Overview

- Dense matrix
 - BLAS (serial)
 - ATLAS (serial/threaded)
 - LAPACK (serial)
 - Vendor-tuned LAPACK (shared memory parallel)
 - ScaLAPACK/PLAPACK (distributed memory parallel)
 - FLAME (an algorithm derivation framework)

- Sparse matrix
 - PETSc

- Further reading
The Basic Linear Algebra Subprograms (BLAS) consist of a set of lower-level linear algebra operations

- **Level 1**: vector-vector
 - O(n) operations on O(n) data
 - Bandwidth to memory is a limiting factor

- **Level 2**: matrix-vector
 - O(n^2) operations on O(n^2) data
 - Vectors kept in cache

- **Level 3**: matrix-matrix
 - O(n^3) operations on O(n^2) data
 - Blocked matrices kept in cache

Netlib’s BLAS is a reference implementation

Examples

- \(y \leftarrow \alpha x + y \)
- \(y \leftarrow \alpha A x + \beta y \)
- \(T x = y \) (Triangular T)
- \(C \leftarrow \alpha AB + \beta C \)
- \(B \leftarrow \alpha T^{-1} B \) (Triangular T)
GotoBlas and Vendor-Tuned BLAS

- Implemented by Kazushige Goto
- Optimized for cache and Translation Lookaside Buffer (TLB)
- Restrictive open-source license
- Licensed to vendors for vendor-tuned BLAS libraries

Vendor-tuned BLAS
- Accelerate framework (Apple)
- MLK (Intel)
- ACML (AMD)
- ESSL (IBM)
- MLIB (HP)
- Sun performance library
ATLAS

- The Automatically Tuned Linear Algebra Software (ATLAS) is a self-tuned BLAS version
- Installation tests numerical kernels and (other parts of) the code to determine which parameters are best for a particular machine, e.g. blocking, loop unrolling, …
- Faster than the reference implementation
- Freely available
DGEMM

Image source: Robert van de Geijn (TACC)

11/26/12
DGEMM

Itanium2 (1.5 GHz)

Image source: Robert van de Geijn (TACC)
DGEMM

Power 5 (1.9 GHz)

Image source: Robert van de Geijn (TACC)

11/26/12
LAPACK

- Linear Algebra PACKage (LAPACK) written in Fortran
- Built on BLAS
- Standard API (Application Programming Interface)
 - Data type: real and complex, single and double precision
 - Matrix shapes: general dense, diagonal, bidiagonal, tridiagonal, banded, trapeziodal, Hessenberg
 - Matrix properties: general, orthogonal, positive definite, Hermitian, symmetric
 - Linear least squares, eigenvalue problems, singular value decomposition, matrix factorizations (LU, QR, Cholesky, Schur)
- Reference implementation from Netlib
- Vendor-tuned versions available
 - Some for shared memory parallel
ScaLAPACK/PLAPACK

- ScaLAPACK/PLAPACK are versions of LAPACK for distributed memory MIMD parallel machines
 - Subset of LAPACK routines
- ScaLAPACK is built on BLAS and MPI
- ScaLAPACK reference implementation from Netlib

- PLAPACK is a project at UT Austin (TACC)
FLAME

- Formal Linear Algebra Methods Environment (FLAME)
- LAPACK code is hard to write/read/maintain/alter
- “Transform the development of dense linear algebra libraries from an art reserved for experts to a science that can be understood by novice and expert alike”
 - Notation for expressing algorithms
 - A methodology for systematic derivation of algorithms using loop invariants
 - Application Program Interfaces (APIs) for representing the algorithms in code
 - Tools for mechanical derivation, implementation and analysis of algorithms and implementations
Algorithm: \([A] := LU_BLK_VAR5(A) \)

Partition \(A \rightarrow \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \)

where \(A_{TL} \) is \(0 \times 0 \)

while \(m(A_{TL}) < m(A) \) do

Determine block size \(b \)

Repartition

\[
\begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{pmatrix}
\]

where \(A_{11} \) is \(b \times b \)

\(A_{11} = LU(A_{11}) \)

\(A_{12} = \text{TRILU}(A_{11})^{-1} A_{12} \)

\(A_{21} = A_{21} \text{TRIU}(A_{11})^{-1} \)

\(A_{22} = A_{22} - A_{21} A_{12} \)

Continue with

\[
\begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \leftarrow \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{pmatrix}
\]

endwhile

\[
\text{FLA}_\text{Part}_2x2(A, &ATL, &ATR, \\
&ABL, &ABR, 0, 0, FLA_TL);}
\]

while (FLA_Obj_length(ATL) < FLA_Obj_length(A)){

\(b = \min(\text{FLA_Obj_length(ABR)}, \text{nb_alg}) \);

\[
\text{FLA}_\text{Repart}_2x2_to_3x3 \\
(ATL, /* */ ATR, &A00, /* */ &A01, &A02, \\
/* ************* */ /* *************** */ \\
&A10, /* */ &A11, &A12, \\
&ABL, /* */ ABR, &A20, /* */ &A21, &A22, \\
b, b, FLA_BR);
\]

