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Abstract

This paper presents a table-driven streaming XML pars-
ing methodology, called TDX. TDX expedites XML pars-
ing by pre-recording the states of an XML parser in tabular
form and by utilizing an efficient runtime streaming parsing
engine based on a push-down automaton. The parsing ta-
bles are automatically produced from the XML schemas of a
WSDL service description. Because the schema constraints
are pre-encoded in a parsing table, the approach effectively
implements a schema-specific XML parsing technique that
combines parsing and validation into a single pass. This
significantly increases the performance of XML Web ser-
vices, which results in better response time and may reduce
the impact of the flash-crowd effect. To implement TDX,
we developed a parser construction toolkit to automatically
construct parsers in C code from WSDLs and XML schemas.
We applied the toolkit to an example Web services applica-
tion and measured the raw performance compared to pop-
ular high-performance parsers written in C/C++, such as
eXpat, gSOAP, and Xerces. The performance results show
that TDX can be an order of magnitude faster.

1. Introduction

XML validation, as performed by a validating XML
parser, filters valid XML from invalid content based on a
schema, e.g., XML schema [19], Relax-NG [5], or DTD. In
the SOAP/XML Web services context where XML parsing
is an essential component for message exchange, this simple
principle guides the separation of concerns between mes-
sage content verification and the service application logic.

Despite the key advantage of XML validation, it is often
disabled for high-performance XML applications because it
is well known that validation incurs significant processing
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overhead in the XML parser at the receiving server [7, 13].
Part of the overhead is caused by the checking of valida-
tion constraints in a separate stage after document parsing
as described by the specifications [5,19]. A validating parser
must keep sufficient state information, or even the entire
document in memory, to validate an inbound XML stream
against a schema. Furthermore, the complexity of the vali-
dation process is exacerbated when streaming XML parsing
requirements are considered, due to the inherent incompati-
bility of streaming with a staged validation process. Stream-
ing techniques allow XML messages to be parsed and pro-
cessed on the fly, eliminating the need to store a document
in full, such as with DOM.

The logical separation of parsing and validation in XML
parsers and the frequent access to schemas can be elimi-
nated by integrating parsing and validation into a schema-
specific parser [3,4,13,14,16,17]. Schema-specific parsers
encode parsing states and validation rules to boost perfor-
mance. Previous work [3,4,7,13,16] in this area was limited
to DTDs or a limited subset of XML schema and does not
include namespace support which makes these approaches
useless for XML Web services. Prior to that work, the
gSOAP toolkit project [14,15,17,18] implemented schema-
specific parsing based on recursive descent parsers [1] gen-
erated from XML schema via intermediate representations.
Based on this experience with gSOAP, we developed TDX
toolkit for streaming XML parsing as a faster, more eco-
nomical method, to implement high-performance parsers.
TDX is a parsing methodology that provides a flexible
framework that combines well-formedness parsing, type-
checking validation, and application-specific events.

The TDX methodology is based on linguistic princi-
ples by encoding XML parsing and validation insepara-
bly in LL(1) context-free grammar rules [1, 7]. All struc-
tural constraints, many types of validation constraints (such
as minOccurs, maxOccurs, length, enumeration,
boolean values, etc.), imposed by XML schema, are in-
corporated in grammar productions. Checking of these con-
straints proceeds automatically through the grammar pro-



ductions at run time. Other type constraints and application-
specific events are encoded as semantic actions in the aug-
mented grammar. Because validation is tightly integrated
into the production rules, validation does not need to be en-
forced separately.

The semantic actions use index tokens that refer to ap-
plication functions. The application functions are imple-
mented in a “action table” in the service back-end. There-
fore, TDX offers a high level of modularity, because the use
of index does not require the re-compilation of application
when the modular parse tables are generated for new or up-
dated schemas.

The remainder of this paper is organized as follows.
We first review related work in Section 2. Then, we de-
scribe TDX architecture in Section 3. Section 4 describes
the table-driven XML streaming parsing. The mapping from
XML schema to an augmented LL(1) grammar is given in
section 5. Section 6 describes the automatic generation of
a TDX parser with our code generator. Performance results
are presented in Section 7. Finally, we summarize the pa-
per with conclusions in Section 8.

