ocean part, this sub-part performs one
time for the atmosphere model. This part highly resembles the ocean step
and we therefor don’t discuss this part.

A possible extension to the specification could be a high-grain parallelization
of steps two and three. In figure 4.2 we see the current sequential execution of
the model, while figure 4.2 a possible parallel implementation is shown. Unfortu-
nately data dependencies did not allow for a trivial parallelization; for example
it has to be taken into account when data has to be exchanged between the
models. This would require a redesign of the original model, which is beyond the
focus of this work.

OCEAN ATMOS. ATMOS ATMOS ATMOS

Fig. 1. Sequential execution of the ocean and atmosphere steps

OCEAN

ATMOS. ATMOS ATMOS ATMOS

Fig. 2. Parallel execution of the ocean and atmosphere steps

In the implementation of the original model, several numerical library calls
where made. For example, for finding the solution to a tridiagonal matrix a
tridiag solver was called. In [10] we examined the use of calling external library
calls for implicit equations, while for this specification we explore the use of tem-
plates even more [14] The use of templates makes it possible to offer the designer
of the model a number of standard numerical solution methods, but leaves the
actual implementation to Ctadel. The user can therefor specify the usage of a
method while Ctadel can pick an appropriate and optimal implementation for
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the target architecture. For example when a Fourier analysis is needed the user
can specify this like

V = Fourier(Q),

without bothering about the actual implementation; Ctadel decides if a library
call should be made to an existing optimized library or fill in a the code itself. In
the current implementation Ctadel makes use of default numerical functions,
like spline2 from [7].

4.3 Initialization

In the first phase of the model, a number of general input parameters and initial
data are read in, after which model specific data is calculated from these pa-
rameters. The original implementation of the model also could perform special
tasks in this initialization phase, like some sort of crash recovery from an aborted
previous run. We did not implement this in our specification.

An example equation belonging to this first step is equation (2) which reads
in the Ctadel specification like,

qcomp(P,DX,DY,H,GP,NL) := (C + sign *(f_zero/(GP * H))*(DPO)
where C=(DX*(lapl P)/f_zero + beta * Y)
where sign=(1 if k>1 \\ -1 otherwise)
where (DPO=(P-(P@(k=k+1))) if k<NL \\

((P@(k=k-1))-P) otherwise)
where Y=(j-1)*DY

).
CalcO(P,DX,DY, H,GP) :=

( zq(P,DY, H,GP,nlo) if borderj_O \\
mqo(P,DY, H,GP) if borderi_O \\
qcomp(P, DX, DY, H, GP,nlo) otherwise

).

This specification shows two generalized functions (including some boundary
conditions) which can be used like,

qo = CalcO(po,dxom2, dyo, H_o, g_prime).

In the quasi-geostrophic model for the calculation of the barotropic mode, a
chsolv routine function is used, which uses a Fourier and a tridiag solver. In our
specification we make use of templates to deal with these solvers; in the current
specification Ctadel calls an external library function [7] to find a solution. A
sample specification for this reads like,

tp_ch2 = (ch_solv(boundary_south, aa, ba) where aa=1/dya^2).
tp_ch3 = (ch_solv(boundary_north, aa, ba) where aa=1/dya^2).

424



4.4 Ocean step

In this part of the specification, one ocean time step is calculated. A typical ’dy-
namics’ equation which can be found is the calculation of the auxiliary currents,
e.g. wind tendencies. The specification for equation (refeqn:aux) for the ocean
dynamics read like,

u_ag = (-C*(P1-P2)*dxam2/f_zero
where P1=((pa@(j=j+1)) if j<nya \\

(pa@(j=nya)) otherwise)@(k=1)
where P2=((pa@(j=j-1)) if j>1 \\

(pa@(j=1)) otherwise)@(k=1)
where C=(0.5 if noborder(nya) \\ 0 otherwise)
).

v_ag = (-1/2*((P@(i=i+1))-(P@(i=i-1)))*dxam2/f_zero
where P=pa@(k=1)) if noborder(nya) \\

0 otherwise.