/*---*/

\[
\text{LU}_\text{unb}_\text{var5}(A11);
\]

\[
\text{FLA}_\text{Trsm}(\text{FLA_LEFT}, \text{FLA_LOWER_TRIANGULAR}, \\
\text{FLA_NO_TRANSPOSE}, \text{FLA_UNIT_DIAG}, \\
\text{FLA_ONE}, A11, A12);
\]

\[
\text{FLA}_\text{Trsm}(\text{FLA_RIGHT}, \text{FLA_UPPER_TRIANGULAR}, \\
\text{FLA_NO_TRANSPOSE}, \text{FLA_NONUNIT_DIAG}, \\
\text{FLA_ONE}, A11, A21);
\]

\[
\text{FLA}_\text{Gemm}(\text{FLA_NO_TRANSPOSE}, \text{FLA_NO_TRANSPOSE}, \\
\text{FLA_MINUS_ONE}, A21, A12, FLA_ONE, A22);
\]

/*---*/

\[
\text{FLA}_\text{Cont_with}_3x3_to_2x2 \\
(&ATL, /* */ &ATR, A00, A01, /* */ A02, \\
A10, A11, /* */ A12, \\
/* ************* */ /* *************** */ \\
&ABL, /* */ &ABR, A20, A21, /* */ A22, \\
FLA_TL);
\]

}
AutoFLAME

\textbf{Operation:} \quad [L] = \text{TrinvLVar1}(L)

\begin{align*}
\text{Partition} \\
L &= \begin{pmatrix}
L_{mm} & 0 \\
L_{m} & L_{mm}
\end{pmatrix} \\
\text{where} \\
L_{mm} &= \text{empty}
\end{align*}

\text{Loop invariant:} \\
\begin{pmatrix}
L_{mm} \\
L_{m}
\end{pmatrix} =
\begin{pmatrix}
L_{mm}^{-1} & 0 \\
L_{m} & L_{mm}
\end{pmatrix}

\text{While} \quad L_{mm} \rightarrow L

\text{Repartition:} \\
\begin{pmatrix}
L_{mm} & 0 \\
L_{m}
\end{pmatrix}
\rightarrow
\begin{pmatrix}
L_{mm} \\
L_{m}
\end{pmatrix} =
\begin{pmatrix}
L_{mm} & 0 \\
L_{m} & L_{mm}
\end{pmatrix}

\text{Loop invariant before the update:} \\
\begin{pmatrix}
L_{mm} & 0 \\
L_{m}
\end{pmatrix} =
\begin{pmatrix}
L_{mm}^{-1} & 0 \\
L_{m} & L_{mm}
\end{pmatrix}

\begin{align*}
L_{11} &= L_{mm}^{-1} \\
L_{13} &= -L_{mm}^{-1} \cdot L_{m}
\end{align*}

\text{Continue with:} \\
\begin{pmatrix}
L_{mm} & 0 \\
L_{m}
\end{pmatrix}
\rightarrow
\begin{pmatrix}
L_{mm} & 0 \\
L_{m}
\end{pmatrix}

\text{Loop invariant after the update:} \\
\begin{pmatrix}
L_{mm} & 0 \\
L_{m}
\end{pmatrix} =
\begin{pmatrix}
L_{mm}^{-1} & L_{mm}^{-1} \cdot L_{m} \\
L_{m} & L_{mm}
\end{pmatrix}

\text{and while.}
LU w/ Pivoting on 8 Cores
4 x AMD 2.4GHz dual-core Opteron 880

LU (with pivoting) performance with various libraries (m = p, n = p)

- ACML 3.60
- GotoBLAS 1.09 + LAPACK 3.0
- LAPACK 3.0 + GotoBLAS 1.09
- FLAME + ACML 3.60
- FLAME + GotoBLAS 1.09 + LAPACK 3.0
- FLAME + LAPACK 3.0 + GotoBLAS 1.09

GotoBLAS
FLAME
LAPACK

Image source: Robert van de Geijn (TACC)
QR Factorization on 8 Cores

4 x AMD 2.4GHz dual-core Opteron 880

QR performance with various libraries (m = p, n = p)

- ACML 3.60
- LAPACK 3.0 + ACML 3.60
- LAPACK 3.0 + GotoBLAS 1.09
- FLAME + ACML 3.60
- FLAME + LAPACK 3.0 + ACML 3.60
- FLAME + LAPACK 3.0 + GotoBLAS 1.09

Problem size p

GFLOPS

Image source: Robert van de Geijn (TACC)
Cholesky on 8 Cores
4 x AMD 2.4GHz dual-core Opteron 880

Image source: Robert van de Geijn (TACC)