2. Related Work

Van Engelen in [16] presented a method to integrate
parsing and validation into a single stage with parsing
actions encoded by a deterministic finite state automa-
ton (DFA), where the DFA is directly constructed from a
schema based on a set of mapping rules. DFA parsing is
fast and combines parsing and validity checks. However,
because of the limitations of the regular language described
by DFAs, the approach can only be used to process a non-
cyclic subset of XML schemas.

Chiu et al. [3, 4] also suggests an approach to merge all
aspects of low-level parsing and validation by constructing a
single push-down automaton. However, their approach does
not support XML namespaces, which is essential for SOAP
compliance. Furthermore, the approach requires conversion
from a non-deterministic automaton (NFA) to a DFA. This
conversion may result in exponentially growing space re-
quirement caused by subset construction [1] or powerset
construction [11].

In earlier work on the gSOAP toolkit [14, 17] a schema-
specific parsing approach was implemented and a compiler
tool was developed to generate LL(1) recursive descent
parsers to efficiently parse XML documents with names-
paces defined by schemas. This approach has the disadvan-
tages of recursive descent parsing, which include code size
and function calling overhead.

Also, the Packrat parser [6] implements recursive-
descent parsing with backtracking and has been applied to
XML. It achieves linear time parsing, but the main disad-
vantage is its space requirement, which is directly propor-
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Figure 1: Architecture overview of TDX

tional to the XML input size. This rules Packrat out as a
practical streaming XML parser, because the XML docu-
ment length may, in practice, be quite large.

Tree grammars were developed to represent the struc-
ture of XML instances [9, 10]. Tree grammars provide an
efficient way to encode schema constraints, but they are not
suitable to integrate parsing and validation into one stage.

3. Overview of TDX

The TDX methodology consists of three stages: speci-
fication processing, code generation, and run-time process-
ing. Figure 1 depicts the architecture overview of TDX.

TDX uses mapping rules to translate WSDL or XML
schema description into LL(1) grammar productions. The
mapping rules define the mapping from schema compo-
nents to LL(l) grammars.

Code generation requires two code generators:
WSDL2TDX and LL2Table. WSDL2TDX takes the WSDL
or Schema description and the mapping rules as input, pro-
duces source code automatically for DFA-based scanner,
tokens, type-checking actions, and LL(1) grammar produc-
tions. The LL2Table then constructs an LL(1) parse table
from generated LL(1) grammar. The application-specific
functions cannot be generated automatically because they
are application-dependent. The application-specific ac-
tions must be manually inserted before the LL(1) parse
table is constructed.

At run time, the scanner scans the XML stream and
breaks it up into a token stream to the TDX parsing engine.
The engine performs well-formedness verification, type-
checking validation, generates events to invoke application-
specific actions, and deserializes data to the application’s
back-end. Syntactical and validation errors are returned to
the client as SOAP faults. Validation errors indicate schema
constraint violation.



4. Table-Driven XML Processing

The table-driven parsing technique eliminates the over-
head generated by recursive and backtracking calls, and its
space requirement is linear to the nesting depth of XML
document. These speed and memory-efficient advantages
make the table-driven parsing technique amenable for con-
structing streaming XML processors.

4.1. Tokenizing XML

By tokenizing XML into tokens, we enhance the over-
all performance, because matching tokens once is more ef-
ficient than repeatedly comparing strings in the parser.
Tokens are defined by schema component tags such as el-
ement names, attribute names. In our approach we
namespace-normalize XML tags and then classify the
XML tag names according to uses. All beginning ele-
ment tags <NAME> are represented by bNAME, ending el-
ement names </NAME> are represented by eNAME, and
attribute tag names are represented by aNAME. Simi-
larly, enumeration values value=‘V are represented by
cV. Enumeration values are also defined as tokens, mainly
to improve performance.

Namespace bindings are supported by internal normal-
ization of the token stream to simplify the construction of
LL(1) parse table. Namespace qualified elements and at-
tributes are translated into normalized tokens according to
a namespace mapping table. Thus, identical tag names de-
fined under two different namespace domains are in fact
separate tokens. Table 1 lists tokens for an example schema.