5 Preliminary results

In this section the code generated by Ctadel for the quasi-geostrophic model
is compared with the original hand-written code. Since the original code was
not written with efficiency in mind, we can expect a performance difference with
the generated code by Ctadel which performs some aggressive optimizations
like common subexpression elimination. Standard compiler optimizations like
loop optimization [5] where not applied. We ran the code on a scalar type of
architecture; a commodity personal computer, running the linux/GNU operating
system, with linux kernel version 2.4.10. The used machine was equipped with
a 700 Mhz AMD Athlon processor and 128 MByte.

All test-runs used an input grid with variable horizontal and vertical points
and two layers per model. For some experiments we used a fixed number of thou-
sand time-steps while we also conducted experiments with diverging time-steps.
In order to reduce external influences on these times, we run each experiment a
number of times and calculated the average execution time. Because the devia-
tions from these average times are in the order of tenths of percents, we do not
include them in the figures.

For the compilation of the programs we used the GNU Fortran compiler,
version 2.95.2, with standard optimization turned on (g77 -O2). With each run
of the programs we compared the output of the generated code with the reference
code. Since numerical solution methods are used over several time-steps, small
differences appear in the output of both programs. However, these differences
turned out to be relatively small and therefore acceptable.

In figure 3 we run both generated code and the hand-written code with a
varying input grid size and a constant number of 1000 time-steps. Since both the
atmosphere and the ocean model use different input grid sizes we have scaled
them equitable. As we see from both the graphs, the code generated by Ctadel
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Fig. 3. Execution of both models with a varying input grid size, execution times in
seconds

has a performance gain of 30% over the hand-written code. We also see that
neither of the codes has a linear execution time with increasing input sizes.

In figure 4 we have examined the execution times of both the codes as a func-
tion of the number of time-steps. As one might expect, this is a linear relation.
As for figure 3 the automaticly generated code from Ctadel has a performance
gain of around 30% over the hand-written code.

These experiments show that automatic generated code can vanquish the
hand-written codes for the quasi-geostrophic model. We should, however, point
out that the original code was not optimized with respect to performance. Pre-
vious studies [10, 12] have shown that generated code can compete with hand-
optimized codes.

6 Related work

Not much work has been done in the field of automatic generation of program
codes based on a mathematical specification. Therefore programmers tend to
‘convert’ the problem by hand into a program or use libraries and/or problem
solving environments (PSE). Some PSEs exist which produce program codes.
For example the MathWorks package is a compiler for Mathlab specifications
which generates C and C++ codes. There also exists special purpose libraries for
PSEs, which can handle a specific problem. Examples are the REDTEN [3] for
Maple and RICCI [6] for Mathematica.
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Fig. 4. Execution of both models with varying number of time steps, execution times
in seconds

The Falcon project [1] takes a different approach, comparable with Ctadel.
It uses an existing high-level array language, MATLAB, as source language and
performs static, dynamic, and interactive analysis to generate Fortran 90 pro-
grams with directives for parallelism. It includes capabilities for interactive and
automatic transformations.

7 Conclusion

In this paper we show a new method of code generation for large scale numerical
models. Instead of translating a mathematical model into source code by hand
and maintaining hand-optimized versions for several target computer architec-
tures, the designer can specify the model in an abstract specification language
which is automaticly compiled into highly-optimized target-dependent Fortran
codes. We explored this on a coupled ocean–atmosphere model, in which we have
to deal with multi-resolution domains and different time-steps. We also, briefly,
addressed the concept of templates in our Ctadel compiler, which can elevate
the burden from the model-designer of picking efficient numerical solution meth-
ods.

As we can see from the preliminary results in section 5 the generated code by
Ctadel is clearly more efficient considering execution time. Since the original
hand-written code was not optimized for speed, this is not a big surprise. More
important is the ability to generate code for multiple architectures by using
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Ctadel. For example, it’s fairly trivial to automaticly generate codes for a
distributed memory architecture with use of the MPI message parsing while this
is a tedious task to do with the original hand-written code. Another advantage
from specifying the model arises when more than the current two layers are
needed.
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