11/26/12
PETSc

- Portable, Extensible Toolkit for Scientific Computation (PETSc) for distributed memory MIMD parallel machines
 - Vector/matrix formats and array operations (serial and parallel)
 - Linear and nonlinear solvers
 - Limited ODE integrators
 - Limited grid/data management (serial and parallel)
- Built on BLAS, LAPACK, and MPI
- Basically a solver library for general sparse matrices
 - User writes main() program
 - User orchestrates computation via object creations
 - User controls the basic flow of the PETSc program
 - PETSc propagates errors from underlying libs
PETSc Numerical Components

<table>
<thead>
<tr>
<th>Nonlinear Solvers (SNES)</th>
<th>Time Steppers (TS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newton-based Methods</td>
<td>Euler</td>
</tr>
<tr>
<td>Line Search</td>
<td>Backward Euler</td>
</tr>
<tr>
<td>Trust Region</td>
<td>Pseudo Time Stepping</td>
</tr>
<tr>
<td>Other</td>
<td>Other</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Krylov Subspace Methods (KSP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMRES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Preconditioners (PC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additive Schwartz</td>
</tr>
<tr>
<td>Jacobi</td>
</tr>
<tr>
<td>ICC</td>
</tr>
<tr>
<td>Others</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Matrices (Mat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressed Sparse Row (AIJ)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distributed Arrays (DA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vectors (Vec)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index Sets (IS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indices</td>
</tr>
<tr>
<td>Block Indices</td>
</tr>
<tr>
<td>Stride</td>
</tr>
<tr>
<td>Other</td>
</tr>
</tbody>
</table>

Image source: PETSc project
PETSc Linear Solver Example

\[Ax = b \]

KSP ksp; /* linear solver context */
Mat A; /* matrix */
Vec x, b; /* solution, RHS vectors */
int n; /* problem dimension */

MatCreate(PETSC_COMM_WORLD, PETSC_DECIDE, PETSC_DECIDE, n, n, &A);
MatSetFromOptions(A);
/* (user-defined code to assemble matrix A not shown) */
VecCreate(PETSC_COMM_WORLD, &x);
VecSetSizes(x, PETSC_DECIDE, n);
VecSetFromOptions(x);
VecDuplicate(x, &b);
/* (user-defined code to assemble RHS vector b not shown) */
KSPCreate(PETSC_COMM_WORLD, &ksp);
KSPSetOperators(ksp, A, A, DIFFERENT_NONZERO_PATTERN);
KSPSetFromOptions(ksp);
KSPSolve(ksp, b, x);
KSPDestroy(ksp);
PETSc Flow of Control for PDEs

Image source: PETSc project

11/26/12
PETSc Nonlinear Solver Interface: SNES

- For problems arising from PDEs
- Uses Newton-based methods
 - (Approximately) solve $F'(u_k) = -F(u_k)$
 - Update $u_{k+1} = u_k + \Delta u_k$
- Support the general solution to $F(u) = 0$
- User provides:
 - Code to evaluate $F(u)$
 - Code to evaluate Jacobian of $F(u)$
 - Or use (built-in) first-order sparse finite difference approximation
 - Or use automatic differentiation, e.g. ADIFOR and ADIC
PETSc Nonlinear Solver Example

```c
SNES  snes;  /* nonlinear solver context */
Mat    J;    /* Jacobian matrix */
Vec x, f;   /* solution, RHS vectors */
int n, its; /* problem dimension, number of iterations */
ApptCtx uc; /* user-defined application context */

MatCreate(PETSC_COMM_WORLD, n, n, &J);
VecCreate(PETSC_COMM_WORLD, n, &x);
VecDuplicate(x, &f);

SNESCreate(PETSC_COMM_WORLD, SNES_NONLINEAR_EQUATIONS, &snes);
SNESSetFunction(snes, f, EvaluateFunction, uc);
SNESSetJacobian(snes, J, EvaluateJacobian, uc);
SNESSetFromOptions(snes);

SNES Solve(snes, x, &its);

SNESDestroy(snes);
```
PETSc Meshes

Image source: PETSc project

11/26/12
PETSc Global vs Local Meshes

Global: each process stores a unique local set of vertices (and each vertex is owned by exactly one process)

Local: each process stores a unique local set of vertices as well as ghost nodes from neighboring processes

Image source: PETSc project
PETSc Distributed Arrays

- Form a DA:
 - DACreate1d(...)
 - DACreate2d(...)
 - DACreate3d(...)

- Create the corresponding PETSc vectors
 - DACreateGlobalVector(DA, Vec*)
 - DACreateLocalVector(DA, Vec*)

- Update ghost points (scatter global vector into local parts, including ghost points)
 - DAGlobalToLocalBegin(DA, ...)
 - DAGlobalToLocalEnd(DA, ...)
Further Reading

- [SRC] pages 621-647
- Netlib organization: www.netlib.org
- FLAME project: www.cs.utexas.edu/users/flame
- PETSc project: www.mcs.anl.gov/petsc
- Linear algebra Wiki: www.linearalgebrawiki.org