4.2. Annotated LL Grammar Productions

The LL(1) grammar productions are generated from a
schema using WSDL2TDX. Application-specific actions can
be semi-automatically or manually inserted to fire events to

Token XML Schema
<schema>

<simpleType name=“state type”>
<restriction base=“”xsd:string>

cOFF <enumeration value=“OFF”/ >
cON <enumeration value=“ON”/ >

< /restriction>
< /simpleType>
<complexType name=“example type”>

<sequence>
bID <element name=“id” type=“xsd:string”
eID / >
bVALUE <element name=“value” type=“xsd:integer”
eVALUE / >
bSTATE <element name=“state” type=“state type”
eSTATE / >

<sequence>
< /complexType>

< /schema>

Table 1: Tokens for an example schema

# Production Action
1 s → cOFF
2 s → cON EVENT gen event(i)
3 t → t1t2t3
4 t1 → bID CDATA eID imp string(s.val)
5 t2 → bVALUE CDATA eVALUE imp integer(s.val)
6 t3 → bSTATE s eSTATE

Table 2: LL(1) grammar generated from Schema in Table 1

the application. Each production contains a nonterminal at
its left-hand side of ‘→’, followed by a sequence of non-
terminals and terminals at its right-hand side. Two special
tokens CDATA and EVENT are used as indicators to invoke
the type-checking actions for content validation, and to gen-
erate events to invoke application-specific functions respec-
tively. Suppose the application logic has a function process-
ing the element state when the state is ’ON’, and we also
assume the function is indexed as i in the action table for
the event dispatcher, then the table 2 shows the generated
LL(1) grammar for the schema in Table 1.

4.3. LL Parse Table

The LL(1) parse table is constructed from the LL(1)
grammar productions using LL2Table. The LL(1) grammars
are unambiguous and free of left recursion. Given a nonter-
minal X and terminal (i.e. XML token) a, the pair <X,a>
uniquely determines the production to be selected at run
time, for constructing a parse tree. This property allows us
to construct a parse table for the TDX parsing engine to get
the appropriate production.

4.4. Type-Checking Actions

The table with type-checking actions contains the ac-
tions for type validation as imposed by XML schema. Al-
though many structural validation rules can be cast as gram-
mar productions, others have to be validated explicitly with
semantic actions. Those include most XSD types such as
float, and integer, and most simpleType defined
by restriction.

4.5. Scanner

The scanner is the runtime tokenizer that scans the XML
stream and generates a token stream for the TDX parsing
engine. The scanner is generated from WSDL or schema de-
scription as described in Section 4.1, thus specialized to the
XML streaming message to efficiently perform the lexical
analysis. It produces a token stream using a DFA-based to-
ken recognizer that is automatically produced with Flex [8]
at compile time.



4.6. TDX Parsing Engine

The TDX parsing engine is schema- and application-
independent. It consumes the scanner’s token stream and
performs the XML structure verification, type-checking val-
idation, and invokes application actions, by consulting the
TDX tables. It also deserializes the data for the applica-
tion logic. The XML well-formedness is verified through
the grammar productions. Type-checking validation is per-
formed using actions after special token CDATA has been
seen. The application-specific actions are invoked when the
special token EVENT has been met. TDX parsing engine
uses a predictive top-down parsing method with one token
lookahead. It avoids the overhead of recursive and back-
tracking methods, and its space requirement achieves effi-
ciency that is linear to the nesting depth of XML elements.

The TDX parsing engine maintains a local stack to track
the parser’s states. The stack contains a sequence of gram-
mar symbols with $, a symbol used as an end-marker, on the
bottom, indicating the bottom of the stack. The engine im-
plements an LL(1) predictive parsing algorithm1 described
in [1]. The token on top of the stack, X, and the current in-
put token, a, determine the behavior of the engine:

a. If X=a=$, the engine announces success.

b. If X=a=CDATA �=$, the engine pops X, invokes the cor-
responding function to perform type-checking valida-
tion, then reads next input token on successful valida-
tion, halts and announces a validation error otherwise.

c. If X=a=EVENT �=$, the engine pops X, gener-
ates events to invoke the corresponding application-
specific function, deserializes data to the application,
then reads next input token upon completion of invo-
cation and deserialization.

d. If X=a�=CDATA�=EVENT�=$, the engine pops X, then
the reads the next input token.

e. If X is a non-terminal, the engine consults en-
try T[X][a] of the parse table. The entry will be ei-
ther an index of an X-production or an error entry. If it
is an error entry, the engine halts and announces a syn-
tax error. Otherwise, it gets the production using the
index, replaces the X with its right side token(s) in re-
verse order, i.e., the rightmost token is on top of the
stack.

