1. Design a master-worker program to compute the product of two \(n \times n \) matrices \(A \) and \(B \) using a decomposition into \(m \times m \) blocks, such that each worker computes the \(m \times m \) product of a block. The master is responsible for sending the tasks (two blocks, one for \(A \) and one for \(B \)) and for receiving the products from the workers and for summing them up into the final result. Determine the parallel \(t_{\text{comp}} \) and \(t_{\text{comm}} \) given the constants \(t_{\text{startup}} \) and \(t_{\text{data}} \).

2. Write (pseudo or C) code that implements a parallel Monte Carlo calculation of \(\pi/4 \) using independent random number streams\(^1\). See note 16 of *Algorithms PART 1: Embarrassingly Parallel*. Explain how you decided to combine the sub-results per processor to produce the overall estimation of \(\pi \).

3. Use divide and conquer to compute the \(n^{\text{th}} \) power of \(x \) in parallel by the property that

\[
\begin{align*}
x^n &= x^{n/2} \cdot x^{n/2} & \text{if } n \text{ is even} \\
x^n &= x^{(n-1)/2} \cdot x^{(n-1)/2} \cdot x & \text{if } n \text{ is odd}
\end{align*}
\]

Use this algorithm to implement the parallel transitive closure of a undirected graph with \(n \) nodes from its \(n \times n \) adjacency matrix \(A \) where \(a_{ij} = a_{ji} = 1 \) when nodes \(i \) and \(j \) are connected. Recall that \(A^2 \) is the adjacency matrix that connects nodes at distance 2, \(A^3 \) is the adjacency matrix that connects nodes at distance 2 and 3, and so on. Assuming shared memory (no communication cost) and that \(n \) is a power of 2, what is the asymptotic parallel time?

\(^1\) You may assume that function \(\text{rand()} \) generates a unique RN as an i.i.d. random variable per processor.