5. Mapping XML Schema to an LL Grammar

In this section we describe the details of the mapping
rules that define the translations from XML schema com-

1 Some schema may, although rarely, have very large number of occur-
rence, say minOccurs="5000". In that case, this algorithm may be
inefficient in terms of memory requirements.

ponents to LL(1) grammar productions. The mapping pre-
serves the structural and semantic constraints on XML in-
stances of XML schemas.

5.1. Terms and Notations

We use X to represent an arbitrary closed schema com-
ponent. We also use x to represent a substring in a schema
component without occurrence or “use” constraint. The
symbol N denotes a non-terminal.

The term [N ]m is used to represent a string of N ’s with
exact m number of occurrences of N ’s.

The mapping operator Γ[[X]]N takes a schema compo-
nent and a designated non-terminal N , and returns a set of
LL(1) grammar productions. The symbol N ′, N ′′, and Ni

represent new nonterminals derived from nonterminal N .

5.2. Mapping Rules

Table 3 shows a subset of the mapping rules for schema
constraints. Other components such as complexType
and top-level element and attribute definitions are
mapped in a similar way, see [20] for more details. Map-
ping operations are defined recursively. For example,
rule (1) takes a schema component x with an occur-
rence constraint and a nonterminal N . It returns an epsilon
production and a mapping operation to produce the remain-
ing productions for x. Occurrence constraints minOccurs
and maxOccurs determine the minimum and maxi-
mum occurrences of an element or other component.
Occurrence constraints are mapped to the epsilon pro-
duction for minOccurs=‘0’ (rules (1)–(2)) and right re-
cursive production for maxOccurs=‘unbounded’
(rules (2)–(4)). Rule (5) also defines mapping for occur-
rence constraints to preserve that the component < x/>
can appear m to n times. Rule (6) maps occurrence con-
straint use=‘optional’, e.g. for attributes, to the
epsilon production.

Ordering constraints, such as all, choice, and
sequence, which are common particles of the
complexType component, determine in what or-
der elements should occur. Rules (8)–(10) define map-
pings for these order constraints. The all particle requires
that the child elements can appear in any order and that each
child element must occur once and only once. The gram-
mar production N → A(N1, N2, . . . , Nn) in rule (8)
repsents that the terminals N1, N2, . . . , and Nn can ap-
pear in any order but must appear one and only once.
This special grammar production can be implemented us-
ing a stack or a flag. The choice specifies that either one
child element or another can occur. The sequence spec-
ifies that the child elements must appear in the specific
order. Rules (11-12) define mappings for group.



Rule# Translation
1 Γ[[< x minOccurs=‘0’/>]]N = {N → ε} ∪ Γ[[< x/>]]N
2 Γ[[< x minOccurs=‘0’ maxOccurs=‘unbounded’/>]]N = {N → N ′N, N → ε} ∪ S

Γ[[< x/>]]N ′

3 Γ[[< x maxOccurs=‘unbounded’/>]]N = {N → N ′N ′′, N ′′ → N ′N ′′, N ′′ → ε} ∪Γ[[< x/>]]N ′

4 Γ[[< x minOccurs=‘m’ maxOccurs=‘unbounded’/>]]N = {N → [N ′]mN ′′, N ′′ → N ′N ′′, N ′′ → ε} ∪Γ[[< x/>]]N ′

5 Γ[[< x minOccurs=‘m’ maxOccurs=‘n’/>]]N = {N → [N ′]mN ′
1, N ′

1 → N ′N ′
2, N ′

2 → N ′N ′
3, . . . , N ′

1 → ε, . . . } ∪ Γ[[< x/>]]N ′

6 Γ[[< x use=‘optional’/>]]N = {N → ε} ∪ Γ[[< x/>]]N
7 Γ[[< x use=‘required’/>]]N = Γ[[< x/>]]N
8 Γ[[<all> X1X2 . . . Xn </all>]]N = {N → A(N1, N2, . . . , Nn)} ∪ Sn

i=1 Γ[[Xi]]Ni

9 Γ[[<choice> X1X2 . . . Xn </choice>]]N =
Sn

i=1(N → Ni) ∪
Sn

i=1 Γ[[Xi]]Ni

10 Γ[[<sequence> X1X2 . . . Xn </sequence>]]N = {N → N1N ′
1, N ′

1 → N2N ′
2, . . . , N ′

n−1 → N} ∪ Sn
i=1 Γ[[Xi]]Ni

11 Γ[[<group name=‘G’> X </group>]]N = Γ[[X]]G
12 Γ[[<group ref=‘G’/>]]N = {N → G}

Table 3: Mapping occurrence, order and group constraints

The following example illustrates the mapping process:

Γ[[<complexType name=‘C’><sequence minOccurs=‘0’>
<element name=‘A’type=‘AT’/><element name=‘B’ type=‘BT’/>
</sequence></complexType>]]N
= Γ[[<sequence minOccurs=‘0’><element name=‘A’ type=‘AT’/>
<element name=‘B’ type=‘BT’/></sequence>]]C
= {C → ε} ∪ Γ[[<sequence><element name=‘A’ type=‘AT’/>
<element name=‘B’ type=‘BT’/></sequence>]]C
= {C → ε, C → C1C′

1, C′
1 → C2}

∪Γ[[<element name=‘A’ type=‘AT’/>]]C1
∪Γ[[<element name=‘B’ type=‘BT’/>]]C2
= {C → ε, C → C1C′

1, C′
1 → C2,

C1 → bA AT eA, C2 → bB BT eB}

5.3. Dealing with Non-LL Grammar Properties

It is critical to preserve the LL(1) property for construct-
ing the LL(1) parsing table, otherwise the TDX parser con-
struction fails. A few special cases, usually involving the
choice particle and all particle, may end up producing
a non-LL(1) grammar due to ambiguity in the schema.

Consider for example the schema fragment shown in Ta-
ble 4. The choice has two child elements with the same
name "A". This generates a non-LL(1) grammar shown in
Table 4. Note that both of the two productions with the same
nonterminal, C → C1 and C → C2, can be used to generate
element "A". This results in a parsing conflicts when con-
structing the LL(1) parse table, i.e., either one of the pro-
ductions ends up at the same place in the parse table.

The code generator WSDL2TDX uses left factoring to
eliminate conflicts [1]. To be at the safe side, the genera-
tor also performs left recursion check to make sure the gen-
erated grammar is LL(1).

Note that other particles such as sequence, all, and
any, do not allow their child elements to have the same

Schema Fragment Non-LL(1) Grammar LL(1) Grammar
<complexType name="C">
<choice>
<sequence>
<element name="A"

type="T"/>
<element name="B"

type="T"/>
</sequence>
<element name="A"

type="T"/>
</choice>

</complexType>

C → C1
C → C2
C1 → C3C′

3
C′

3 → C4
C3 → bA T eA
C4 → bB T eB
C2 → bA T eA

C → C1C′
1

C1 → bA T eA
C′

1 → bB T eB
C′

1 → ε

Table 4: Schema fragment generating non-LL(1) grammar

name under the same namespace. As result, such particles
do not result in parsing conflict arising from ambiguities
caused by choice.

6. Code Generator Implementation

This section describes the code generation implementa-
tion details for automatic construction of TDX parsers.

6.1. Token Generator Implementation

The TDX code generator WSDL2TDX scans WSDL or
schema description and generates tokens for each element
name, attribute name and enumeration value by assigning a
unique number to each token. Each token is defined by a tag
name under a specific XML namespace. A default names-
pace “” is assigned for a tag name that has no explicit tar-
getNamespace.

Namespace URIs and tokens are stored in a 1-D array
ns[NS SIZE] and a 2-D array indexed by namespace and
name tok[NS SIZE][NAME SIZE], respectively. Both
arrays are used to generate tokens for the grammar produc-
tions in the table. The generated scanner also consults both
arrays to break input stream into tokens. Each tag name
is defined as macro. The code generator generates ANSI
C codes for the tag names and the namespaces from the
schemas. For example, the fragment of source code gener-
ated from the schema shown in Table 1 is:

#define ON 0
#define OFF 1
#define ID 2
#define VALUE 3
#define STATE 4
...
tok[0][ON] = 100
tok[0][OFF] = 102
tok[0][ID] = 104
tok[0][VALUE] = 106
tok[0][STATE] = 108

Here we assume the default namespace is stored in
ns[0]. Tokens are stored only once to minimize mem-
ory use. A token with an even number denotes the token
of a beginning element tag. The token of an ending element
is represented as the next number (odd) of its correspond-
ing beginning token. For example, bVALUE = 106 and
eVALUE = 107.



6.2. Scanner Generator Implementation

A Flex description is generated by WSDL2TDX. The
scanner is based on the content of the WSDL or schema
description. Flex is a frequently used automatic generator
tool by compiler developers for high-performance DFA-
based scanners [1, 8]. The generated Flex specification is
fed into Flex to produce the ANSI C source code for the
XML scanner. This Flex description scans an input stream
and breaks it into strings which match the given expres-
sions. The recognition of the expressions is performed by
the code generated by Flex. The generated Flex description
has the following structure2:

1 %{ ... %}
2 whsp [ \t\v\n\f\r]
3 name [ˆ>/:= \t\v\n\f\r]+
4 qual {name}:
5 open <
6 stop >
7 skip [ˆ/>]*
8 data [ˆ<]*
9 xmln xmlns(:{name}|"")=(\"[ˆ"]*\"|\’[ˆ’]*\’)
10 attr =(\"[ˆ"]*\"|\’[ˆ’]*\’)
11 %x OPEN_ELEM
12 %x CLOS_ELEM
13 %x ATTS
14 %x CDATA
15 %x PC_ENUM
16 %%
17 {whsp} // ignore white space
18 {open}"?"{skip}{stop} // ignore declaration
19 {open}"!"{skip}{stop} // ignore comment
20 {open}"/" {RESETNS; BEGIN(CLOS_ELEM);}
21 {open} {RESETNS; BEGIN(OPEN_ELEM);}
22 <OPEN_ELEM>{whsp} // ignore white space
23 <OPEN_ELEM>{qual} ns = get_ns(yytext);
24 // ... definitions of XML element names and actions
25 <CDATA>{data} {return CDATA; BEGIN(INITIAL);}
26 <CLOS_ELEM>{whsp} // ignore white space
27 <CLOS_ELEM>{qual} ns = get_ns(yytext);
28 // ... definitions of XML element names and actions
29 <CLOS_ELEM>{stop} BEGIN(INITIAL);
30 <ATTS>{whsp} // ignore white space
31 <ATTS>{qual} ns = get_ns(yytext);
32 // ... definitions of XML attribute name and actions
33 <ATTS>xmln ins_ns(yytext);
34 <ATTS>{stop} BEGIN(CDATA);
35 <*><<EOF>> return EOF;
36 %%
37 // user code definition

The Flex specification consists of three sections: defini-
tions, rules, and user subroutines, separated by a line with
‘%%’. The definition section contains name definitions used
to simplify the scanner specification, and start conditions
providing a mechanism for conditionally activating rules.
The second section rules contains of a series of rules of the
form:

pattern action

When the substring of input stream matches the pattern, a
regular expression, the action is executed to process accord-
ingly. The last section consists of user subroutines, where

2 This Flex specification is simplified for clarity.

user functions can be defined. This Flex specification ex-
tracts all the element names, attributes and enumeration val-
ues and returns a token stream. In the definitions section,
lines 2–10 define a set of names, and lines 11–15 define a
set of starting conditions. The line 16 marks the beginning
of the second section rules. Lines 17–19 define rules ignor-
ing white space, declaration and comment respectively be-
cause no action is defined for these patterns. Line 20 de-
fines a rule that the scanner will enter the starting condition
<CLOS_ELEM> when a pattern ‘</’ is recognized, while
line 21 defines a rule that the scanner will enter into the
starting condition <OPEN_ELEM> when the pattern ‘ <’ is
recognized. Because names may or may not be qualified,
the qual regular expression is used to extract the possible
name space for each element name and attribute name (line
23). Therefore the variable ns must be reset before starting
to match a name each time. The function get ns(char
*) returns an integer representing the namespace. The func-
tion ins ns(char *) installs and caches the namespace.
XML attributes are cached for efficiency reasons and to re-
solve namespace bindings, because the xmlns binding may
occur after an attribute was scanned.

As can be seen from this example, the generated scan-
ner is specialized to the XML schemas at hand to improve
the efficiency, compared to the generic scanner. Schema-
specific regular expressions and actions are added to the de-
scription. This includes all the element and attribute names
found in the WSDL or schemas. These element definitions
are collected from all parts of a set of related schemas, in-
cluding top-level element schema components and local el-
ements.

For example, consider the schema in Table 1, the fol-
lowing actions are added to the rules section of Flex speci-
fication:

<PC_ENUM>’OFF’ {return tok[ns][OFF];BEGIN(INITIAL);}
<PC_ENUM>’ON’ {return tok[ns][ON];BEGIN(INITIAL;}
<OPEN_ELEM>’id’ {return tok[ns][ID];BEGIN(ATTS);}
<CLOS_ELEM>’id’ {return tok[ns][ID]+1;}
<OPEN_ELEM>’value’ {return tok[ns][VALUE];BEGIN(ATTS);}
<CLOS_ELEM>’value’ {return tok[ns][VALUE]+1;}
<OPEN_ELEM>’state’ {return tok[ns][STATE];BEGIN(PC_ENUM);}
<CLOS_ELEM>’state’ {return tok[ns][STATE]+1;}

6.3. LL Parse Table Generator Implementation

As was discussed previously, the LL(1) grammar pro-
ductions are produced by WSDL2TDX from the WSDL de-
scription or schemas using the mapping rules outlined in
Section 5. The generated grammar productions are stored
in a 2-D array P[I][S], where I is the production in-
dex and S indicates the grammar symbols. Terminals and
non-terminals are represented as positive and negative inte-
gers respectively. Epsilon is represented using zero.

The code generator WSDL2TDX also generates a set
of functions performing the type-checking validation. The



function pointers are stored in an array pt2Func[I],
where I is the index of the production. This offers a way
to invoke a function associated with a production. For ex-
ample , the following commented sample below illustrates
the generated code for performing type-checking validation
in Table 2.

// type-definition: define a function pointer type
typedef int (*pt2Function)(char *);
...
// define a function pointer array
// holding function pointers
// and initialize with NULL
pt2Function pt2Func[NUM_Production] = {NULL};
...
// assign the function’s address
pt2Func[4] = &impl_string;
pt2Func[5] = &impl_integer;
...
// calling a function using an index
pt2Fun[4](yytext);
// calling impl_string(char *)
pt2Fun[5](yytext);
// calling impl_integer(char *)

The parsing table is constructed by LL2table from the
grammar productions. The parsing table is implemented as
a 2-D array T[A][a], where A is nonterminal, and a is
a terminal or endmarker $. All entries are initialized with
ERROR ENTRY, a negative integer indicating error entries.
The parsing table is implemented based on the generated
LL(1) grammar using algorithm 4.4 in [1]. Any conflict in-
dicates a non-LL(1) grammar.

7. Performance Results

We compared our TDX framework to gSOAP 2.7, eX-
pat 1.2, Apache Xerces for C++ 2.7.0 and a very fast DFA-
based XML parser [16]. All code was compiled using gcc
3.2.2 (Xerces compiled with g++ 3.2.3) with option -O2 on
a 2.4GHz P4 CPU and 512MB of main memory machine
running Red Hat Linux 3.2.2-5.

The XML schema used for testing is shown in Figure 2.
This schema defines an echoString message element
containing a child element input of type XSD string.

The raw XML parsing performance was measured on
memory-resident messages. Therefore network bandwidth
and I/O latency are not measured. This allows us to compare
the raw parsing speeds. The first run is discarded (warm-
<schema targetNamespace="urn:echoString"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.w3.org/2001/XMLSchema">
<element name="echoString">

<complexType>
<sequence>

<element name="input" type="xsd:string"/>
</sequence>

</complexType>
</element>

</schema>

Figure 2: XML Schema for echoString request message

up) and the timing of thousands of runs was measured with
gettimeofday().

Figure 3 shows the elapsed time in microseconds (µs)
of the TDX-based parser, the DFA-based parser, eX-
pat, gSOAP, and Xerces. The size of the input mes-
sage is 1024 bytes. The performance of TDX-based parser
with a scanner produced with Flex -Cfa, and the per-
formance of DFA-based parser with scanner produced
with Flex -Cfa were also compared. The Cfa op-
tions generate a faster DFA scanner but one that is larger in
size.

The TDX-based parser combines parsing and validation
in one stage. The total time of TDX-based parser include
scanning time and validation time. The scanning time in-
dicates the time spent on scanning the message and seri-
alizing the message into token stream. The non-optimized
TDX-based parser takes only one-fifth of total time on val-
idation, and the optimized TDX-based parser spends one-
third of total time on validation, i.e., the TDX-based parser
spends most of the time on scanning message.

Apache Xerces for C++ is a validating XML parser writ-
ten in a portable subset of C++ [2]. It was setup with
XML validation and namespaces support. All other options
are turned off to achieve better performance. The eXpat
parser [12] is a non-validating streaming XML parser. It is
considered one of the fastest streaming XML parsers.

The performance of gSOAP shown has two parts, be-
cause gSOAP’s parser was not designed to be used as a
stand-alone parser. The validation/decoding part indicates
the validation time and the time spent on deserializing the
message for application. Thus the total time includes pars-
ing time, validation time and deserialization time.

The result shows that the optimized TDX-based parser
is 17 to 18 times faster than Xerces, and the non-optimized
TDX-based parser is 13 times faster than Xerces, in terms
of the total time for scanning, parsing and validation.

The performance of the optimized validating TDX-
based parser is approximately three times faster than
non-validating eXpat parser with namespace support. The
performance of the gSOAP is seven times slower than the
TDX-based parser with Flex -Cfa. Note that perfor-
mance of TDX-based parser is lower than the DFA-based
parser, but the difference is very small (The DFA-based
parser is about 14% faster than TDX-based parser).

Figure 4 shows the performance to parse message of a
given size in log scale. The x-axis shows the number of el-
ements in the message, and the y-axis shows the total time
in microseconds (µs). The results show that Xerces has a
larger initial delay time than others. The TDX-based parser
is about three times faster than eXpat, and six times faster
than gSOAP, seven to eight times faster than Xerces. The re-
sult also shows that the TDX-based parser is comparable to
the DFA-based parser in terms of performance.



19 13 18 11
5 5 3 3

50 50

228131

87

0

50

100

150

200

250

300

350

TDX TDX -Cfa DFA DFA -Cfa eXpat gSOAP Xerces

P
ar

se
 T

im
e(

u
s)

validation
decoding+validation
parsing+sanning
parsing+validation
scanning

Figure 3: Performance of echoString parsing for n=1024
(2.40GHz P4)

105

104

103

102

101

100

105104103102101100

P
ar

se
 T

im
e(

µs
)

Number of Elements

Xerces
gSOAP

eXpat
TDX
DFA

Figure 4: Performance of echoString parsing

8. Conclusion

This paper presented the TDX methodology for XML
parsing, which utilizes a table-driven XML parsing ap-
proach. The TDX tables essentially implement a schema-
specific XML representation for efficient parsing and val-
idation. The presented approach has advantages for high-
performance Web services. The results show that the speed
of the parser is several times faster than industrial-strength
high-performance validating XML parsers. The TDX ap-
proach also achieves a high level of modularity and adap-
tiveness for developing XML Web service applications, be-
cause TDX tables are interchangeable and can be easily re-
placed when a schema is updated, while purely compiled
approaches require service applications to be recompiled.
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